1
|
He W, Tang H, Li J, Shen X, Zhang X, Li C, Liu H, Yu W. Using the coefficient of determination to identify injury regions after stroke in pre-clinical FDG-PET images. Comput Biol Med 2025; 184:109401. [PMID: 39591668 DOI: 10.1016/j.compbiomed.2024.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND In the analysis of brain fluorodeoxyglucose positron emission tomography (FDG-PET) images, intensity normalization is a necessary step to reduce inter-subject variability. However, the choice of the most appropriate normalization method in stroke studies remains unclear, as demonstrated by inconsistent findings in the literature. MATERIALS AND METHODS Here, we propose a regression- and single-subject-based model for analyzing FDG-PET images without intensity normalization. Two independent data sets were collected before and after middle cerebral artery occlusion (MCAO), with one comprising 120 rats and the other 96 rats. After data preprocessing, voxel intensities in the same region and hemisphere were paired before and after the MCAO scan. A linear regression model was applied to the paired data, and the coefficient of determination R2 was calculated to measure the linearity. The R2 values between the ipsilateral and contralateral hemispheres were compared, and significant regions were defined as those with reduced linearity. Our method was compared with voxel-wise analysis under different intensity normalization methods and validated using the triphenyl tetrazolium chloride (TTC) staining data. RESULTS The significant regions identified by the proposed method showed a large degree of overlap with the infarcted regions identified by TTC data, as measured by the Dice similarity coefficient (DSC). The average DSC of the proposed method was 59.7%, whereas the DSCs of the existing approaches ranged from 41.4%∼51.3%. Additional validation using receiver operating characteristic (ROC) demonstrated that the area under the curve (AUC) of the average ROC curves reached 0.84 using the proposed method, whereas existing methods achieved AUCs ranging from 0.77∼0.79. The identified regions were consistent across the two independent data sets, and some findings were corroborated by other publications. CONCLUSIONS The proposed model presents a novel quantitative approach for identifying injury regions post-stroke using FDG-PET images. The calculation does not require intensity normalization and can be applied to individual subjects. The method yields more sensitive results compared to existing identification methods.
Collapse
Affiliation(s)
- Wuxian He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hongtu Tang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Jia Li
- Xianning Hospital of Traditional Chinese Medicine, Xianning, 437100, Hubei, China
| | - Xiaoyan Shen
- College of Science, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Xuechen Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Chenrui Li
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Zhejiang, China
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.
| |
Collapse
|
2
|
Luo X, Jin C, Chen H, Niu J, Yu C, Dou X, Wang J, Wen J, Zhang H, Tian M, Zhong Y. PET imaging of synaptic vesicle glycoprotein 2 subtype A for neurological recovery in ischemic stroke. Eur J Nucl Med Mol Imaging 2024; 52:158-170. [PMID: 39196302 DOI: 10.1007/s00259-024-06904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE [18F]SynVesT-1 is a novel radiopharmaceutical for assessing synaptic density in vivo. This study aims to investigate the potential of [18F]SynVesT-1 positron emission tomography (PET) in evaluating neurological recovery in the rat model of ischemic stroke, and to compare its performance with [18F]FDG PET. METHODS Sprague-Dawley rats were subjected to photothrombotic cerebral infarction, and safinamide was administered intraperitoneally from day 3 to day 14 post-stroke to alleviate neurological deficits. Cylinder test and forelimb placing test were performed to assess the neurological function. MRI, [18F]SynVesT-1 PET/CT and [18F]FDG PET/CT imaging were used to evaluate infarct volume, synaptic density, and cerebral glucose metabolism pre- and post-treatment. [18F]SynVesT-1 and [18F]FDG PET images were compared using Statistical Parametric Mapping (SPM) and region of interest (ROI)-based analysis. Post-mortem histological analysis was performed to validate PET images. RESULTS Safinamide treatment improved behavioral outcomes in stroke-damaged rats. Both [18F]SynVesT-1 and [18F]FDG PET detected stroke-induced injury, with the injured region being significantly larger in [18F]FDG PET than in [18F]SynVesT-1 PET. Compared with the saline group, radiotracer uptake in the injured area significantly increased in [18F]SynVesT-1 PET after safinamide treatment, whereas no notable change was observed in [18F]FDG PET. Additionally, [18F]SynVesT-1 PET imaging showed a better correlation with neurological function recovery than [18F]FDG PET. Post-mortem analysis revealed increased neuronal numbers, synaptic density, and synaptic neuroplasticity, as well as decreased glia activation in the stroke-injured area after treatment. CONCLUSION [18F]SynVesT-1 PET effectively quantified spatiotemporal dynamics of synaptic density in the rat model of stroke, and showed different capabilities in detecting stroke injury and neurological recovery compared with [18F]FDG PET. The utilization of [18F]SynVesT-1 PET holds promise as a potential non-invasive biomarker for evaluating ischemic stroke in conjunction with [18F]FDG PET.
Collapse
Affiliation(s)
- Xiaoyun Luo
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310014, China
| | - Hetian Chen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Congcong Yu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Junjie Wen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310014, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310014, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
3
|
Fu Y, Jin Z. Effects of Dexmedetomidine on Cognitive Function, Oxidative Stress and Brain Protection in Patients Undergoing Craniocerebral Surgery. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:19-27. [PMID: 38454897 PMCID: PMC10926013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
BACKGROUND The protective mechanism of dexmedetomidine on the brains of patients undergoing craniocerebral surgery remains unclear. The aim of this study was to examine the impact of dexmedetomidine on cognitive function, oxidative stress, and brain protection in such patients. METHODS Fifty-four patients who underwent craniocerebral surgery at our hospital from January 2020 to June 2023 were retrospectively selected as study subjects. They were divided into two groups: the control group (n = 27) and the study group (n = 27), based on different auxiliary anesthesia protocols. Patients in the study group received dexmedetomidine before anesthesia induction, using a midline intravenous pump to assist anesthesia, while the control group received an equivalent amount of normal saline. The remaining anesthesia induction and maintenance protocols were consistent for both groups. Cognitive function was assessed using the Mini Mental State Examination (MMSE) before and 1 day after surgery for both groups. Oxidative stress indicators, including malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) levels in the serum of both groups, were measured using enzyme-linked immunosorbent assay (ELISA). Additionally, changes in postoperative brain injury indicators, namely neuron-specific enolase (NSE) and central nervous system-specific protein (S100β), were detected and compared in the serum of both groups. Concurrently, postoperative adverse reactions were recorded for both groups. RESULTS The MMSE scale scores of both groups of patients 24 hours after surgery were significantly lower than those before surgery. However, the MMSE scale scores of the study group patients were notably higher than those in the control group, with a statistically significant difference (p < 0.05). One hour after surgery, the serum levels of MDA, GSH-Px, and SOD in both groups of patients were significantly elevated compared to pre-surgery levels. Yet, the study group exhibited significantly lower levels of MDA, GSH-Px, and SOD in comparison to the control group, and these differences were statistically significant (p < 0.05). The serum levels of NSE and S100β in both groups were markedly higher than preoperative levels 24 hours after surgery. However, the study group demonstrated significantly lower levels of serum NSE and S100β compared to the control group, with a statistically significant difference (p < 0.05). The incidence of postoperative complications in the study group was 7.41% (2/27), indicating a decreasing trend compared to 18.52% (5/27) in the control group. However, this difference did not reach statistical significance (χ2 = 1.477, p = 0.224). CONCLUSION Dexmedetomidine-assisted anesthesia in craniocerebral surgery can effectively enhance postoperative cognitive function, mitigate oxidative stress, and facilitate overall postoperative recovery for patients. The intervention exhibits a favorable safety profile with no reported serious adverse reactions, establishing it as a relatively safe and reliable approach.
Collapse
Affiliation(s)
- Yan Fu
- Department of Anesthesiology, The First People’s Hospital of Daishan, 316200 Zhoushan, Zhejiang, China
| | - Zhu Jin
- Department of Anesthesiology, Sahzu International Medical Center, 311215 Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Li EJ, López JE, Spencer BA, Abdelhafez Y, Badawi RD, Wang G, Cherry SR. Total-Body Perfusion Imaging with [ 11C]-Butanol. J Nucl Med 2023; 64:1831-1838. [PMID: 37652544 PMCID: PMC10626376 DOI: 10.2967/jnumed.123.265659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Tissue perfusion can be affected by physiology or disease. With the advent of total-body PET, quantitative measurement of perfusion across the entire body is possible. [11C]-butanol is a perfusion tracer with a superior extraction fraction compared with [15O]-water and [13N]-ammonia. To develop the methodology for total-body perfusion imaging, a pilot study using [11C]-butanol on the uEXPLORER total-body PET/CT scanner was conducted. Methods: Eight participants (6 healthy volunteers and 2 patients with peripheral vascular disease [PVD]) were injected with a bolus of [11C]-butanol and underwent 30-min dynamic acquisitions. Three healthy volunteers underwent repeat studies at rest (baseline) to assess test-retest reproducibility; 1 volunteer underwent paired rest and cold pressor test (CPT) studies. Changes in perfusion were measured in the paired rest-CPT study. For PVD patients, local changes in perfusion were investigated and correlated with patient medical history. Regional and parametric kinetic analysis methods were developed using a 1-tissue compartment model and leading-edge delay correction. Results: Estimated baseline perfusion values ranged from 0.02 to 1.95 mL·min-1·cm-3 across organs. Test-retest analysis showed that repeat baseline perfusion measurements were highly correlated (slope, 0.99; Pearson r = 0.96, P < 0.001). For the CPT subject, the largest regional increases were in skeletal muscle (psoas, 142%) and the myocardium (64%). One of the PVD patients showed increased collateral vessel growth in the calf because of a peripheral stenosis. Comorbidities including myocardial infarction, hypothyroidism, and renal failure were correlated with variations in organ-specific perfusion. Conclusion: This pilot study demonstrates the ability to obtain reproducible measurements of total-body perfusion using [11C]-butanol. The methods are sensitive to local perturbations in flow because of physiologic stressors and disease.
Collapse
Affiliation(s)
- Elizabeth J Li
- Department of Biomedical Engineering, UC Davis, Davis, California
| | - Javier E López
- Department of Internal Medicine, Division of Cardiovascular Medicine, UC Davis Health, UC Davis, Sacramento, California; and
| | | | - Yasser Abdelhafez
- Department of Radiology, UC Davis Health, UC Davis, Sacramento, California
| | - Ramsey D Badawi
- Department of Biomedical Engineering, UC Davis, Davis, California
- Department of Radiology, UC Davis Health, UC Davis, Sacramento, California
| | - Guobao Wang
- Department of Radiology, UC Davis Health, UC Davis, Sacramento, California
| | - Simon R Cherry
- Department of Biomedical Engineering, UC Davis, Davis, California;
- Department of Radiology, UC Davis Health, UC Davis, Sacramento, California
| |
Collapse
|
5
|
Zheng P, Xiu Y, Chen Z, Yuan M, Li Y, Wang N, Zhang B, Zhao X, Li M, Liu Q, Shi FD, Jin WN. Group 2 innate lymphoid cells resolve neuroinflammation following cerebral ischaemia. Stroke Vasc Neurol 2023; 8:424-434. [PMID: 37072337 PMCID: PMC10647866 DOI: 10.1136/svn-2022-001919] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/02/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Acute brain ischaemia elicits pronounced inflammation, which aggravates neural injury. However, the mechanisms governing the resolution of acute neuroinflammation remain poorly understood. In contrast to regulatory T and B cells, group 2 innate lymphoid cells (ILC2s) are immunoregulatory cells that can be swiftly mobilised without antigen presentation; whether and how these ILC2s participate in central nervous system inflammation following brain ischaemia is still unknown. METHODS Leveraging brain tissues from patients who had an ischaemic stroke and a mouse model of focal ischaemia, we characterised the presence and cytokine release of brain-infiltrating ILC2s. The impact of ILC2s on neural injury was evaluated through antibody depletion and ILC2 adoptive transfer experiments. Using Rag2-/-γc-/- mice receiving passive transfer of IL-4-/- ILC2s, we further assessed the contribution of interleukin (IL)-4, produced by ILC2s, in ischaemic brain injury. RESULTS We demonstrate that ILC2s accumulate in the areas surrounding the infarct in brain tissues of patients with cerebral ischaemia, as well as in mice subjected to focal cerebral ischaemia. Oligodendrocytes were a major source of IL-33, which contributed to ILC2s mobilisation. Adoptive transfer and expansion of ILC2s reduced brain infarction. Importantly, brain-infiltrating ILC2s reduced the magnitude of stroke injury severity through the production of IL-4. CONCLUSIONS Our findings revealed that brain ischaemia mobilises ILC2s to curb neuroinflammation and brain injury, expanding the current understanding of inflammatory networks following stroke.
Collapse
Affiliation(s)
- Pei Zheng
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuwhen Xiu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhili Chen
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Yuan
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ningning Wang
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bohao Zhang
- Department of Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhao
- Department of Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minshu Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei-Na Jin
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Poblete RA, Yaceczko S, Aliakbar R, Saini P, Hazany S, Breit H, Louie SG, Lyden PD, Partikian A. Optimization of Nutrition after Brain Injury: Mechanistic and Therapeutic Considerations. Biomedicines 2023; 11:2551. [PMID: 37760993 PMCID: PMC10526443 DOI: 10.3390/biomedicines11092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Emerging science continues to establish the detrimental effects of malnutrition in acute neurological diseases such as traumatic brain injury, stroke, status epilepticus and anoxic brain injury. The primary pathological pathways responsible for secondary brain injury include neuroinflammation, catabolism, immune suppression and metabolic failure, and these are exacerbated by malnutrition. Given this, there is growing interest in novel nutritional interventions to promote neurological recovery after acute brain injury. In this review, we will describe how malnutrition impacts the biomolecular mechanisms of secondary brain injury in acute neurological disorders, and how nutritional status can be optimized in both pediatric and adult populations. We will further highlight emerging therapeutic approaches, including specialized diets that aim to resolve neuroinflammation, immunodeficiency and metabolic crisis, by providing pre-clinical and clinical evidence that their use promotes neurologic recovery. Using nutrition as a targeted treatment is appealing for several reasons that will be discussed. Given the high mortality and both short- and long-term morbidity associated with acute brain injuries, novel translational and clinical approaches are needed.
Collapse
Affiliation(s)
- Roy A. Poblete
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Shelby Yaceczko
- UCLA Health, University of California, 100 Medical Plaza, Suite 345, Los Angeles, CA 90024, USA;
| | - Raya Aliakbar
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Pravesh Saini
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Saman Hazany
- Department of Radiology, Keck School of Medicine, The University of Southern California, 1500 San Pablo Street, Los Angeles, CA 90033, USA;
| | - Hannah Breit
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Stan G. Louie
- Department of Clinical Pharmacy, School of Pharmacy, The University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA;
| | - Patrick D. Lyden
- Department of Neurology, Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA;
| | - Arthur Partikian
- Department of Neurology, Department of Pediatrics, Keck School of Medicine, The University of Southern California, 2010 Zonal Avenue, Building B, 3P61, Los Angeles, CA 90033, USA;
| |
Collapse
|
7
|
Ni R, Straumann N, Fazio S, Dean-Ben XL, Louloudis G, Keller C, Razansky D, Ametamey S, Mu L, Nombela-Arrieta C, Klohs J. Imaging increased metabolism in the spinal cord in mice after middle cerebral artery occlusion. PHOTOACOUSTICS 2023; 32:100532. [PMID: 37645255 PMCID: PMC10461215 DOI: 10.1016/j.pacs.2023.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Emerging evidence indicates crosstalk between the brain and hematopoietic system following cerebral ischemia. Here, we investigated metabolism and oxygenation in the spleen and spinal cord in a transient middle cerebral artery occlusion (tMCAO) model. Sham-operated and tMCAO mice underwent [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess glucose metabolism. Naïve, sham-operated and tMCAO mice underwent multispectral optoacoustic tomography (MSOT) assisted by quantitative model-based reconstruction and unmixing algorithms for accurate mapping of oxygenation patterns in peripheral tissues at 24 h after reperfusion. We found increased [18F]FDG uptake and reduced MSOT oxygen saturation, indicating hypoxia in the thoracic spinal cord of tMCAO mice compared with sham-operated mice but not in the spleen. Reduced spleen size was observed in tMCAO mice compared with sham-operated mice ex vivo. tMCAO led to an increase in the numbers of mature T cells in femoral bone marrow tissues, concomitant with a stark reduction in these cell subsets in the spleen and peripheral blood. The combination of quantitative PET and MSOT thus enabled observation of hypoxia and increased metabolic activity in the spinal cord of tMCAO mice at 24 h after occlusion compared to sham-operated mice.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Nadja Straumann
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Serana Fazio
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Georgios Louloudis
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Tierradentro-García LO, Saade-Lemus S, Freeman C, Kirschen M, Huang H, Vossough A, Hwang M. Cerebral Blood Flow of the Neonatal Brain after Hypoxic-Ischemic Injury. Am J Perinatol 2023; 40:475-488. [PMID: 34225373 PMCID: PMC8974293 DOI: 10.1055/s-0041-1731278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Hypoxic-ischemic encephalopathy (HIE) in infants can have long-term adverse neurodevelopmental effects and markedly reduce quality of life. Both the initial hypoperfusion and the subsequent rapid reperfusion can cause deleterious effects in brain tissue. Cerebral blood flow (CBF) assessment in newborns with HIE can help detect abnormalities in brain perfusion to guide therapy and prognosticate patient outcomes. STUDY DESIGN The review will provide an overview of the pathophysiological implications of CBF derangements in neonatal HIE, current and emerging techniques for CBF quantification, and the potential to utilize CBF as a physiologic target in managing neonates with acute HIE. CONCLUSION The alterations of CBF in infants during hypoxia-ischemia have been studied by using different neuroimaging techniques, including nitrous oxide and xenon clearance, transcranial Doppler ultrasonography, contrast-enhanced ultrasound, arterial spin labeling MRI, 18F-FDG positron emission tomography, near-infrared spectroscopy (NIRS), functional NIRS, and diffuse correlation spectroscopy. Consensus is lacking regarding the clinical significance of CBF estimations detected by these different modalities. Heterogeneity in the imaging modality used, regional versus global estimations of CBF, time for the scan, and variables impacting brain perfusion and cohort clinical characteristics should be considered when translating the findings described in the literature to routine practice and implementation of therapeutic interventions. KEY POINTS · Hypoxic-ischemic injury in infants can result in adverse long-term neurologic sequelae.. · Cerebral blood flow is a useful biomarker in neonatal hypoxic-ischemic injury.. · Imaging modality, variables affecting cerebral blood flow, and patient characteristics affect cerebral blood flow assessment..
Collapse
Affiliation(s)
| | - Sandra Saade-Lemus
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Brigham and Women’s Hospital & Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Colbey Freeman
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arastoo Vossough
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
He W, Tang H, Li J, Hou C, Shen X, Li C, Liu H, Yu W. Feature-based Quality Assessment of Middle Cerebral Artery Occlusion Using 18F-Fluorodeoxyglucose Positron Emission Tomography. Neurosci Bull 2022; 38:1057-1068. [PMID: 35639276 PMCID: PMC9468193 DOI: 10.1007/s12264-022-00865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/13/2022] [Indexed: 10/18/2022] Open
Abstract
In animal experiments, ischemic stroke is usually induced through middle cerebral artery occlusion (MCAO), and quality assessment of this procedure is crucial. However, an accurate assessment method based on 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is still lacking. The difficulty lies in the inconsistent preprocessing pipeline, biased intensity normalization, or unclear spatiotemporal uptake of FDG. Here, we propose an image feature-based protocol to assess the quality of the procedure using a 3D scale-invariant feature transform and support vector machine. This feature-based protocol provides a convenient, accurate, and reliable tool to assess the quality of the MCAO procedure in FDG PET studies. Compared with existing approaches, the proposed protocol is fully quantitative, objective, automatic, and bypasses the intensity normalization step. An online interface was constructed to check images and obtain assessment results.
Collapse
Affiliation(s)
- Wuxian He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongtu Tang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jia Li
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chenze Hou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaoyan Shen
- College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Chenrui Li
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou , 310027, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute of Zhejiang University, Jiaxing , 314000, China.
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.
| |
Collapse
|
10
|
Wang Z, Chen S, Smith MF, Jia X. Effect of Graded Targeted Temperature Management on Cerebral Glucose Spatiotemporal Characteristics after Cardiac Arrest. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:182-185. [PMID: 36086320 PMCID: PMC9639334 DOI: 10.1109/embc48229.2022.9871454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cardiac arrest (CA) is a fatal disease with high rates of neurological impairment. At present, targeted temperature management (TTM) is the only strategy with firm clinical evidence to prove its effectiveness. However, there is still controversy on the implementation of TTM, particularly on its depth, with a lack of elucidated underlying therapeutic mechanisms. Six Wistar rats were subjected to 8 min asphyxia-CA and randomly divided into TTM at 33oC(n=3) or 35° C groups (n=3). The spatiotemporal characteristics of cerebral glucose metabolism after CA were investigated by 18F-FDG microPET/CT. Myelin Basic Protein (MBP) immunofluorescence staining was used to assess acute injury and recovery of oligodendrocytes. Functional recovery was evaluated using the neurological deficit score (NDS). There was a significant improvement in functional recovery by NDS (p < 0.05) in the 33oC group compared with the 35° C group. Glucose metabolism of the 33° C group was higher than that of the 35oC group early after resuscitation (within 10 minutes). Immunofluorescence analysis showed that positive MBP signals in the cortex and hippocampus in the 33oC group were greater than in the 35oC group. In conclusion, compared to 35oC TTM, 33° C TTM changed the spatiotemporal characteristics of brain glucose metabolisms with improved neurological function, which may be through oligodendrocyte participation.
Collapse
|
11
|
Rost NS, Brodtmann A, Pase MP, van Veluw SJ, Biffi A, Duering M, Hinman JD, Dichgans M. Post-Stroke Cognitive Impairment and Dementia. Circ Res 2022; 130:1252-1271. [PMID: 35420911 DOI: 10.1161/circresaha.122.319951] [Citation(s) in RCA: 290] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Poststroke cognitive impairment and dementia (PSCID) is a major source of morbidity and mortality after stroke worldwide. PSCID occurs as a consequence of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage. Cognitive impairment and dementia manifesting after a clinical stroke is categorized as vascular even in people with comorbid neurodegenerative pathology, which is common in elderly individuals and can contribute to the clinical expression of PSCID. Manifestations of cerebral small vessel disease, such as covert brain infarcts, white matter lesions, microbleeds, and cortical microinfarcts, are also common in patients with stroke and likewise contribute to cognitive outcomes. Although studies of PSCID historically varied in the approach to timing and methods of diagnosis, most of them demonstrate that older age, lower educational status, socioeconomic disparities, premorbid cognitive or functional decline, life-course exposure to vascular risk factors, and a history of prior stroke increase risk of PSCID. Stroke characteristics, in particular stroke severity, lesion volume, lesion location, multiplicity and recurrence, also influence PSCID risk. Understanding the complex interaction between an acute stroke event and preexisting brain pathology remains a priority and will be critical for developing strategies for personalized prediction, prevention, targeted interventions, and rehabilitation. Current challenges in the field relate to a lack of harmonization of definition and classification of PSCID, timing of diagnosis, approaches to neurocognitive assessment, and duration of follow-up after stroke. However, evolving knowledge on pathophysiology, neuroimaging, and biomarkers offers potential for clinical applications and may inform clinical trials. Preventing stroke and PSCID remains a cornerstone of any strategy to achieve optimal brain health. We summarize recent developments in the field and discuss future directions closing with a call for action to systematically include cognitive outcome assessment into any clinical studies of poststroke outcome.
Collapse
Affiliation(s)
- Natalia S Rost
- J. Philip Kistler Stroke Research Center (N.S.R., S.J.v.V., A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia (A. Brodtmann).,Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia (A. Brodtmann. M.P.P.)
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia (A. Brodtmann. M.P.P.).,Harvard T.H. Chan School of Public Health, Boston (M.P.P.)
| | - Susanne J van Veluw
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown (S.J.v.V.)
| | - Alessandro Biffi
- J. Philip Kistler Stroke Research Center (N.S.R., S.J.v.V., A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Divisions of Memory Disorders and Behavioral Neurology (A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Marco Duering
- J. Philip Kistler Stroke Research Center (N.S.R., S.J.v.V., A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M. Duering, M. Dichgans).,Medical Image Analysis Center and Department of Biomedical Engineering, University of Basel, Switzerland (M. Duering)
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (J.D.H.).,Department of Neurology, West Los Angeles VA Medical Center, CA (J.D.H.)
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M. Duering, M. Dichgans).,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (M. Dichgans).,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M. Dichgans)
| |
Collapse
|
12
|
Mun B, Jang YC, Kim EJ, Kim JH, Song MK. Brain Activity after Intermittent Hypoxic Brain Condition in Rats. Brain Sci 2021; 12:brainsci12010052. [PMID: 35053796 PMCID: PMC8774142 DOI: 10.3390/brainsci12010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Hypoxic brain injury is accompanied by a decrease in various functions. It is also known that obstructive sleep apnea (OSA) can cause hypoxic brain injury. This study aimed to produce a model of an intermittent hypoxic brain condition in rats and determine the activity of the brain according to the duration of hypoxic exposure. Forty male Sprague–Dawley rats were divided into four groups: the control group (n = 10), the 2 h per day hypoxia exposure group (n = 10), the 4 h per day hypoxia exposure group (n = 10), and the 8 h per day hypoxia exposure group (n = 10). All rats were exposed to a hypoxic chamber containing 10% oxygen for five days. Positron emission tomography–computed tomography (PET-CT) brain images were acquired using a preclinical PET-CT scanner to evaluate the activity of brain metabolism. All the rats were subjected to normal conditions. After five days, PET-CT was performed to evaluate the recovery of brain metabolism. Western blot analysis and immunohistochemistry were performed with vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). The mean SUV was elevated in the 2 h per day and 4 h per day groups, and all brain regions showed increased metabolism except the amygdala on the left side, the auditory cortex on the right side, the frontal association cortex on the right side, the parietal association cortex on the right side, and the somatosensory cortex on the right side immediately after hypoxic exposure. However, there was no difference between 5 days rest after hypoxic exposure and control group. Western blot analysis revealed the most significant immunoreactivity for VEGF in the 2, 4, and 8 h per day groups compared with the control group and quantification of VEGF immunohistochemistry showed more expression in 2 and 4 h per day groups compared with the control group. However, there was no significant difference in immunoreactivity for BDNF among the groups. The duration of exposure to hypoxia may affect the activity of the brain due to angiogenesis after intermittent hypoxic brain conditions in rats.
Collapse
Affiliation(s)
- Bora Mun
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju 61469, Korea; (B.M.); (Y.-C.J.); (E.-J.K.)
| | - Yun-Chol Jang
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju 61469, Korea; (B.M.); (Y.-C.J.); (E.-J.K.)
| | - Eun-Jong Kim
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju 61469, Korea; (B.M.); (Y.-C.J.); (E.-J.K.)
| | - Ja-Hae Kim
- Department of Nuclear Medicine, Chonnam National University Medical School & Hospital, Gwangju 61469, Korea;
| | - Min-Keun Song
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju 61469, Korea; (B.M.); (Y.-C.J.); (E.-J.K.)
- Correspondence: ; Tel.: +82-62-220-5186
| |
Collapse
|
13
|
Lu J, Mei Q, Hou X, Manaenko A, Zhou L, Liebeskind DS, Zhang JH, Li Y, Hu Q. Imaging Acute Stroke: From One-Size-Fit-All to Biomarkers. Front Neurol 2021; 12:697779. [PMID: 34630278 PMCID: PMC8497192 DOI: 10.3389/fneur.2021.697779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/30/2021] [Indexed: 12/27/2022] Open
Abstract
In acute stroke management, time window has been rigidly used as a guide for decades and the reperfusion treatment is only available in the first few limited hours. Recently, imaging-based selection of patients has successfully expanded the treatment window out to 16 and even 24 h in the DEFUSE 3 and DAWN trials, respectively. Recent guidelines recommend the use of imaging techniques to guide therapeutic decision-making and expanded eligibility in acute ischemic stroke. A tissue window is proposed to replace the time window and serve as the surrogate marker for potentially salvageable tissue. This article reviews the evolution of time window, addresses the advantage of a tissue window in precision medicine for ischemic stroke, and discusses both the established and emerging techniques of neuroimaging and their roles in defining a tissue window. We also emphasize the metabolic imaging and molecular imaging of brain pathophysiology, and highlight its potential in patient selection and treatment response prediction in ischemic stroke.
Collapse
Affiliation(s)
- Jianfei Lu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Anatol Manaenko
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Zhou
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - David S. Liebeskind
- Neurovascular Imaging Research Core and University of California Los Angeles Stroke Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - John H. Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
15
|
Schadt F, Israel I, Samnick S. Development and Validation of a Semi-Automated, Preclinical, MRI-Template Based PET Image Data Analysis Tool for Rodents. Front Neuroinform 2021; 15:639643. [PMID: 34168548 PMCID: PMC8217772 DOI: 10.3389/fninf.2021.639643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
AIM In PET imaging, the different types of radiotracers and accumulations, as well as the diversity of disease patterns, make the analysis of molecular imaging data acquired in vivo challenging. Here, we evaluate and validate a semi-automated MRI template-based data analysis tool that allows preclinical PET images to be aligned to a self-created PET template. Based on the user-defined volume-of-interest (VOI), image data can then be evaluated using three different semi-quantitative parameters: normalized activity, standardized uptake value, and uptake ratio. MATERIALS AND METHODS The nuclear medicine Data Processing Analysis tool (NU_DPA) was implemented in Matlab. Testing and validation of the tool was performed using two types of radiotracers in different kinds of stroke-related brain diseases in rat models. The radiotracers used are 2-[18F]fluoro-2-deoxyglucose ([18F]FDG), a metabolic tracer with symmetrical distribution in brain, and [68Ga]Ga-Fucoidan, a target-selective radioligand specifically binding to p-selectin. After manual image import, the NU_DPA tool automatically creates an averaged PET template out of the acquired PET images, to which all PET images are then aligned onto. The added MRI template-based information, resized to the lower PET resolution, defines the VOI and also allows a precise subdivision of the VOI into individual sub-regions. The aligned PET images can then be evaluated semi-quantitatively for all regions defined in the MRI atlas. In addition, a statistical analysis and evaluation of the semi-quantitative parameters can then be performed in the NU_DPA tool. RESULTS Using ischemic stroke data in Wistar rats as an example, the statistical analysis of the tool should be demonstrated. In this [18F]FDG-PET experiment, three different experimental states were compared: healthy control state, ischemic stroke without electrical stimulation, ischemic stroke with electrical stimulation. Thereby, statistical data evaluation using the NU_DPA tool showed that the glucose metabolism in a photothrombotic lesion can be influenced by electrical stimulation. CONCLUSION Our NU_DPA tool allows a very flexible data evaluation of small animal PET data in vivo including statistical data evaluation. Using the radiotracers [18F]FDG and [68Ga]Ga-Fucoidan, it was shown that the semi-automatic MRI-template based data analysis of the NU_DPA tool is potentially suitable for both metabolic radiotracers as well as target-selective radiotracers.
Collapse
Affiliation(s)
- Fabian Schadt
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
16
|
Chen S, Lachance BB, Gao L, Jia X. Targeted temperature management and early neuro-prognostication after cardiac arrest. J Cereb Blood Flow Metab 2021; 41:1193-1209. [PMID: 33444088 PMCID: PMC8142127 DOI: 10.1177/0271678x20970059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted temperature management (TTM) is a recommended neuroprotective intervention for coma after out-of-hospital cardiac arrest (OHCA). However, controversies exist concerning the proper implementation and overall efficacy of post-CA TTM, particularly related to optimal timing and depth of TTM and cooling methods. A review of the literature finds that optimizing and individualizing TTM remains an open question requiring further clinical investigation. This paper will summarize the preclinical and clinical trial data to-date, current recommendations, and future directions of this therapy, including new cooling methods under investigation. For now, early induction, maintenance for at least 24 hours, and slow rewarming utilizing endovascular methods may be preferred. Moreover, timely and accurate neuro-prognostication is valuable for guiding ethical and cost-effective management of post-CA coma. Current evidence for early neuro-prognostication after TTM suggests that a combination of initial prediction models, biomarkers, neuroimaging, and electrophysiological methods is the optimal strategy in predicting neurological functional outcomes.
Collapse
Affiliation(s)
- Songyu Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Hoiland RL, Griesdale DE, Sekhon MS. Invasive neuromonitoring post-cardiac arrest: Key considerations. Resuscitation 2021; 164:144-146. [PMID: 34000353 DOI: 10.1016/j.resuscitation.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| | - Donald E Griesdale
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Wang Z, Du J, Lachance BB, Mascarenhas C, He J, Jia X. Intracerebroventricular Administration of hNSCs Improves Neurological Recovery after Cardiac Arrest in Rats. Stem Cell Rev Rep 2020; 17:923-937. [PMID: 33140234 DOI: 10.1007/s12015-020-10067-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
Irreversible brain injury and neurological dysfunction induced by cardiac arrest (CA) have long been a clinical challenge due to lack of effective therapeutic interventions to reverse neuronal loss and prevent secondary reperfusion injury. The neuronal regenerative potential of neural stem cells (NSCs) provides a possible solution to this clinical deficit. We investigated the neuronal recovery potential of human neural stem cells (hNSCs) via intracerebroventricular (ICV) xenotransplantation after CA in rats and the effects of transplanted NSCs on the proliferation and migration of endogenous NSCs. Outcome measures included neurological functional recovery measured by neurological deficit score (NDS), electrophysiologic analysis of EEG, and assessment of proliferation and migration at the cellular level and the Wnt/β-catenin pathway at the molecular level. Neurological functional assessment based on aggregate neurological deficit score (NDS) showed better recovery of function after hNSCs therapy (P < 0.05). Tracking of stem cells' proliferation with Ki67 antibody suggested that the NSCs group had more prominent proliferation compared to control group (number of Ki67+ cells, Control VS. NSC: 89.0 ± 31.6 VS. 352.7 ± 97.3, P < 0.05). In addition, cell migration tracked by Dcx antibody showed more Dcx + cells migrated to the far distance zone from SVZ in the treatment group (P < 0.05). Further immunofluorescence staining confirmed that the expression of the Wnt signaling pathway protein (β-catenin) was upregulated in the NSC group (P < 0.05). ICV delivery of hNSCs promotes endogenous NSC proliferation and migration and ultimately enhances neuronal survival and neurological functional recovery. Wnt/β-catenin pathway may be involved in the initiation and maintenance of this enhancement.Graphical abstract.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 43007, China.,Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Conrad Mascarenhas
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Junyun He
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA. .,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|