1
|
Chen J, Wu X, Nie D, Yu Z. Protective effects of puerarin combined with bone marrow mesenchymal stem cells on nerve injury in rats with ischemic stroke. Brain Inj 2024:1-11. [PMID: 39607797 DOI: 10.1080/02699052.2024.2433667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BM-MSCs) transplantation shows promise for treating ischemic stroke, but the ischemic environment that follows cerebral infarction hinders the survival of transplanted cells. We aimed to study the effects of puerarin (Pue) in combination with BM-MSCs on cerebral ischemic injury. METHODS After middle cerebral artery occlusion (MCAO) models were prepared by suture-occluded method, rats were randomly allocated to the sham, MCAO, Pue (50 mg/kg), BM-MSCs (2×106), and BM-MSCs+Pue groups. The neurological function, infarct area, levels of inflammation-related factors, brain tissue damage, apoptosis, BrdU, Beclin1, and LC3 levels were then assessed. RESULTS Pue and BM-MSCs reduced the modified neurological severity score, cerebral infarction area, and serum inflammation-related factor levels for MCAO rats. Furthermore, Pue and BM-MSCs interventions ameliorated brain tissue damage, and repressed apoptosis of brain tissues in MCAO rats. Moreover, Pue or BM-MSCs enhanced BrdU expression, restrained LC3II/LC3I ratio and Beclin 1 expression in MCAO rats' brain tissues. Importantly, the combination of Pue and BM-MSCs exhibited more pronounced effects on aforementioned outcomes. CONCLUSION The combination of Pue and BM-MSCs facilitated the recovery of neurological function in rats after cerebral ischemic damage, and the mechanisms may correlate with the repression of neuronal apoptosis, inflammation, and autophagy.
Collapse
Affiliation(s)
- Jiane Chen
- Department of Neurology, The First People's Hospital of Fuyang, Hangzhou, Zhejiang Province, China
| | - Xiaoli Wu
- Department of Neurology, The First People's Hospital of Fuyang, Hangzhou, Zhejiang Province, China
| | - Dongliang Nie
- Department of Neurology, The First People's Hospital of Fuyang, Hangzhou, Zhejiang Province, China
| | - Zhimin Yu
- Department of Neurology, The First People's Hospital of Fuyang, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Rust R, Nih LR, Liberale L, Yin H, El Amki M, Ong LK, Zlokovic BV. Brain repair mechanisms after cell therapy for stroke. Brain 2024; 147:3286-3305. [PMID: 38916992 PMCID: PMC11449145 DOI: 10.1093/brain/awae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischaemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
| | - Lina R Nih
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Lin Kooi Ong
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Tian H, Tian F, Ma D, Xiao B, Ding Z, Zhai X, Song L, Ma C. Priming and Combined Strategies for the Application of Mesenchymal Stem Cells in Ischemic Stroke: A Promising Approach. Mol Neurobiol 2024; 61:7127-7150. [PMID: 38366307 DOI: 10.1007/s12035-024-04012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Tissue plasminogen activator (tPA) administration and mechanical thrombectomy are the main treatments but have a narrow time window. Mesenchymal stem cells (MSCs), which are easily scalable in vitro and lack ethical concerns, possess the potential to differentiate into various types of cells and secrete a great number of growth factors for neuroprotection and regeneration. Moreover, MSCs have low immunogenicity and tumorigenic properties, showing safety and preliminary efficacy both in preclinical studies and clinical trials of IS. However, it is unlikely that MSC treatment alone will be sufficient to maximize recovery due to the low survival rate of transplanted cells and various mechanisms of ischemic brain damage in the different stages of IS. Preconditioning was used to facilitate the homing, survival, and secretion ability of the grafted MSCs in the ischemic region, while combination therapies are alternatives that can maximize the treatment effects, focusing on multiple therapeutic targets to promote stroke recovery. In this case, the combination therapy can yield a synergistic effect. In this review, we summarize the type of MSCs, preconditioning methods, and combined strategies as well as their therapeutic mechanism in the treatment of IS to accelerate the transformation from basic research to clinical application.
Collapse
Affiliation(s)
- Hao Tian
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Dong Ma
- Department of Neurosurgery, The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong, 037003, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Zhibin Ding
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Xiaoyan Zhai
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China
- School of Basic Medicine of Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Lijuan Song
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China.
| | - Cungen Ma
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China.
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
| |
Collapse
|
4
|
Liu C, Yin T, Zhang M, Li Z, Xu B, Lv H, Wang P, Wang J, Hao J, Zhang L. Function of miR-21-5p derived from ADSCs-exos on the neuroinflammation after cerebral ischemia. J Stroke Cerebrovasc Dis 2024; 33:107779. [PMID: 38768666 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION Cerebral ischemia (CI) induces a profound neuroinflammatory response, but the underlying molecular mechanism remains unclear. Exosomes from adipose-derived stem cells (ADSC-exos) have been found to play a crucial role in cell communication by transferring molecules including microRNAs (miRNAs), which have been shown to modulate the inflammatory response after CI and are viable molecular targets for altering brain function. The current study aimed to explore the contribution of ADSC-exosomal miR-21-5p to the neuroinflammation after CI. METHODS The differentially expressed miR-21-5p in CI was screened based on literature search. The target mRNAs of miR-21-5p were predicted using online databases and verified by luciferase reporter assay. Then, BV2 cells were treated with hemin to simulate the inflammatory response after CI, and its animal model was induced using the MCAO method. Ischemia was evaluated in rats using 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining. ADSCs-exos were further isolated and identified by western blot analysis and transmission electron microscope. RESULTS MiR-21-5p was significantly down-regulated in CI and alleviated neuropathic damage after CI by the PIK3R1/PI3K/AKT signaling axis. And miR-21-5p derived from ADSCs-exos alleviated neuroinflammation after CI via promoting microglial M2 polarization. CONCLUSION We demonstrated that ADSC-exosomal miR-21-5p mitigated post-CI inflammatory response through the PIK3R1/PI3K/AKT signaling axis and could offer neuroprotection after CI through promoting polarization of M2 microglia.
Collapse
Affiliation(s)
- Chao Liu
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Tengkun Yin
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Bin Xu
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Hang Lv
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Peijian Wang
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng Brain Hospital, No. 45 Huashan Road, Dongchangfu District, Liaocheng, Shandong 252000, China.
| |
Collapse
|
5
|
Wang H, Ma W, Hu W, Li X, Shen N, Li Z, Kong X, Lin T, Gao J, Zhu T, Che F, Chen J, Wan Q. Cathodal bilateral transcranial direct-current stimulation regulates selenium to confer neuroprotection after rat cerebral ischaemia-reperfusion injury. J Physiol 2024; 602:1175-1197. [PMID: 38431908 DOI: 10.1113/jp285806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenlong Ma
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Na Shen
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhuo Li
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Tao Lin
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, Qingdao University, Linyi, Shandong, China
| | - Juan Chen
- Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao, China
| |
Collapse
|
6
|
Lu W, Huang J, Flores J, Li P, Wang W, Liu S, Zhang JH, Tang J. GW0742 reduces mast cells degranulation and attenuates neurological impairments via PPAR β/δ/CD300a/SHP1 pathway after GMH in neonatal rats. Exp Neurol 2024; 372:114615. [PMID: 37995951 PMCID: PMC10842885 DOI: 10.1016/j.expneurol.2023.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Activation of mast cells plays an important role in brain inflammation. CD300a, an inhibitory receptor located on mast cell surfaces, has been reported to reduce the production of pro-inflammatory cytokines and exert protective effects in inflammation-related diseases. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ), a ligand-activated nuclear receptor, activation upregulates the transcription of CD300a. In this study, we aim to investigate the role of PPARβ/δ in the attenuation of germinal matrix hemorrhage (GMH)-induced mast cell activation via CD300a/SHP1 pathway. METHODS GMH model was induced by intraparenchymal injection of bacterial collagenase into the right hemispheric ganglionic eminence in P7 Sprague Dawley rats. GW0742, a PPARβ/δ agonist, was administered intranasally at 1 h post-ictus. CD300a small interfering RNA (siRNA) and PPARβ/δ siRNA were injected intracerebroventricularly 5 days and 2 days before GMH induction. Behavioral tests, Western blot, immunofluorescence, Toluidine Blue staining, and Nissl staining were applied to assess post-GMH evaluation. RESULTS Results demonstrated that endogenous protein levels of PPARβ/δ and CD300a were decreased, whereas chymase, tryptase, IL-17A and transforming growth factor β1 (TGF-β1) were elevated after GMH. GMH induced significant short- and long-term neurobehavioral deficits in rat pups. GW0742 decreased mast cell degranulation, improved neurological outcomes, and attenuated ventriculomegaly after GMH. Additionally, GW0742 increased expression of PPARβ/δ, CD300a and phosphorylation of SHP1, decreased phosphorylation of Syk, chymase, tryptase, IL-17A and TGF-β1 levels. PPARβ/δ siRNA and CD300a siRNA abolished the beneficial effects of GW0742. CONCLUSIONS GW0742 inhibited mast cell-induced inflammation and improved neurobehavior after GMH, which is mediated by PPARβ/δ/CD300a/SHP1 pathway. GW0742 may serve as a potential treatment to reduce brain injury for GMH patients.
Collapse
Affiliation(s)
- Weitian Lu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Juan Huang
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Peng Li
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Wenna Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Shengpeng Liu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
7
|
Cao D, Li B, Cao C, Zhang J, Li X, Li H, Yu Z, Shen H, Ye M. Caveolin-1 aggravates neurological deficits by activating neuroinflammation following experimental intracerebral hemorrhage in rats. Exp Neurol 2023; 368:114508. [PMID: 37598879 DOI: 10.1016/j.expneurol.2023.114508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is one of the stroke subtypes with the highest mortality. Secondary brain injury is associated with neurological dysfunction and poor prognosis after ICH. Caveolin-1 (CAV1) is the key protein of Caveolae. Previous studies have shown that CAV1 plays an important role in central nervous system diseases, and pointed out that in a collagenase-induced ICH model in vivo, CAV1 is associated with neuroinflammatory activation and poor neurological prognosis. In this study, we explore the role and the molecular mechanism of CAV1 in brain injury via a rat autologous whole blood injection model and an in vitro model of ICH. METHODS Adult male Sprague-Dawley rats ICH model was induced through autologous whole blood injecting into the right basal ganglia. The changes in protein levels of CAV1 in brain tissues of ICH rats were detected by western blot analysis. The immunofluorescent staining was used to explore the changes of CAV1 in microglia/macrophages (Iba1+ cells). Lentivirus vectors were administered by intracerebroventricular injection to induce CAV1 overexpression and knockdown respectively. The western blot analysis, immunofluorescence staining, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the role of CAV1 in secondary brain injury after ICH. Meanwhile, the rotarod test, foot fault test, adhesive-removal test, and Modified Garcia Test, as well as Morris Water Maze test, were performed to evaluate the behavioral cognitive impairment of ICH rats after genetic intervention. Additionally, BV-2 cells treated with oxygen hemoglobin for 24 h, were used as an in vitro model of ICH in this study to explore the molecular mechanism of CAV1 in brain injury; we performed western blot analysis after precise regulation of CAV1 in BV2 cells to observe changes in protein levels and phosphorylated levels of C-Src, IKK-β, and NF-κB. RESULTS The expression of CAV1 in microglia/macrophages (Iba1+ cells) was elevated and reached the peak at 24 h after ICH. CAV1 knockdown ameliorated ICH-induced neurological deficits, while CAV1 overexpression significantly worsened neurological dysfunction of ICH rats. CAV1 knockdown attenuated cellular apoptosis and promoted neuronal survival in brain tissues of ICH rats, while the ICH rats with CAV1 overexpression presented more cellular apoptosis and neuronal loss. Meanwhile, CAV1 knockdown inhibited the microglia activation and neuroinflammatory response, while CAV1 overexpression abolished these effects and aggravated neuroinflammation in brain tissues of ICH rats. Additionally, by inducing to CAV1 knockdown in BV2 cells in an in vitro model of ICH, the levels of p-C-Src, CAV-1, p-CAV-1, and p-IKK-β in cytoplasm and the level of NF-κB p65 in nucleus of BV2 cells were significantly decreased, while they were increased by inducing to CAV1 overexpression. CONCLUSIONS Our research revealed CAV1 aggravated neurological dysfunction in a rat ICH model. CAV1 knockdown exerted neuroprotective effect by suppressing microglia activation and neuroinflammation after ICH might via the C-Src/CAV1/IKK-β/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurosurgery, Yancheng City No.1 People's Hospital, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224006, Jiangsu Province, China
| | - Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurocritical Intensive Care Unit, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, Jiangsu Province, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Ming Ye
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
8
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
9
|
Wang X, Zhang Y, Jin T, Botchway BOA, Fan R, Wang L, Liu X. Adipose-Derived Mesenchymal Stem Cells Combined With Extracellular Vesicles May Improve Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:830346. [PMID: 35663577 PMCID: PMC9158432 DOI: 10.3389/fnagi.2022.830346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
The complexity of central nervous system diseases together with their intricate pathogenesis complicate the establishment of effective treatment strategies. Presently, the superiority of adipose-derived mesenchymal stem cells (ADSCs) on neuronal injuries has attracted significant attention. Similarly, extracellular vesicles (EVs) are potential interventional agents that could identify and treat nerve injuries. Herein, we reviewed the potential effects of ADSCs and EVs on amyotrophic lateral sclerosis (ALS) injured nerves, and expound on their practical application in the clinic setting. This article predominantly focused on the therapeutic role of ADSCs concerning the pathogenesis of ALS, the protective and reparative effects of EVs on nerve injury, as well as the impact following the combined usage of ADSCs and EVs in ALS.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | - Tian Jin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | | | - Ruihua Fan
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lvxia Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|
10
|
Burlacu CC, Neag MA, Mitre AO, Sirbu AC, Badulescu AV, Buzoianu AD. The Role of miRNAs in Dexmedetomidine's Neuroprotective Effects against Brain Disorders. Int J Mol Sci 2022; 23:5452. [PMID: 35628263 PMCID: PMC9141783 DOI: 10.3390/ijms23105452] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are limited neuroprotective strategies for various central nervous system conditions in which fast and sustained management is essential. Neuroprotection-based therapeutics have become an intensively researched topic in the neuroscience field, with multiple novel promising agents, from natural products to mesenchymal stem cells, homing peptides, and nanoparticles-mediated agents, all aiming to significantly provide neuroprotection in experimental and clinical studies. Dexmedetomidine (DEX), an α2 agonist commonly used as an anesthetic adjuvant for sedation and as an opioid-sparing medication, stands out in this context due to its well-established neuroprotective effects. Emerging evidence from preclinical and clinical studies suggested that DEX could be used to protect against cerebral ischemia, traumatic brain injury (TBI), spinal cord injury, neurodegenerative diseases, and postoperative cognitive disorders. MicroRNAs (miRNAs) regulate gene expression at a post-transcriptional level, inhibiting the translation of mRNA into functional proteins. In vivo and in vitro studies deciphered brain-related miRNAs and dysregulated miRNA profiles after several brain disorders, including TBI, ischemic stroke, Alzheimer's disease, and multiple sclerosis, providing emerging new perspectives in neuroprotective therapy by modulating these miRNAs. Experimental studies revealed that some of the neuroprotective effects of DEX are mediated by various miRNAs, counteracting multiple mechanisms in several disease models, such as lipopolysaccharides induced neuroinflammation, β-amyloid induced dysfunction, brain ischemic-reperfusion injury, and anesthesia-induced neurotoxicity models. This review aims to outline the neuroprotective mechanisms of DEX in brain disorders by modulating miRNAs. We address the neuroprotective effects of DEX by targeting miRNAs in modulating ischemic brain injury, ameliorating the neurotoxicity of anesthetics, reducing postoperative cognitive dysfunction, and improving the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Codrin-Constantin Burlacu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru-Constantin Sirbu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andrei-Vlad Badulescu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Zhou L, Wang H, Yao S, Li L, Kuang X. Efficacy of Human Adipose Derived Mesenchymal Stem Cells in Promoting Skin Wound Healing. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6590025. [PMID: 35368914 PMCID: PMC8970852 DOI: 10.1155/2022/6590025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Background The aim of this pilot clinical study is to evaluate the efficacy of human adipose derived mesenchymal stem cells (HAMSCs) treatment for the wound healing with patients. Methods This study was a clinical trial to investigate the efficacy of human adipose derived mesenchymal stem cells treatment for the wound healing with patients. 346 patients with skin wounds attending the central hospital of Yue Yang were enrolled in the study, setting in the period from January 2016 to January 2021. Patients were randomly allocated into two groups: experimental group received treatment with human adipose derived mesenchymal stem cells for each 10 cm2 of wound and control group received conventional dressing with normal saline for each 10 cm2 of wound. Results No adverse events were recorded during the period of treatment. The granulation tissue coverage rate and thickness of granulation tissue after 10 days of treatment in experimental group were significantly improved compared with control group. Furthermore, the occurrence of bleeding of wound and suppurative wounds between two groups had significant difference (P < 0.05). Conclusion The data in this pilot study indicated that human adipose derived mesenchymal stem cells may be a safe and effective alternative therapy for wound healing. Moreover, larger, placebo-controlled, perspective studies are necessity to evaluate the efficacy and safety of human adipose derived mesenchymal stem cells treatment for wound healing patients.
Collapse
Affiliation(s)
- Lingcong Zhou
- Department of Plastic and Cosmetic Surgery, The Central Hospital of Yueyang, Yueyang, Hunan 414000, China
| | - Hui Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421000, China
| | - Sidi Yao
- Hunan Industrial Technician College, Yueyang, Hunan 414000, China
| | - Li Li
- Department of Plastic and Cosmetic Surgery, The Central Hospital of Yueyang, Yueyang, Hunan 414000, China
| | - Xin Kuang
- Department of Anesthesia,Affiliated Longhua People's Hospital, Southern Medical University, Longhua People's Hospital, Shenzhen 518000, China
| |
Collapse
|
12
|
Mesenchymal Stem Cells: Therapeutic Mechanisms for Stroke. Int J Mol Sci 2022; 23:ijms23052550. [PMID: 35269692 PMCID: PMC8910569 DOI: 10.3390/ijms23052550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Due to aging of the world’s population, stroke has become increasingly prevalent, leading to a rise in socioeconomic burden. In the recent past, stroke research and treatment have become key scientific issues that need urgent solutions, with a sharp focus on stem cell transplantation, which is known to treat neurodegenerative diseases related to traumatic brain injuries, such as stroke. Indeed, stem cell therapy has brought hope to many stroke patients, both in animal and clinical trials. Mesenchymal stem cells (MSCs) are most commonly utilized in biological medical research, due to their pluripotency and universality. MSCs are often obtained from adipose tissue and bone marrow, and transplanted via intravenous injection. Therefore, this review will discuss the therapeutic mechanisms of MSCs and extracellular vehicles (EVs) secreted by MSCs for stroke, such as in attenuating inflammation through immunomodulation, releasing trophic factors to promote therapeutic effects, inducing angiogenesis, promoting neurogenesis, reducing the infarct volume, and replacing damaged cells.
Collapse
|
13
|
Rozier P, Maumus M, Maria ATJ, Toupet K, Jorgensen C, Guilpain P, Noël D. Lung Fibrosis Is Improved by Extracellular Vesicles from IFNγ-Primed Mesenchymal Stromal Cells in Murine Systemic Sclerosis. Cells 2021; 10:2727. [PMID: 34685707 PMCID: PMC8535048 DOI: 10.3390/cells10102727] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a severe autoimmune disease for which mesenchymal stromal cells (MSCs)-based therapy was reported to reduce SSc-related symptoms in pre-clinical studies. Recently, extracellular vesicles released by MSCs (MSC-EVs) were shown to mediate most of their therapeutic effect. Here, we aimed at improving their efficacy by increasing the MSC-EV dose or by IFNγ-priming of MSCs. METHODS small size (ssEVs) and large size EVs (lsEVs) were recovered from murine MSCs that were pre-activated using 1 or 20 ng/mL of IFNγ. In the HOCl-induced model of SSc, mice were treated with EVs at day 21 and sacrificed at day 42. Lung and skin samples were collected for histological and molecular analyses. RESULTS increasing the dose of MSC-EVs did not add benefit to the dose previously reported to be efficient in SSc. By contrast, IFNγ pre-activation improved MSC-EVs-based treatment, essentially in the lungs. Low doses of IFNγ decreased the expression of fibrotic markers, while high doses improved remodeling and anti-inflammatory markers. IFNγ pre-activation upregulated iNos, IL1ra and Il6 in MSCs and ssEVs and the PGE2 protein in lsEVs. CONCLUSION IFNγ-pre-activation improved the therapeutic effect of MSC-EVs preferentially in the lungs of SSc mice by modulating anti-inflammatory and anti-fibrotic markers.
Collapse
Affiliation(s)
- Pauline Rozier
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
| | - Alexandre Thibault Jacques Maria
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France
| | - Karine Toupet
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| | - Philippe Guilpain
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| |
Collapse
|
14
|
Ephrin-B2 PB-mononuclear cells reduce early post-stroke deficit in diabetic mice but not long-term memory impairment. Exp Neurol 2021; 346:113864. [PMID: 34520725 DOI: 10.1016/j.expneurol.2021.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Post-stroke cognitive impairment (PSCI) has become a major public health issue, as a leading cause of dementia. The inflammation that develops soon after cerebral artery occlusion and may persist for weeks or months after stroke is a key component of PSCI. Our aim was to take advantage of the immunomodulatory properties of peripheral blood mononuclear cells (PB-MNC) stimulated with ephrin-B2/fc (PB-MNC+) for preventing PSCI. METHODS Cortical infarct was induced by thermocoagulation of the middle cerebral artery in male diabetic mice (streptozotocin IP). PB-MNC were isolated from diabetic human donors, washed with recombinant ephrin-B2/Fc and injected into the mice intravenously on the following day. Infarct volume, sensorimotor deficit, cell death and immune cell densities were assessed on day 3. Six weeks later, cognitive assessment was performed using the Barnes maze. RESULTS PB-MNC+ transplanted in post-stroke diabetic mice reduced the neurological deficit, infarct volume and apoptosis at D3, without modification of microglial cells, astrocytes and T-lymphocytes densities in the brain. Barnes maze assessment of memory showed that the learning, retention and reversal phases were not significantly modified by cell therapy. CONCLUSIONS Intravenous PB-MNC+ administration the day after stroke induction in diabetic mice improved sensorimotor deficit and reduced infarct volume at the short term, but was unable to prevent long-term memory loss. To what extent diabetes impacts on cell therapy efficacy will have to be specifically investigated in the future. Including vascular risk factors systematically in preclinical studies of cell therapy will provide a comprehensive understanding of the mechanisms potentially limiting cell efficacy and also to identify good and bad responders, particularly in the long term.
Collapse
|
15
|
Strategies to Improve the Efficiency of Transplantation with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke: A Review of Recent Progress. Stem Cells Int 2021; 2021:9929128. [PMID: 34490053 PMCID: PMC8418553 DOI: 10.1155/2021/9929128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia is a common global disease that is characterized by a loss of neurological function and a poor prognosis in many patients. However, only a limited number of treatments are available for this condition at present. Given that the efficacies of these treatments tend to be poor, cerebral ischemia can create a significant burden on patients, families, and society. Mesenchymal stem cell (MSC) transplantation treatment has shown significant potential in animal models of ischemic stroke; however, the specific mechanisms underlying this effect have yet to be elucidated. Furthermore, clinical trials have yet to yield promising results. Consequently, there is an urgent need to identify new methods to improve the efficiency of MSC transplantation as an optimal treatment for ischemic stroke. In this review, we provide an overview of recent scientific reports concerning novel strategies that promote MSC transplantation as an effective therapeutic approach, including physical approaches, chemical agents, traditional Chinese medicines and extracts, and genetic modification. Our analyses showed that two key factors need to be considered if we are to improve the efficacy of MSC transplantation treatments: survival ability and homing ability. We also highlight the importance of other significant mechanisms, including the enhanced activation of MSCs to promote neurogenesis and angiogenesis, and the regulation of permeability in the blood-brain barrier. Further in-depth investigations of the specific mechanisms underlying MSC transplantation treatment will help us to identify effective methods that improve the efficiency of MSC transplantation for ischemic stroke. The development of safer and more effective methods will facilitate the application of MSC transplantation as a promising adjuvant therapy for the treatment of poststroke brain damage.
Collapse
|
16
|
Zhang XL, Zhang XG, Huang YR, Zheng YY, Ying PJ, Zhang XJ, Lu X, Wang YJ, Zheng GQ. Stem Cell-Based Therapy for Experimental Ischemic Stroke: A Preclinical Systematic Review. Front Cell Neurosci 2021; 15:628908. [PMID: 33935650 PMCID: PMC8079818 DOI: 10.3389/fncel.2021.628908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cell transplantation offers promise in the treatment of ischemic stroke. Here we utilized systematic review, meta-analysis, and meta-regression to study the biological effect of stem cell treatments in animal models of ischemic stroke. A total of 98 eligible publications were included by searching PubMed, EMBASE, and Web of Science from inception to August 1, 2020. There are about 141 comparisons, involving 5,200 animals, that examined the effect of stem cell transplantation on neurological function and infarct volume as primary outcome measures in animal models for stroke. Stem cell-based therapy can improve both neurological function (effect size, −3.37; 95% confidence interval, −3.83 to −2.90) and infarct volume (effect size, −11.37; 95% confidence interval, −12.89 to −9.85) compared with controls. These results suggest that stem cell therapy could improve neurological function deficits and infarct volume, exerting potential neuroprotective effect for experimental ischemic stroke, but further clinical studies are still needed.
Collapse
Affiliation(s)
- Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Guang Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Ran Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Yan Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine. Cell Tissue Bank 2020; 22:249-262. [PMID: 33231840 DOI: 10.1007/s10561-020-09885-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemic injury as the main manifestation of stroke can occur in stroke patients (70-80%). Nowadays, the main therapeutic strategy used for ischemic brain injury treatment aims to achieve reperfusion, neuroprotection, and neurorecovery. Also, angiogenesis as a therapeutic approach maybe represents a promising tool to enhance the prognosis of cerebral ischemic stroke. Unfortunately, although many therapeutic approaches as a life-saving gateway for cerebral ischemic injuries like pharmacotherapy and surgical treatments are widely used, they all fail to restore or regenerate damaged neurons in the brain. So, the suitable therapeutic approach would focus on regenerating the lost cells and restore the normal function of the brain. Currently, stem cell-based regenerative medicine introduced a new paradigm approach in cerebral ischemic injuries treatment. Today, in experimental researches, different types of stem cells such as mesenchymal stem cells have been applied. Therefore, stem cell-based regenerative medicine provides the opportunity to inquire and develop a more effective and safer therapeutic approach with the capability to produce and regenerate new neurons in damaged tissues.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Departments of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|