1
|
Beetler DJ, Giresi P, Di Florio DN, Fliess JJ, McCabe EJ, Watkins MM, Xu V, Auda ME, Bruno KA, Whelan ER, Kocsis SPC, Edenfield BH, Walker S, Macomb LP, Keegan KC, Jain A, Morales-Lara AC, Chekuri I, Hill AR, Farres H, Wolfram J, Behfar A, Stalboerger PG, Terzic A, Cooper L, Fairweather D. Therapeutic effects of platelet-derived extracellular vesicles on viral myocarditis correlate with biomolecular content. Front Immunol 2025; 15:1468969. [PMID: 39835120 PMCID: PMC11743460 DOI: 10.3389/fimmu.2024.1468969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) can potently inhibit inflammation yet there is a lack of understanding about the impact of donor characteristics on the efficacy of EVs. The goal of this study was to determine whether the sex and age of donor platelet-derived EVs (PEV) affected their ability to inhibit viral myocarditis. Methods PEV, isolated from men and women of all ages, was compared to PEV obtained from women under 50 years of age, which we termed premenopausal PEV (pmPEV). Because of the protective effect of estrogen against myocardial inflammation, we hypothesized that pmPEV would be more effective than PEV at inhibiting myocarditis. We injected PEV, pmPEV, or vehicle control in a mouse model of viral myocarditis and examined histology, gene expression, protein profiles, and performed proteome and microRNA (miR) sequencing of EVs. Results We found that both PEV and pmPEV significantly inhibited myocarditis; however, PEV was more effective, which was confirmed by a greater reduction of inflammatory cells and proinflammatory and profibrotic markers determined using gene expression and immunohistochemistry. Proteome and miR sequencing of EVs revealed that PEV miRs specifically targeted antiviral, Toll-like receptor (TLR)4, and inflammasome pathways known to contribute to myocarditis while pmPEV contained general immunoregulatory miRs. Discussion These differences in EV content corresponded to the differing anti-inflammatory effects of the two types of EVs on viral myocarditis.
Collapse
Affiliation(s)
- Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Presley Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Jessica J. Fliess
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Molly M. Watkins
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Vivian Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Matthew E. Auda
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Stephen P. C. Kocsis
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Sierra A. Walker
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Kevin C. Keegan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Angita Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Isha Chekuri
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Anneliese R. Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Houssam Farres
- Department of Vascular Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Atta Behfar
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
| | - Paul G. Stalboerger
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
| | - Andre Terzic
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
2
|
Zhang F, Liu Q, Wang Y, Yin J, Meng X, Wang J, Zhao W, Liu H, Zhang L. Effects of surfactin stress on gene expression and pathological changes in Spodoptera litura. Sci Rep 2024; 14:30357. [PMID: 39638883 PMCID: PMC11621121 DOI: 10.1038/s41598-024-81946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Spodoptera litura (S. litura) is a polyphagous pest of the family Lepidoptera, which causes damage and yields losses to many crops. The long-term use of chemical pesticides for control not only seriously threatens environmental health, but also causes S. litura to develop drug resistance. Therefore, there is an urgent need to develop environmentally safe and friendly biogenic pesticides. However, the mechanism of action of the secondary metabolite (surfactin) of Bacillus Vélezensis (B. vélezensis) on lepidopteran pests (S. litura) has not been reported yet. We found that several metabolites and genes in S. litura were affected by surfactin exposure. The expressions of the metabolites (protoporphyrinogen (PPO), gluconolactone (GDL), and L-cysteate) were significantly down-regulated while glutamate and hydroxychloroquine were significantly up-regulated. The expression levels of genes related to drug metabolism and detoxification, include the glutathione s-transferase (GST) gene family and acetaldehyde dehydrogenase (ALDH), and apoptosis-inhibiting genes (seven in absentia homolog 1(SIAH1)) were significantly decreased. In addition, pathological changes occurred in intestinal wall cells, Malpighian tubule cells, and nerve cells of S. litura under surfactin stress. Conclusively, our results suggest that surfactin induces an increase in reactive oxygen species (ROS) and damages S. litura cells. Furthermore, based on the integrated analysis of transcriptomic and metabolomic data, it is hypothesized that surfactin may also trigger neurotoxicity and cardiotoxicity in S. litura while hindering the insect's detoxification processes. This study lays a foundation for further exploration of surfactin as a potential biopesticide.
Collapse
Affiliation(s)
- Feiyan Zhang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Qiuyue Liu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Yana Wang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Jialu Yin
- Hebei University of Science and Technology, Shijiazhuang, 050000, People's Republic of China
| | - Xianghe Meng
- Hebei General Hospital, Shijiazhuang, 050000, People's Republic of China
| | - Jiangping Wang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Wenya Zhao
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Hongwei Liu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China.
| | - Liping Zhang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China.
| |
Collapse
|
3
|
Wu Q, Li Y, Ye R, Wang H, Ge Y. Velvet antler polypeptide (VAP) protects against cerebral ischemic injury through NF-κB signaling pathway in vitro. J Stroke Cerebrovasc Dis 2024; 33:107666. [PMID: 38423152 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Velvet antler polypeptide (VAP) has been shown to play important roles in the immune and nervous systems. The purpose of this study was to investigate the protective effects of VAP on cerebral ischemic injury with the involvement of NF-κB signaling pathway in vitro. MATERIALS AND METHODS PC-12 cells stimulated by oxygen-glucose deprivation/reperfusion (OGD/R) was used to mimic cerebral ischemic injury in vitro. The levels of ROS, SOD, and intracellular concentrations of Ca2+ were measured by the relevant kits. Meanwhile, the expressions of inflammatory cytokines (IL-6, IL-1β, and TNF-α) were determined by ELISA kit assay. In addition, MTT, EdU, and flow cytometry assays were used to measure the cell proliferation and apoptosis. Besides which, the related proteins of NF-κB signaling pathway were measured by western blotting assay. RESULTS VAP alleviated cerebral ischemic injury by reducing OGD/R-induced oxidative stress, inflammation, and apoptosis in PC-12 cells in a time dependent manner. Mechanistically, VAP inhibited the levels of p-p65 and p-IkB-α in a time dependent manner, which was induced by OGD/R operation. Moreover, NF-κB agonist diprovocim overturned the suppression effects of VAP on OGD/R-induced oxidative stress, inflammation, and apoptosis in PC-12 cells. CONCLUSIONS The results demonstrate that VAP may alleviate cerebral ischemic injury by suppressing the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qian Wu
- Physical Examination Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, Hubei Province, China
| | - Yutao Li
- Physical Examination Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, Hubei Province, China.
| | - Ru Ye
- Physical Examination Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, Hubei Province, China
| | - Hui Wang
- Physical Examination Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, Hubei Province, China
| | - Ying Ge
- Physical Examination Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, Hubei Province, China
| |
Collapse
|
4
|
Zhang L, Li D, Zhang C, Zhang J, Xu J, Bai L, Xu J, Wang C. Predictive value of serum MDA and 4-HNE levels on the occurrence of early neurological deterioration after intravenous thrombolysis with rt-PA IVT in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107574. [PMID: 38214238 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVE This study investigated the predictive value of serum MDA and 4-HNE levels on early neurological deterioration (END) after recombinant tissue plasminogen activator (rt-PA) intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients. METHODS This study analyzed 287 AIS patients with standard-dose rt-PA IVT. Clinical baseline and pathological data were recorded before rt-PA IVT, and neurologic deficit was assessed by NIHSS. AIS patients were classified into Non-END and END groups. Serum MDA and 4-HNE levels were determined by ELISA and their correlations with NIHSS scores were evaluated. AIS patients were allocated into groups with high and low MDA or 4-HNE expression, and post-IVT END incidence was compared. Independent risk indexes for post-IVT END and the predictive value of serum MDA+4-HNE levels on post-IVT END were assessed. RESULTS Serum MDA and 4-HNE were higher in AIS patients with post-IVT END. NIHSS score showed a positive correlation with serum MDA and 4-HNE levels. MDA levels were positively correlated with 4-HNE levels in AIS patients. END after IVT was increased in AIS patients with high MDA/4-HNE expression. FBG, lymphocyte percentage, PLR, NIHSS score, serum MDA, and 4-HNE levels were independent risk factors for END after IVT. The diagnostic efficacy of MDA+4-HNE in assessing post-IVT END in AIS patients (sensitivity 92.00 %, specificity 82.70 %) was higher than MDA or 4-HNE alone. CONCLUSION Serum MDA and 4-HNE levels were higher in AIS patients with post-IVT END than in those with non-END, and MDA+4-HNE possessed a higher predictive value for post-IVT END in AIS patients.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian 116033, China
| | - Di Li
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian 116033, China
| | - Ce Zhang
- Dean's office, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province 116027, China
| | - Jianhui Zhang
- Department of Neurology, 967 Hospital of PLA Joint Logistic Support Force, 80 Shengli Road, Xigang District, Dalian City, Liaoning Province 116011, China
| | - Jia Xu
- Department of Neurology, Dalian Medical University, No. 28 Aixian Street, Dalian High-tech Park, 116044, China
| | - Lan Bai
- Beijing Yidu Cloud Technology Co., LTD., 8th Floor, Health Wisdom Valley Building, Building 9, No. 35 Huayuan North Road, Haidian District, Beijing, 100000, China
| | - Jianping Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou City, Jiangsu 215000, China
| | - Cui Wang
- Neurology Department, Dalian Central Hospital Affiliated to Dalian University of Technology, No. 826 Southwest Road, Shahekou District, Dalian City, Liaoning Province 116033, China.
| |
Collapse
|
5
|
Zhu XQ, Gao D. Naringenin alleviates cognitive dysfunction in rats with cerebral ischemia/reperfusion injury through up-regulating hippocampal BDNF-TrkB signaling: involving suppression in neuroinflammation and oxidative stress. Neuroreport 2024; 35:216-224. [PMID: 38141009 PMCID: PMC10852040 DOI: 10.1097/wnr.0000000000001989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Cognitive dysfunction is one of the common complications of cerebral ischemia-reperfusion (CI/R) injury after ischemic stroke. Neuroinflammation and oxidative stress are the core pathological mechanism of CI/R injury. The activation of brain derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling antagonize cognitive dysfunction in a series of neuropathy. Naringenin (NAR) improves cognitive function in many diseases, but the role of NAR in CI/R injury-induced cognitive dysfunction remains unexplored. The study aimed to explore the potential protective effects of NAR in CI/R injury-induced cognitive dysfunction and underlying mechanism. The rats were exposed to transient middle cerebral artery occlusion (MCAO) and then treated with distilled water or NAR (50 or 100 mg/kg/day, p.o.) for 30 days. The Y-maze test, Novel object recognition test and Morris water maze test were performed to assess cognitive function. The levels of oxidative stress and inflammatory cytokines were measured by ELISA. The expressions of BDNF/TrkB signaling were detected by Western blot. NAR prevented cognitive impairment in MCAO-induced CI/R injury rats. Moreover, NAR inhibited oxidative stress (reduced levels of malondialdehyde and 4-hydroxynonenal, increased activities of superoxide dismutase and Glutathione peroxidase) and inflammatory cytokines (reduced levels of tumor necrosis factor-α, Interleukin-1β and Interleukin-6), up-regulated the expressions of BDNF and p-TrkB in hippocampus of MCAO-induced CI/R rats. NAR ameliorated cognitive dysfunction of CI/R rats via inhibiting oxidative stress, reducing inflammatory response, and up-regulating BDNF/TrkB signaling pathways in the hippocampus.
Collapse
Affiliation(s)
- Xiao-Qin Zhu
- Health School of Nuclear Industry, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China
| | - Dong Gao
- The Affiliated Nanhua Hospital, Medical administration division, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Kunevičius A, Sadauskas M, Raudytė J, Meškys R, Burokas A. Unraveling the Dynamics of Host-Microbiota Indole Metabolism: An Investigation of Indole, Indolin-2-one, Isatin, and 3-Hydroxyindolin-2-one. Molecules 2024; 29:993. [PMID: 38474504 DOI: 10.3390/molecules29050993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The gut microbiota produces a variety of bioactive molecules that facilitate host-microbiota interaction. Indole and its metabolites are focused as possible biomarkers for various diseases. However, data on indole metabolism and individual metabolites remain limited. Hence, we investigated the metabolism and distribution of indole, indolin-2-one, isatin, and 3-hydroxyindolin-2-one. First, we orally administered a high dose of indole into C57BL/6J mice and measured the concentrations of indole metabolites in the brain, liver, plasma, large and small intestines, and cecum at multiple time points using HPLC/MS. Absorption in 30 min and full metabolization in 6 h were established. Furthermore, indole, indolin-2-one, and 3-hydroxiindolin-2-one, but not isatin, were found in the brain. Second, we confirmed these findings by using stable isotope-carrying indole. Third, we identified 3-hydroxyindolin-2-one as an indole metabolite in vivo by utilizing a 3-hydroxyindolin-2-one-converting enzyme, IifA. Further, we confirmed the ability of orally administered 3-hydroxyindolin-2-one to cross the blood-brain barrier in a dose-dependent manner. Finally, we detected upregulation of the CYP1A2 and CYP2A5 genes, confirming the importance of these cytochrome isoforms in indole metabolism in vivo. Overall, our results provide a basic characterization of indole metabolism in the host and highlight 3-hydroxyindolin-2-one as a potentially brain-affecting indole metabolite.
Collapse
Affiliation(s)
- Arnas Kunevičius
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Mikas Sadauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Julija Raudytė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
7
|
Abstract
Anthracycline-induced cardiotoxicity (AIC) is a serious and common side effect of anthracycline therapy. Identification of genes and genetic variants associated with AIC risk has clinical potential as a cardiotoxicity predictive tool and to allow the development of personalized therapies. In this review, we provide an overview of the function of known AIC genes identified by association studies and categorize them based on their mechanistic implication in AIC. We also discuss the importance of functional validation of AIC-associated variants in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to advance the implementation of genetic predictive biomarkers. Finally, we review how patient-specific hiPSC-CMs can be used to identify novel patient-relevant functional targets and for the discovery of cardioprotectant drugs to prevent AIC. Implementation of functional validation and use of hiPSC-CMs for drug discovery will identify the next generation of highly effective and personalized cardioprotectants and accelerate the inclusion of approved AIC biomarkers into clinical practice.
Collapse
Affiliation(s)
- Romina B Cejas
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| | - Kateryna Petrykey
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul W Burridge
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| |
Collapse
|
8
|
Chen X, Wang W, Li H, Zhang X. Enriched environment alleviates neurological deficits via downregulation of Cx43 after experimental stroke. Brain Res 2023; 1821:148619. [PMID: 37805009 DOI: 10.1016/j.brainres.2023.148619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
While it has been demonstrated that enriched environment (EE) can protect against cerebral ischemia/reperfusion (I/R) injury, the underlying mechanism remains largely unknown. Connexin 43 (Cx43) is a key component of gap junctions, which may mediate cell-to-cell communication in neural cells. This study aimed to investigate the neuroprotective effects of EE against cerebral I/R injury in rats by modulating Cx43. A rat model of cerebral I/R injury was established by middle cerebral artery occlusion (MCAO)/reperfusion. Rats were randomly divided into the sham, MCAO, MCAO + EE, MCAO + Gap19, and MCAO + EE + Gap19 groups. The modified neurological severity score test and Morris water maze assay were used to assess neurological deficits. The infarct volume was measured using triphenyltetrazolium chloride (TTC) staining. Neuronal survival was detected by immunofluorescence. The indices of oxidative stress were determined using ELISA, and the reactive oxygen species levels were determined using a dihydroethidium probe. Cx43 and inflammation-related protein expression levels were also measured using western blotting and immunohistochemistry. EE and Gap19 treatment significantly improved neurological deficits, reduced infarct volumes, attenuated neuronal injury, and suppressed inflammatory cytokine expression and oxidative stress. Furthermore, EE and Gap19 treatment notably downregulated the expression of Cx43 and the inflammation-related pathway TLR4/MyD88/NF-κB in the ischemic penumbra. Gap19, a Cx43 inhibitor, markedly enhanced the neuroprotective effects of EE in rats with cerebral I/R injury. EE treatment protects against cerebral I/R injury in rats via Cx43 downregulation. Our findings may shed light on the mechanism underlying the protective efficacy of EE.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wansong Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2rd, Shanghai 200025, China.
| | - Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuhan 430071, Hubei, China.
| |
Collapse
|
9
|
Lin D, Wu S, Cheng Y, Yan X, Liu Q, Ren T, Zhang J, Wang N. Early Proteomic Characteristics and Changes in the Optic Nerve Head, Optic Nerve, and Retina in a Rat Model of Ocular Hypertension. Mol Cell Proteomics 2023; 22:100654. [PMID: 37793503 PMCID: PMC10665672 DOI: 10.1016/j.mcpro.2023.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
The pathogenesis of glaucoma is still unknown. There are few studies on the dynamic change of tissue-specific and time-specific molecular pathophysiology caused by ocular hypertension (OHT). This study aimed to identify the early proteomic alterations in the retina, optic nerve head (ONH), and optic nerve (ON). After establishing a rat model of OHT, we harvested the tissues from control and glaucomatous eyes and analyzed the changes in protein expression using a multiplexed quantitative proteomics approach (TMT-MS3). Our study identified 6403 proteins after 1-day OHT and 4399 proteins after 7-days OHT in the retina, 5493 proteins after 1-day OHT and 4544 proteins after 7-days OHT in ONH, and 5455 proteins after 1-day OHT and 3835 proteins after 7-days OHT in the ON. Of these, 560 and 489 differential proteins were identified on day 1 and 7 after OHT in the retina, 428 and 761 differential proteins were identified on day 1 and 7 after OHT in the ONH, and 257 and 205 differential proteins on days 1 and 7 after OHT in the ON. Computational analysis on day 1 and 7 of OHT revealed that alpha-2 macroglobulin was upregulated across two time points and three tissues stably. The differentially expressed proteins between day 1 and 7 after OHT in the retina, ONH, and ON were associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, oxidative stress, microtubule, and crystallin. And the most significant change in retina are crystallins. We validated this proteomic result with the Western blot of crystallin proteins and found that upregulated on day 1 but recovered on day 7 after OHT, which are promising as therapeutic targets. These findings provide insights into the time- and region-order mechanisms that are specifically affected in the retina, ONH, and ON in response to elevated IOP during the early stages.
Collapse
Affiliation(s)
- Danting Lin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Ying Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in synaptic proteomes of human dorsolateral prefrontal cortex and nucleus accumbens. Mol Psychiatry 2023; 28:4777-4792. [PMID: 37674018 PMCID: PMC10914630 DOI: 10.1038/s41380-023-02241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Micah A Shelton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sam-Moon Kim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mariah A Hildebrand
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ryan W Logan
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA.
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Feng S, Yang M, Liu S, He Y, Deng S, Gong Y. Oxidative stress as a bridge between age and stroke: A narrative review. JOURNAL OF INTENSIVE MEDICINE 2023; 3:313-319. [PMID: 38028635 PMCID: PMC10658045 DOI: 10.1016/j.jointm.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 12/01/2023]
Abstract
Stroke is the third most common cause of death globally and a leading cause of disability. The cellular and molecular changes following stroke and causes of neuronal death are not fully understood, and there are few effective treatments currently available. A rapid increase in the levels of reactive oxygen species (ROS) post stroke can overwhelm antioxidant defenses and trigger a series of pathophysiologic events including the inflammatory response, blood-brain barrier (BBB) disruption, apoptosis, and autophagy, ultimately leading to neuron degeneration and apoptosis. It is thought that beyond a certain age, the ROS accumulation resulting from stroke increases the risk of morbidity and mortality. In the present review, we summarize the role of oxidative stress (OS) as a link between aging and stroke pathogenesis. We also discuss how antioxidants can play a beneficial role in the prevention and treatment of stroke by eliminating harmful ROS, delaying aging, and alleviating damage to neurons.
Collapse
Affiliation(s)
- Shengjie Feng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Miaoxian Yang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shengpeng Liu
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020,China
| | - Yu He
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
12
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in the synaptic proteomes of the human dorsolateral prefrontal cortex and nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536056. [PMID: 37066169 PMCID: PMC10104116 DOI: 10.1101/2023.04.07.536056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
|
13
|
Guo Y, Hu Y, Huang Y, Huang L, Kanamaru H, Takemoto Y, Li H, Li D, Gu J, Zhang JH. Role of Estrogen-Related Receptor γ and PGC-1α/SIRT3 Pathway in Early Brain Injury After Subarachnoid Hemorrhage. Neurotherapeutics 2023; 20:822-837. [PMID: 36481985 PMCID: PMC10275823 DOI: 10.1007/s13311-022-01330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 12/13/2022] Open
Abstract
Estrogen-related receptors (ERRs) were shown to play an important role in the regulation of free radical-mediated pathology. This study aimed to investigate the neuroprotective effect of ERRγ activation against early brain injury (EBI) after subarachnoid hemorrhage (SAH) and the potential underlying mechanisms. In a rat model of SAH, the time course of ERRs and SIRT3 and the effects of ERRγ activation were investigated. ERRγ agonist DY131, selective inhibitor GSK5182, or SIRT3 selective inhibitor 3-TYP were administered intracerebroventricularly (icv) in the rat model of SAH. The use of 3-TYP was for validating SIRT3 as the downstream signaling of ERRγ activation. Post-SAH assessments included SAH grade, neurological score, Western blot, Nissl staining, and immunofluorescence staining in rats. In an vitro study, the ERRγ agonist DY131 and ERRγ siRNA were administered to primary cortical neurons stimulated by Hb, after which cell viability and neuronal deaths were accessed. Lastly, the brain ERRγ levels and neuronal death were accessed in SAH patients. We found that brain ERRγ expressions were significantly increased, but the expression of SIRT3 dramatically decreased after SAH in rats. In the brains of SAH rats, ERRγ was expressed primarily in neurons, astrocytes, and microglia. The activation of ERRγ with DY131 significantly improved the short-term and long-term neurological deficits, accompanied by reductions in oxidative stress and neuronal apoptosis at 24 h after SAH in rats. DY131 treatment significantly increased the expressions of PGC-1α, SIRT3, and Bcl-2 while downregulating the expressions of 4-HNE and Bax. ERRγ antagonist GSK5182 and SIRT3 inhibitor 3-TYP abolished the neuroprotective effects of ERRγ activation in the SAH rats. An in vitro study showed that Hb stimulation significantly increased intracellular oxidative stress in primary cortical neurons, and DY131 reduced such elevations. Primary cortical neurons transfected with the ERRγ siRNA exhibited notable apoptosis and abolished the protective effect of DY131. The examination of SAH patients' brain samples revealed increases in ERRγ expressions and neuronal apoptosis marker CC3. We concluded that ERRγ activation with DY131 ameliorated oxidative stress and neuronal apoptosis after the experimental SAH. The effects were, at least in part, through the ERRγ/PGC-1α/SIRT3 signaling pathway. ERRγ may serve as a novel therapeutic target to ameliorate EBI after SAH.
Collapse
Affiliation(s)
- Yong Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, (People's Hospital of Zhengzhou University), Zhengzhou, 450003, China
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Yongmei Hu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
- Department of Nursing, Henan Provincial People's Hospital, (People's Hospital of Zhengzhou University), Zhengzhou, Henan, 450003, China
| | - Yi Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Yushin Takemoto
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Hao Li
- Department of Neurosurgery, Henan Provincial People's Hospital, (People's Hospital of Zhengzhou University), Zhengzhou, 450003, China
| | - Dujuan Li
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jianjun Gu
- Department of Neurosurgery, Henan Provincial People's Hospital, (People's Hospital of Zhengzhou University), Zhengzhou, 450003, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA.
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
14
|
Guo X, Zhang Y, Liu C, Ren L, Gao S, Bi J, Liang J, Wang P. Intranasal administration of β‐1, 3‐galactosyltransferase 2 confers neuroprotection against ischemic stroke by likely inhibiting oxidative stress and
NLRP3
inflammasome activation. FASEB J 2022; 36:e22542. [DOI: 10.1096/fj.202200456rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xun Guo
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province Jinzhou Medical University Jinzhou China
| | - Yang Zhang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province Jinzhou Medical University Jinzhou China
| | - Chang Liu
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province Jinzhou Medical University Jinzhou China
| | - Lili Ren
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province Jinzhou Medical University Jinzhou China
| | - Shuang Gao
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province Jinzhou Medical University Jinzhou China
| | - Jing Bi
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province Jinzhou Medical University Jinzhou China
| | - Jia Liang
- Institute of Life Science Jinzhou Medical University Jinzhou China
| | - Peng Wang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province Jinzhou Medical University Jinzhou China
| |
Collapse
|
15
|
Gao S, Zou X, Wang Z, Shu X, Cao X, Xia S, Shao P, Bao X, Yang H, Xu Y, Liu P. Bergapten attenuates microglia-mediated neuroinflammation and ischemic brain injury by targeting Kv1.3 and Carbonyl reductase 1. Eur J Pharmacol 2022; 933:175242. [PMID: 36058290 DOI: 10.1016/j.ejphar.2022.175242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Microglia-mediated neuroinflammation plays a vital role in the pathogenesis of ischemic stroke, which serves as a prime target for developing novel therapeutic agent. However, feasible and effective agents for controlling neuroinflammation are scarce. Bergapten were acknowledged to hold therapeutic potential in restricting inflammation in multiple diseases, including peripheral neuropathy, migraine headaches and osteoarthritis. Here, we aimed to investigate the impact of bergapten on microglia-mediated neuroinflammation and its therapeutic potential in ischemic stroke. Our study demonstrated that bergapten significantly reduced the expression of pro-inflammatory cytokines and the activation of NF-κB signaling pathway in LPS-stimulated primary microglia. Mechanistically, bergapten suppressed cellular potassium ion efflux by inhibiting Kv1.3 channel and inhibits the degradation of Carbonyl reductase 1 induced by LPS, which might contribute to the anti-inflammatory effect of bergapten. Furthermore, bergapten suppressed microglial activation and post-stroke neuroinflammation in an experimental stroke model, leading to reduced infarct size and improved functional recovery. Thus, our study identified that bergapten might be a potential therapeutic compound for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Xinxin Zou
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Zibu Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Pengfei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China; Nanjing Neurology Medical Center, Nanjing, 210008, China.
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
16
|
Intervention of neuroinflammation in the traumatic brain injury trajectory: In vivo and clinical approaches. Int Immunopharmacol 2022; 108:108902. [PMID: 35729835 DOI: 10.1016/j.intimp.2022.108902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022]
|
17
|
Suzuki H, Kawakita F, Asada R, Nakano F, Nishikawa H, Fujimoto M. Old but Still Hot Target, Glutamate-Mediated Neurotoxicity in Stroke. Transl Stroke Res 2021; 13:216-217. [PMID: 34709604 DOI: 10.1007/s12975-021-00958-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|