1
|
Hasan MY, Roslan AHM, Azmi N, Ibrahim NM, Arulsamy A, Lee VLL, Siran R, Vidyadaran S, Chua EW, Mahadi MK. α7-Nicotinic Acetylcholine Receptor Activation Modulates BV2 Microglial Plasticity via miR-21/TNF-α/NFκB in Oxygen-Glucose Deprivation/Reoxygenation. J Mol Neurosci 2024; 75:2. [PMID: 39718716 DOI: 10.1007/s12031-024-02300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Elevated inflammatory reactions are a significant component in cerebral ischemia-reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. This study employed qRT-PCR, protein assays, NanoString analysis, and bioinformatics to examine the effects of PNU282987 treatment (α7nAChR agonist) on BV2 microglial functional differentiation in oxygen-glucose deprivation/reoxygenation (OGDR) condition. OGDR significantly increased the gene expression of pro-inflammatory markers such as TNF-α, IL-6, and IL1β, while α7nAChR agonists reduced these markers. The anti-inflammatory gene marker IL-10 was upregulated by α7nAChR agonist treatment. Downstream pathway marker analysis showed that both gene and protein expression of NFκB was associated with anti-inflammatory effects. Blocking microRNA-21 with antagomir reversed the anti-inflammatory effects. NanoString analysis revealed that microRNA-21 inhibition significantly affected inflammation-related genes, including AL1RAP, TLR9, FLT1, PTGIR, NFκB, TREM2, TNF, SMAD7, FOS, CCL5, IFIT1, CFB, CXCL10, IFI44, DDIT3, IRF7, OASL1, IL1A, IFIT2, C3, CD40, STAT2, IFIT3, IL1RN, OAS1A, CSF1, CCL4, CCL2, CCL3, BCL2L1, and ITGB2. Enrichment analysis of upregulated genes identified Gene Ontology Biological Processes related to cytokine responses and TNF-associated pathways. This study highlights α7nAChR activation as a key regulator of anti-inflammatory responses in BV2 microglia under OGDR conditions, with micro-RNA21 identified as a crucial mediator of receptor-driven neuroprotection via the TNF-α/NFκB signalling pathway.
Collapse
Affiliation(s)
- Mohammad Yusuf Hasan
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Azim Haikal Md Roslan
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Norazrina Azmi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Vanessa Lin Lin Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Rosfaiizah Siran
- Neuroscience Research Group (NRG), Faculty of Medicine, Jalan Hospital, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Malaysia
| | - Sharmili Vidyadaran
- Neuroinflammation Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Reder SR, Kronfeld A, Gröschel S, Civelek A, Gröschel K, Brockmann MA, Uphaus T, Hahn M, Brockmann C, Othman AE. DSA-based perfusion parameters versus TICI score after mechanical thrombectomy in acute ischaemic stroke patients: a congruence analysis. Eur Radiol Exp 2024; 8:136. [PMID: 39636547 PMCID: PMC11621293 DOI: 10.1186/s41747-024-00534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Several factors are frequently considered for outcome prediction rin stroke patients. We assessed the value of digital subtraction angiography (DSA)-based brain perfusion measurements after mechanical thrombectomy (MT) for outcome prediction in acute ischaemic stroke. METHODS From DSA image data (n = 90; 38 females; age 73.3 ± 13.1 years [mean ± standard deviation]), time-contrast agent (CA) concentration curves were acquired, and maximum slope (MS), time to peak (TTP), and maximum CA concentration (CAmax) were calculated using an arterial input function. This data was used to predict neurological deficits at 24 h and upon discharge by using multiple regression analysis; the predictive capability was compared with the predictive power of the "Thrombolysis in cerebral infarction" (TICI) score. Intraclass correlation coefficients (ICC) of the NIHSS values were analysed. RESULTS The comparison of means revealed a linear trend after stratification into TICI classes for CAmax (TICI 0: 0.07 ± 0.02 a.u. to TICI 3: 0.22 ± 0.07 a.u.; p < 0.001), and for MS (TICI 0: 0.04 ± 0.01 a.u./s to TICI 3: 0.12 ± 0.0 a.u./s; p < 0.001). Regression analyses demonstrated equivalent capabilities for estimating neurological deficits after 24 h and at discharge using both the TICI score and DSA-based perfusion parameters (ΔR² ~ 0.03). Compared to the actual NIHSS, the ICC ranged from 0.55 to 0.84 for DSA-based models and from 0.6 to 0.82 for TICI-based models. CONCLUSION Semi-quantitative evaluation of DSA-based perfusion parameters prior to and after MT is feasible and could enhance the objectivity and comparability of MT outcome prediction. This technique may offer novel approaches in acute ischaemic stroke management and data comparability. RELEVANCE STATEMENT DSA-based brain perfusion measurements following interventional stroke therapy could allow for an experience-independent assessment of reperfusion success. It demonstrates predictive power at least equivalent to the established methods. This could support a future automated DSA-based brain perfusion measurement method. KEY POINTS Currently, the evaluation of stroke therapy success is based on the treating physician's experience. The present study introduces an objective semi-quantitative evaluation method. In predicting clinical outcomes, the traditional expert-based and semi-quantitative methods are equivalent.
Collapse
Affiliation(s)
- Sebastian R Reder
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Sonja Gröschel
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Arda Civelek
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Klaus Gröschel
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Timo Uphaus
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Marianne Hahn
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Carolin Brockmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
3
|
Hernandez Petzsche MR, Bürkle J, Hoffmann G, Zimmer C, Rühling S, Schwarting J, Wunderlich S, Maegerlein C, Boeckh-Behrens T, Kaczmarz S, Berndt-Mück M, Sollmann N. Cerebral blood flow from arterial spin labeling as an imaging biomarker of outcome after endovascular therapy for ischemic stroke. J Cereb Blood Flow Metab 2024:271678X241267066. [PMID: 39364671 PMCID: PMC11563528 DOI: 10.1177/0271678x241267066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 10/05/2024]
Abstract
Arterial spin labeling (ASL) is a contrast agent-free magnetic resonance imaging (MRI) technique to measure cerebral blood flow (CBF). We sought to investigate effects of CBF within the infarct on outcome and risk of hemorrhagic transformation (HT). In 111 patients (median age: 74 years, 50 men) who had undergone mechanical thrombectomy (MT) for ischemic stroke of the anterior circulation (median interval: 4 days between MT and MRI), post-stroke %CBF difference from pseudo-continuous ASL was calculated within the diffusion-weighted imaging (DWI)-positive infarct territory following lesion segmentation in relationship to the unaffected contralateral side. Functional independence was defined as a modified Rankin Scale (mRS) of 0-2 at 90 days post-stroke. %CBF difference, pre-stroke mRS, and infarct volume were independently associated with functional independence in a multivariate regression model. %CBF difference was comparable between patients with and without HT. A subcohort of 10 patients with decreased infarct-CBF despite expanded Treatment in Cerebral Infarction (eTICI) 2c or 3 recanalization was identified (likely related to the no-reflow phenomenon). Outcome was significantly worse in this group compared to the remaining cohort. In conclusion, ASL-derived %CBF difference from the DWI-positive infarct territory independently predicted functional independence, but %CBF difference was not significantly associated with an increased risk of HT.
Collapse
Affiliation(s)
- Moritz R Hernandez Petzsche
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johannes Bürkle
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriel Hoffmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sebastian Rühling
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julian Schwarting
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Silke Wunderlich
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Maegerlein
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Boeckh-Behrens
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Philips GmbH Market DACH, Hamburg, Germany
| | - Maria Berndt-Mück
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
4
|
Mujanovic A, Imhof A, Zheng S, Piechowiak EI, Serrallach BL, Meinel TR, Dobrocky T, Aziz YN, Seiffge DJ, Goeldlin M, Arnold M, Hakim A, Wiest R, Gralla J, Mistry EA, Fischer U, Wegener S, Kaesmacher J. Perfusion Abnormalities on 24-Hour Perfusion Imaging in Patients With Complete Endovascular Reperfusion. Stroke 2024; 55:2315-2324. [PMID: 39145382 PMCID: PMC11346709 DOI: 10.1161/strokeaha.124.047441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Perfusion abnormalities in the infarct and salvaged penumbra have been proposed as a potential reason for poor clinical outcome (modified Rankin Scale score >2) despite complete angiographic reperfusion (Thrombolysis in Cerebral Infarction [TICI3]). In this study, we aimed to identify different microvascular perfusion patterns and their association with clinical outcomes among TICI3 patients. METHODS University Hospital Bern's stroke registry of all patients between February 2015 and December 2021. Macrovascular reperfusion was graded using the TICI scale. Microvascular reperfusion status was evaluated within the infarct area on cerebral blood volume and cerebral blood flow perfusion maps obtained 24-hour postintervention. Primary outcome was functional independence (90-day modified Rankin Scale score 0-2) evaluated with the logistic regression analysis adjusted for age, sex, and 24-hour infarct volume from follow-up imaging. RESULTS Based on microvascular perfusion findings, the entire cohort (N=248) was stratified into one of the 4 clusters: (1) normoperfusion (no perfusion abnormalities; n=143/248); (2) hyperperfusion (hyperperfusion on both cerebral blood volume and cerebral blood flow; n=54/248); (3) hypoperfusion (hypoperfusion on both cerebral blood volume and cerebral blood flow; n=14/248); and (4) mixed (discrepant findings, eg, cerebral blood volume hypoperfusion and cerebral blood flow hyperperfusion; n=37/248). Compared with the normoperfusion cluster, patients in the hypoperfusion cluster were less likely to achieve functional independence (adjusted odds ratio, 0.3 [95% CI, 0.1-0.9]), while patients in the hyperperfusion cluster tended to have better outcomes (adjusted odds ratio, 3.3 [95% CI, 1.3-8.8]). CONCLUSIONS In around half of TICI3 patients, perfusion abnormalities on the microvascular level can be observed. Microvascular hypoperfusion, despite complete macrovascular reperfusion, is rare but may explain the poor clinical course among some TICI3 patients, while a detrimental effect of hyperperfusion after reperfusion could not be confirmed.
Collapse
Affiliation(s)
- Adnan Mujanovic
- Department of Diagnostic and Interventional Neuroradiology (A.M., A.I., S.Z., E.I.P., B.L.S., T.D., A.H., R.W., J.G., J.K.), University of Bern, Switzerland
- Graduate School for Health Sciences (A.M.), University of Bern, Switzerland
| | - Anick Imhof
- Department of Diagnostic and Interventional Neuroradiology (A.M., A.I., S.Z., E.I.P., B.L.S., T.D., A.H., R.W., J.G., J.K.), University of Bern, Switzerland
| | - Shaokai Zheng
- Department of Diagnostic and Interventional Neuroradiology (A.M., A.I., S.Z., E.I.P., B.L.S., T.D., A.H., R.W., J.G., J.K.), University of Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research (S.Z.), University of Bern, Switzerland
| | - Eike I. Piechowiak
- Department of Diagnostic and Interventional Neuroradiology (A.M., A.I., S.Z., E.I.P., B.L.S., T.D., A.H., R.W., J.G., J.K.), University of Bern, Switzerland
| | - Bettina L. Serrallach
- Department of Diagnostic and Interventional Neuroradiology (A.M., A.I., S.Z., E.I.P., B.L.S., T.D., A.H., R.W., J.G., J.K.), University of Bern, Switzerland
| | - Thomas R. Meinel
- Department of Neurology, University Hospital Bern, Inselspital (T.R.M., D.J.S., M.G., M.A., U.F.), University of Bern, Switzerland
| | - Tomas Dobrocky
- Department of Diagnostic and Interventional Neuroradiology (A.M., A.I., S.Z., E.I.P., B.L.S., T.D., A.H., R.W., J.G., J.K.), University of Bern, Switzerland
| | - Yasmin N. Aziz
- Department of Neurology, UC Medical Center, University of Cincinnati, Ohio (Y.N.A., E.A.M.)
| | - David J. Seiffge
- Department of Neurology, University Hospital Bern, Inselspital (T.R.M., D.J.S., M.G., M.A., U.F.), University of Bern, Switzerland
| | - Martina Goeldlin
- Department of Neurology, University Hospital Bern, Inselspital (T.R.M., D.J.S., M.G., M.A., U.F.), University of Bern, Switzerland
| | - Marcel Arnold
- Department of Neurology, University Hospital Bern, Inselspital (T.R.M., D.J.S., M.G., M.A., U.F.), University of Bern, Switzerland
| | - Arsany Hakim
- Department of Diagnostic and Interventional Neuroradiology (A.M., A.I., S.Z., E.I.P., B.L.S., T.D., A.H., R.W., J.G., J.K.), University of Bern, Switzerland
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology (A.M., A.I., S.Z., E.I.P., B.L.S., T.D., A.H., R.W., J.G., J.K.), University of Bern, Switzerland
| | - Jan Gralla
- Department of Diagnostic and Interventional Neuroradiology (A.M., A.I., S.Z., E.I.P., B.L.S., T.D., A.H., R.W., J.G., J.K.), University of Bern, Switzerland
| | - Eva A. Mistry
- Department of Neurology, UC Medical Center, University of Cincinnati, Ohio (Y.N.A., E.A.M.)
| | - Urs Fischer
- Department of Neurology, University Hospital Bern, Inselspital (T.R.M., D.J.S., M.G., M.A., U.F.), University of Bern, Switzerland
- Department of Neurology, University Hospital Basel, University of Basel, Switzerland (U.F.)
| | - Susanne Wegener
- Department of Neurology, University Hospital Zürich, University of Zürich, Switzerland (S.W.)
| | - Johannes Kaesmacher
- Department of Diagnostic and Interventional Neuroradiology (A.M., A.I., S.Z., E.I.P., B.L.S., T.D., A.H., R.W., J.G., J.K.), University of Bern, Switzerland
| |
Collapse
|
5
|
Franx B, Dijkhuizen RM, Dippel DWJ. Acute Ischemic Stroke in the Clinic and the Laboratory: Targets for Translational Research. Neuroscience 2024; 550:114-124. [PMID: 38670254 DOI: 10.1016/j.neuroscience.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Ischemic stroke research has enabled significant advancements in diagnosis, treatment, and management of this debilitating disease, yet challenges remain standing in the way of better patient prognoses. In this narrative review, a fictional case illustrates challenges and uncertainties that medical professionals still face - penumbra identification, lack of neuroprotective agents, side-effects of tissue plasminogen activator, dearth of molecular biomarkers, incomplete microvascular reperfusion or no-reflow, post-recanalization hyperperfusion, blood pressure management and procedural anesthetic effects. The current state of the field is broadly reviewed per topic, with the aim to introduce a broad audience (scientist and clinician alike) to recent successes in translational stroke research and pending scientific queries that are tractable for preclinical assessment. Opportunities for co-operation between clinical and experimental stroke experts are highlighted to increase the size and frequency of strides the field makes to improve our understanding of this disease and ways of treating it.
Collapse
Affiliation(s)
- Bart Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rick M Dijkhuizen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Diederik W J Dippel
- Stroke Center, Dept of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Franx BAA, Lebrun F, Chin Joe Kie L, Deffieux T, Vivien D, Bonnard T, Dijkhuizen RM. Dynamics of cerebral blood volume during and after middle cerebral artery occlusion in rats - Comparison between ultrafast ultrasound and dynamic susceptibility contrast-enhanced MRI measurements. J Cereb Blood Flow Metab 2024; 44:333-344. [PMID: 38126356 PMCID: PMC10870967 DOI: 10.1177/0271678x231220698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Tomographic perfusion imaging techniques are integral to translational stroke research paradigms that advance our understanding of the disease. Functional ultrasound (fUS) is an emerging technique that informs on cerebral blood volume (CBV) through ultrasensitive Doppler and flow velocity (CBFv) through ultrafast localization microscopy. It is not known how experimental results compare with a classical CBV-probing technique such as dynamic susceptibility contrast-enhanced perfusion MRI (DSC-MRI). To that end, we assessed hemodynamics based on uUS (n = 6) or DSC-MRI (n = 7) before, during and up to three hours after 90-minute filament-induced middle cerebral artery occlusion (MCAO) in rats. Recanalization was followed by a brief hyperperfusion response, after which CBV and CBFv temporarily normalized but progressively declined after one hour in the lesion territory. DSC-MRI data corroborated the incomplete restoration of CBV after recanalization, which may have been caused by the free-breathing anesthetic regimen. During occlusion, MCAO-induced hypoperfusion was more discrepant between either technique, likely attributable to artefactual signal mechanisms related to slow flow, and processing algorithms employed for either technique. In vivo uUS- and DSC-MRI-derived measures of CBV enable serial whole-brain assessment of post-stroke hemodynamics, but readouts from both techniques need to be interpreted cautiously in situations of very low blood flow.
Collapse
Affiliation(s)
- Bart AA Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Florent Lebrun
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- ETAP-Lab, STROK@LLIANCE, 13 Rue du bois de la champelle, 54500, Vandoeuvre-les-Nancy, France
| | - Lois Chin Joe Kie
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Thomas Deffieux
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- CHU Caen, Department of Clinical Research, CHU Caen, Côte de Nacre, France
| | - Thomas Bonnard
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Rick M Dijkhuizen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Franx BAA, van Tilborg GAF, van der Toorn A, van Heijningen CL, Dippel DWJ, van der Schaaf IC, Dijkhuizen RM. Propofol anesthesia improves stroke outcomes over isoflurane anesthesia-a longitudinal multiparametric MRI study in a rodent model of transient middle cerebral artery occlusion. Front Neurol 2024; 15:1332791. [PMID: 38414549 PMCID: PMC10897009 DOI: 10.3389/fneur.2024.1332791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
General anesthesia is routinely used in endovascular thrombectomy procedures, for which volatile gas and/or intravenous propofol are recommended. Emerging evidence suggests propofol may have superior effects on disability and/or mortality rates, but a mode-of-action underlying these class-specific effects remains unknown. Here, a moderate isoflurane or propofol dosage on experimental stroke outcomes was retrospectively compared using serial multiparametric MRI and behavioral testing. Adult male rats (N = 26) were subjected to 90-min filament-induced transient middle cerebral artery occlusion. Diffusion-, T2- and perfusion-weighted MRI was performed during occlusion, 0.5 h after recanalization, and four days into the subacute phase. Sequels of ischemic damage-blood-brain barrier integrity, cerebrovascular reactivity and sensorimotor functioning-were assessed after four days. While size and severity of ischemia was comparable between groups during occlusion, isoflurane anesthesia was associated with larger lesion sizes and worsened sensorimotor functioning at follow-up. MRI markers indicated that cytotoxic edema persisted locally in the isoflurane group early after recanalization, coinciding with burgeoning vasogenic edema. At follow-up, sequels of ischemia were further aggravated in the post-ischemic lesion, manifesting as increased blood-brain barrier leakage, cerebrovascular paralysis and cerebral hyperperfusion. These findings shed new light on how isoflurane, and possibly similar volatile agents, associate with persisting injurious processes after recanalization that contribute to suboptimal treatment outcome.
Collapse
Affiliation(s)
- Bart A. A. Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Annette van der Toorn
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Caroline L. van Heijningen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | | | | - Rick M. Dijkhuizen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
8
|
Franx BAA, van Tilborg GAF, Taha A, Bobi J, van der Toorn A, Van Heijningen CL, van Beusekom HMM, Wu O, Dijkhuizen RM. Hyperperfusion profiles after recanalization differentially associate with outcomes in a rat ischemic stroke model. J Cereb Blood Flow Metab 2024; 44:209-223. [PMID: 37873758 PMCID: PMC10993873 DOI: 10.1177/0271678x231208993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/24/2023] [Indexed: 10/25/2023]
Abstract
Futile recanalization hampers prognoses of ischemic stroke after successful mechanical thrombectomy, hypothetically through post-recanalization perfusion deficits, onset-to-groin delays and sex effects. Clinically, acute multiparametric imaging studies remain challenging. We assessed possible relationships between these factors and disease outcome after experimental cerebral ischemia-reperfusion, using translational MRI, behavioral testing and multi-model inference analyses. Male and female rats (N = 60) were subjected to 45-/90-min filament-induced transient middle cerebral artery occlusion. Diffusion, T2- and perfusion-weighted MRI at occlusion, 0.5 h and four days after recanalization, enabled tracking of tissue fate, and relative regional cerebral blood flow (rrCBF) and -volume (rrCBV). Lesion areas were parcellated into core, salvageable tissue and delayed injury, verified by histology. Recanalization resulted in acute-to-subacute lesion volume reductions, most apparently in females (n = 19). Hyperacute normo-to-hyperperfusion in the post-ischemic lesion augmented towards day four, particularly in males (n = 23). Tissue suffering delayed injury contained higher ratios of hypoperfused voxels early after recanalization. Regressed against acute-to-subacute lesion volume change, increased rrCBF associated with lesion growth, but increased rrCBV with lesion reduction. Similar relationships were detected for behavioral outcome. Post-ischemic hyperperfusion may develop differentially in males and females, and can be beneficial or detrimental to disease outcome, depending on which perfusion parameter is used as explanatory variable.
Collapse
Affiliation(s)
- Bart AA Franx
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Geralda AF van Tilborg
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Aladdin Taha
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
| | - Joaquim Bobi
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Caroline L Van Heijningen
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Heleen MM van Beusekom
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
| | - Ona Wu
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - on behalf of the CONTRAST consortium
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
9
|
Bellomo J, Sebök M, Stumpo V, van Niftrik CHB, Meisterhans D, Piccirelli M, Michels L, Reolon B, Esposito G, Schubert T, Kulcsar Z, Luft AR, Wegener S, Regli L, Fierstra J. Blood Oxygenation Level-Dependent Cerebrovascular Reactivity-Derived Steal Phenomenon May Indicate Tissue Reperfusion Failure After Successful Endovascular Thrombectomy. Transl Stroke Res 2023:10.1007/s12975-023-01203-y. [PMID: 37880561 DOI: 10.1007/s12975-023-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
In acute ischemic stroke due to large-vessel occlusion (LVO), the clinical outcome after endovascular thrombectomy (EVT) is influenced by the extent of autoregulatory hemodynamic impairment, which can be derived from blood oxygenation level-dependent cerebrovascular reactivity (BOLD-CVR). BOLD-CVR imaging identifies brain areas influenced by hemodynamic steal. We sought to investigate the presence of steal phenomenon and its relationship to DWI lesions and clinical deficit in the acute phase of ischemic stroke following successful vessel recanalization.From the prospective longitudinal IMPreST (Interplay of Microcirculation and Plasticity after ischemic Stroke) cohort study, patients with acute ischemic unilateral LVO stroke of the anterior circulation with successful endovascular thrombectomy (EVT; mTICI scale ≥ 2b) and subsequent BOLD-CVR examination were included for this analysis. We analyzed the spatial correlation between brain areas exhibiting BOLD-CVR-associated steal phenomenon and DWI infarct lesion as well as the relationship between steal phenomenon and NIHSS score at hospital discharge.Included patients (n = 21) exhibited steal phenomenon to different extents, whereas there was only a partial spatial overlap with the DWI lesion (median 19%; IQR, 8-59). The volume of steal phenomenon outside the DWI lesion showed a positive correlation with overall DWI lesion volume and was a significant predictor for the NIHSS score at hospital discharge.Patients with acute ischemic unilateral LVO stroke exhibited hemodynamic steal identified by BOLD-CVR after successful EVT. Steal volume was associated with DWI infarct lesion size and with poor clinical outcome at hospital discharge. BOLD-CVR may further aid in better understanding persisting hemodynamic impairment following reperfusion therapy.
Collapse
Affiliation(s)
- Jacopo Bellomo
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091, Zurich, Switzerland.
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091, Zurich, Switzerland
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091, Zurich, Switzerland
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Christiaan H B van Niftrik
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091, Zurich, Switzerland
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Darja Meisterhans
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091, Zurich, Switzerland
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Marco Piccirelli
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Lars Michels
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Beno Reolon
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Giuseppe Esposito
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091, Zurich, Switzerland
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Tilman Schubert
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas R Luft
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Susanne Wegener
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091, Zurich, Switzerland
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091, Zurich, Switzerland
- Clinical Neuroscience Center, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Liu L, He CY, Yang JX, Zheng ST, Zhou J, Kong Y, Chen WB, Xie Y. Prediction models for post-thrombectomy brain edema in patients with acute ischemic stroke: a systematic review and meta-analysis. Front Neurol 2023; 14:1254090. [PMID: 37719759 PMCID: PMC10501604 DOI: 10.3389/fneur.2023.1254090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Objective The objective of this study is to systematically evaluate prediction models for post-thrombectomy brain edema in acute ischemic stroke (AIS) patients. This analysis aims to equip clinicians with evidence-based guidance for the selection of appropriate prediction models, thereby facilitating the early identification of patients at risk of developing brain edema post-surgery. Methods A comprehensive literature search was conducted across multiple databases, including PubMed, Web of Science, Embase, The Cochrane Library, CNKI, Wanfang, and Vip, aiming to identify studies on prediction models for post-thrombectomy brain edema in AIS patients up to January 2023. Reference lists of relevant articles were also inspected. Two reviewers independently screened the literature and extracted data. The Prediction Model Risk of Bias Assessment Tool (PROBAST) and the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines were employed to assess study bias and literature quality, respectively. We then used random-effects bivariate meta-analysis models to summarize the studies. Results The review included five articles, yielding 10 models. These models exhibited a relatively high risk of bias. Random effects model demonstrated that the AUC was 0.858 (95% CI 0.817-0.899). Conclusion Despite the promising discriminative ability shown by studies on prediction models for post-thrombectomy brain edema in AIS patients, concerns related to a high risk of bias and limited external validation remain. Future research should prioritize the external validation and optimization of these models. There is an urgent need for large-scale, multicenter studies to develop robust, user-friendly models for real-world clinical application. Systematic review registration https://www.crd.york.ac.uk, unique Identifier: CRD42022382790.
Collapse
Affiliation(s)
| | - Chun-yu He
- School of Nursing, Chengdu Medical College, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|