1
|
Akaberi M, Forouzanfar F, Rakhshandeh H, Moshirian-Farahi SM. Analgesic effect of apricot kernel oil on neuropathic pain in rats. Heliyon 2024; 10:e34988. [PMID: 39170485 PMCID: PMC11336353 DOI: 10.1016/j.heliyon.2024.e34988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Background A somatosensory nerve lesion or disease causes neuropathic pain. Presently, prescribed treatments are unsatisfactory or ineffective. The kernel oil of the apricot tree (Prunus armeniaca L) is known for its anti-inflammatory and antioxidant effects. This study investigated the effect of apricot kernel oil in chronic constriction injury (CCI)- induced neuropathic pain in rats. Materials/Methods Liquid chromatography-electrospray mass spectrometry (LC-ESIMS) analysis was carried out to gain a deeper understanding of the apricot kernel oil's main compounds. Rats were treated daily with apricot kernel oil (2 and 4 ml/kg) or gabapentin (100 mg/kg) for 14 days after CCI induction. Hot plate, acetone drop, and Von Frey hair tests were performed to evaluate thermal and mechanical activity. Spinal cord malondialdehyde (MDA), total thiol, interleukin (IL)-1β, and tumor necrosis factor α (TNF-α) levels were assessed to measure biochemical changes. Results The most detected compounds in apricot kernel oil were lipids and fatty acids. CCI produced a significant increase in thermal hyperalgesia, mechanical allodynia, and cold allodynia. Moreover, CCI increased the inflammation and oxidative stress markers in spinal cord samples. Oral administration of apricot kernel oil and gabapentin significantly decreased the CCI-induced nociceptive pain threshold. Besides, spinal cord biochemical changes were attenuated. Conclusions Our findings suggest that apricot kernel oil could attenuate neuropathic pain, possibly through anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Kutbi D, Almalki RS. Valsartan Mitigates the Progression of Methotrexate-Induced Acute Kidney Injury in Rats via the Attenuation of Renal Inflammation and Oxidative Stress. J Inflamm Res 2024; 17:2233-2243. [PMID: 38623467 PMCID: PMC11017984 DOI: 10.2147/jir.s456610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Background Methotrexate (MTX) is a folic acid antagonist, commonly administered for the treatment of a variety of cancers. However, methotrexate toxicity including bone marrow suppression and hepatic and renal toxicity limits its use. Angiotensin AT1 receptor blockers including Valsartan (Val) possess the ability to ameliorate MTX-induced toxicity through various mechanisms. In this study, we explored the potential reno-protective effects of Val against MTX-induced acute kidney injury in rats. Methods Twenty-four Wistar rats were randomly segregated into 3 groups. Group 1 served as the control group and received an oral dose of 1mL/kg of normal saline. Group 2 received a single dose of 20 mg/kg of MTX intraperitoneally (IP) for 5 days. Group 3 received a single IP dose of 20 mg/kg of MTX followed by an oral dose of 10 mg/kg of Valsartan for 5 days. At the end of the experiment, the levels of serum kidney biomarkers, inflammatory and oxidative stress markers were accessed. Furthermore, the effect of MTX on kidney tissue histology was examined. Results and discussion Our results showed that MTX treatment increased the level of serum kidney and inflammatory biomarkers and decreased the level of antioxidants SOD and GSH while increasing the lipid peroxidation contents. Furthermore, MTX treatment caused structural changes to kidney histology. However, the administration of Val significantly prevented these changes. Conclusion Valsartan possesses nephroprotective potential and might serve as a potential therapeutic strategy against MTX-induced kidney injury.
Collapse
Affiliation(s)
- Dina Kutbi
- Department of Pharmacy, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Riyadh S Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm AL-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Abdel-Reheim MA, Ali ME, Gaafar AGA, Ashour AA. Quillaja saponin mitigates methotrexate-provoked renal injury; insight into Nrf-2/Keap-1 pathway modulation with suppression of oxidative stress and inflammation. J Pharm Health Care Sci 2024; 10:17. [PMID: 38594773 PMCID: PMC11003044 DOI: 10.1186/s40780-024-00330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Methotrexate (MTX) is an antineoplastic/immunosuppressive drug, whose clinical use is impeded owing to its serious adverse effects; one of which is acute kidney injury (AKI). Most of MTX complications emerged from the provoked pro-oxidant-, pro-inflammatory- and pro-apoptotic effects. Quillaja saponaria bark saponin (QBS) is a bioactive triterpene that has been traditionally used as an antitussive, anti-inflammatory supplement, and to boost the immune system due to its potent antioxidant- and anti-inflammatory activities. However, the protective/therapeutic potential of QBS against AKI has not been previously evaluated. This study aimed to assess the modulatory effect of QBS on MTX-induced reno-toxicity. METHODS Thirty-two male rats were divided into 4-groups. Control rats received oral saline (group-I). In group-II, rats administered QBS orally for 10-days. In group-III, rats were injected with single i.p. MTX (20 mg/kg) on day-5. Rats in group-IV received QBS and MTX. Serum BUN/creatinine levels were measured, as kidney-damage-indicating biomarkers. Renal malondialdehyde (MDA), reduced-glutathione (GSH) and nitric-oxide (NOx) were determined, as oxidative-stress indices. Renal expression of TNF-α protein and Nrf-2/Keap-1 mRNAs were evaluated as regulators of inflammation. Renal Bcl-2/cleaved caspase-3 immunoreactivities were evaluated as apoptosis indicators. RESULTS Exaggerated kidney injury upon MTX treatment was evidenced histologically and biochemically. QBS attenuated MTX-mediated renal degeneration, oxidant-burden enhancement, excessive inflammation, and proapoptotic induction. Histopathological analysis further confirmed the reno-protective microenvironment rendered by QBS. CONCLUSIONS In conclusion, our results suggest the prophylactic and/or therapeutic effects of QBS in treating MTX-induced AKI. Such reno-protection is most-likely mediated via Nrf-2 induction that interferes with oxidant load, inflammatory pathways, and proapoptotic signaling.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Gaafar A Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ahmed Amine Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, El-Nasr Road, P.O. 11751, Cairo, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia, 41636, Egypt.
| |
Collapse
|
4
|
Lorestani F, Movahedian A, Mohammadalipour A, Hashemnia M, Aarabi MH. Astaxanthin prevents nephrotoxicity through Nrf2/HO-1 pathway. Can J Physiol Pharmacol 2024; 102:128-136. [PMID: 37683291 DOI: 10.1139/cjpp-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Renal toxicity is one of the side effects of methotrexate (MTX). Therefore, this study explored the use of astaxanthin (AST), as a natural carotenoid, against MTX-induced nephrotoxicity emphasizing the changes in oxidative stress and the expression of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1). During the 10 days of the experiment, male Wistar rats in different groups received MTX (10 mg/kg) on days 6, 8, and 10 and three doses of AST (25, 50, and 75 mg/kg) during the entire course. Renal failure caused by MTX was observed in significant histopathological changes and a significant increase in serum levels of creatinine, urea, and uric acid (p < 0.05). Oxidative change induced by MTX injection was also observed by remarkably increasing the tissue level of malondialdehyde (MDA) and decreasing the activity of superoxide dismutase (SOD) and catalase (p < 0.001). AST decreases the adverse effects of MTX by upregulating the expression of Nrf2/HO-1 genes (p < 0.01) and decreasing the tissue level of MDA (p < 0.01). Also, AST significantly reduced the amount of creatinine, urea, and uric acid in the serum and improved the activity of SOD and catalase in the kidney tissue (p < 0.05). Thus, AST may protect the kidney against oxidative stress caused by MTX.
Collapse
Affiliation(s)
- Faezeh Lorestani
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedian
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammad Hossein Aarabi
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Yildiz A, Ozhan O, Ulu A, Dogan T, Bakar B, Ugur Y, Taslidere E, Gokbulut I, Polat S, Parlakpinar H, Ates B, Vardi N. Effects of the apricot diets containing sulfur dioxide at different concentrations on rat testicles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27692-w. [PMID: 37204578 DOI: 10.1007/s11356-023-27692-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Due to its antioxidant and antimicrobial properties, sulfur dioxide (SO2) is widely used in foods and beverages to prevent the growth of microorganisms and to preserve the color and flavor of fruits. However, the amount of SO2 used in fruit preservation should be limited due to its possible adverse effects on human health. The present study was designed to investigate the effects of different SO2 concentrations in apricot diets on rat testes. Animals were randomly divided into six groups. The control group was fed a standard diet, and the other groups were fed apricot diet pellets prepared with (w/w) 10% dried apricots containing SO2 at different concentrations (1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, and 3500 ppm/kg) for 24 weeks. After sacrification, testicles were evaluated biochemically, histopathologically, and immunohistopathologically. Our results showed that an apricot diet containing 1500 ppm and 2000 ppm SO2 did not cause significant changes in testis. However, it was determined that tissue testosterone levels decreased as the amount of SO2 (2500 ppm and above) increased. Apricot diet containing 3500 ppm SO2 caused a significant increase in spermatogenic cell apoptosis, oxidative damage, and histopathological changes. In addition, a decrease in the expression of connexin-43, vimentin, and 3β-hydroxysteroid dehydrogenase (3β-HSD) was observed in the same group. In summary, the results show that sulfurization of apricot at high concentrations such as 3500 ppm may lead to male fertility problems in the long term through mechanisms such as oxidative stress, spermatogenic cell apoptosis, and inhibition of steroidogenesis.
Collapse
Affiliation(s)
- Azibe Yildiz
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey.
| | - Onural Ozhan
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Tugba Dogan
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Busra Bakar
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Yilmaz Ugur
- Vocational School of Health Service, Inonu University, Malatya, Turkey
| | - Elif Taslidere
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Incilay Gokbulut
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280, Malatya, Turkey
| | - Seyhan Polat
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Nigar Vardi
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
6
|
Wani FA, Ibrahim MA, Ameen SH, Farage AE, Ali ZAE, Saleh K, Farag MM, Sayeed MU, Alruwaili MAY, Alruwaili AHF, Aljared AZA, Galhom RA. Platelet Rich Plasma and Adipose-Derived Mesenchymal Stem Cells Mitigate Methotrexate-Induced Nephrotoxicity in Rat via Nrf2/Pparγ/HO-1 and NF-Κb/Keap1/Caspase-3 Signaling Pathways: Oxidative Stress and Apoptosis Interplay. TOXICS 2023; 11:toxics11050398. [PMID: 37235213 DOI: 10.3390/toxics11050398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND the nephrotoxicity of methotrexate (MTX) is observed in high-dose therapy. Moreover, low-dose MTX therapy for rheumatic diseases is debatable and claimed to cause renal impairment. This study aimed at studying the effect of methotrexate in repeated low doses on rat kidneys and assessing the efficacy of adipose-derived mesenchymal stem cells (AD-MSCs) and platelet rich plasma (PRP) for attenuating this effect. METHODS Forty-two male Wistar rats were used, 10 rats were donors of AD-MSCs and PRP, 8 rats served as control, and the remaining rats were subjected to induction of nephrotoxicity by MTX intraperitoneal injection once weekly for successive 8 weeks and then assigned into 3 groups of 8 animals each: Group II: received MTX only. Group III: received MTX + PRP. Group IV: received MTX + AD-MSCs. After one month, rats were anaesthetized, serum-sampled, and renal tissue removed for biochemical, histological, and ultrastructural evaluation. RESULTS there was significant tubular degeneration, glomerulosclerosis, fibrosis, decreased renal index, along with increased levels of urea and creatinine in the MTX group compared to the control group. Immunohistochemical expression of caspase-3 and iNOS in the renal tissue was significantly increased in group II compared to groups III and IV. Biochemical results revealed higher tissue malondialdehyde (MDA) concentration in the MTX-injected group which decreased significantly in co-treatment with either AD-MSC or PRP + MTX. MSC promoted the activation of the Nrf2/PPARγ/HO-1 and NF-κB/Keap1/caspase-3 pathways, increased antioxidant enzyme activities, reduced lipid peroxidation levels, and alleviated oxidative damage and apoptosis. PRP showed therapeutic effects and molecular mechanisms similar to MSC. Furthermore, MSC and PRP treatment significantly reduced MTX-induced upregulation of the pro-inflammatory (NF-κB, interleukin-1ß, and TNF-α), oxidative stress (Nrf-2, hemoxygenase-1, glutathione, and malondialdehyde), and nitrosative stress (iNOS) markers in the kidney. CONCLUSION repeated administration of low-dose MTX resulted in massive renal tissue toxicity and deterioration of renal function in rats which proved to be attenuated by PRP and AD-MSCs through their anti-inflammatory, anti-apoptotic and anti-fibrotic properties.
Collapse
Affiliation(s)
- Farooq A Wani
- Pathology Department, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mahrous A Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Shimaa H Ameen
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharqia 44519, Egypt
| | - Amira E Farage
- Department of Anatomy, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Zinab Abd-Elhady Ali
- Vice Deanship for Academic Affairs, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Khaldoon Saleh
- Vice Deanship for Academic Affairs, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Medhat M Farag
- Medical Biochemistry Department, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammed U Sayeed
- Pathology Department, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | | | | | | | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Human Anatomy and Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| |
Collapse
|
7
|
Gurbuz P, Duzova H, Taslidere AC, Gul CC. Effects of noopept on ocular, pancreatic and renal histopathology in streptozotocin induced prepubertal diabetic rats. Biotech Histochem 2023:1-12. [PMID: 36946173 DOI: 10.1080/10520295.2023.2187460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic disease at all ages including childhood and puberty. Failure to treat DM can cause retinopathy, nephropathy and neuropathy. Endocrine and metabolic changes during the pubertal period complicate management of DM. Noopept is a cognitive enhancer that exhibits antidiabetic properties. We investigated the effect of noopept on the histopathology of the cornea, retina, kidney and pancreas in pubertal diabetic rats. We allocated 60 prepubertal male rats randomly into six groups of 10: untreated control (C), DM control (DC), noopept control (NC), DM + noopept (D + N), DM + insulin (D + I) and DM + insulin + noopept (D + I + N). DM was induced by streptozotocin in the DC, D + N, D + I and D + I + N groups. Noopept was administered to the NC, D + N and D + I + N groups; insulin was administered to the D + I and D + I + N groups for 14 days. On day 18 of the experiment, animals were sacrificed and eyes, kidneys and pancreata were excised for histological investigation. Renal tubule diameter and corneal and retinal thickness were increased significantly in DC groups compared to the control group. The D + I, D + N and D + I + N groups exhibited fewer DM induced pathological changes than the DC group. The D + I + N group exhibited no significant differences in renal tubule diameter and corneal and retinal thickness compared to the DC group. Our findings suggest that noopept is protective against DM end organ complications in streptozotocin induced diabetic pubertal rats.
Collapse
Affiliation(s)
- Perihan Gurbuz
- Vocational School of Health Services, Inonu University, Malatya, Turkey
| | - Halil Duzova
- Physiology Department, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Histology and Embryology Department, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Histology and Embryology Department, Inonu University Faculty of Medicine, Malatya, Turkey
| |
Collapse
|
8
|
Lan Y, Song Y, Guo Y, Qiao D, Cao Y, Xu H. DsLCYB Directionally Modulated β-Carotene of the Green Alga Dunaliella salina under Red Light Stress. J Microbiol Biotechnol 2022; 32:1622-1631. [PMID: 36384973 PMCID: PMC9843872 DOI: 10.4014/jmb.2208.08044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Carotenoids, which are natural pigments found abundantly in wide-ranging species, have diverse functions and high industrial potential. The carotenoid biosynthesis pathway is very complex and has multiple branches, while the accumulation of certain metabolites often affects other metabolites in this pathway. The DsLCYB gene that encodes lycopene cyclase was selected in this study to evaluate β-carotene production and the accumulation of β-carotene in the alga Dunaliella salina. Compared with the wild type, the transgenic algal species overexpressed the DsLCYB gene, resulting in a significant enhancement of the total carotenoid content, with the total amount reaching 8.46 mg/g for an increase of up to 1.26-fold. Interestingly, the production of α-carotene in the transformant was not significantly reduced. This result indicated that the regulation of DsLCYB on the metabolic flux distribution of carotenoid biosynthesis is directional. Moreover, the effects of different light-quality conditions on β-carotene production in D. salina strains were investigated. The results showed that the carotenoid components of β-carotene and β-cryptoxanthin were 1.8-fold and 1.23-fold higher than that in the wild type under red light stress, respectively. This suggests that the accumulation of β-carotene under red light conditions is potentially more profitable.
Collapse
Affiliation(s)
- Yanhong Lan
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China
| | - Yao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China
| | - Yihan Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China,Corresponding authors Y. Cao Phone: +86-28-85469573 E-mail:
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China,
H. Xu Phone: +86-28-85469573 E-mail:
| |
Collapse
|
9
|
Kitic D, Miladinovic B, Randjelovic M, Szopa A, Sharifi-Rad J, Calina D, Seidel V. Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:1885. [PMID: 35890519 PMCID: PMC9325146 DOI: 10.3390/plants11141885] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 05/02/2023]
Abstract
Prunus armeniaca L. (Rosaceae)-syn. Amygdalus armeniaca (L.) Dumort., Armeniaca armeniaca (L.) Huth, Armeniaca vulgaris Lam is commonly known as the apricot tree. The plant is thought to originate from the northern, north-western, and north-eastern provinces of China, although some data show that it may also come from Korea or Japan. The apricot fruit is used medicinally to treat a variety of ailments, including use as an antipyretic, antiseptic, anti-inflammatory, emetic, and ophthalmic remedy. The Chinese and Korean pharmacopeias describe the apricot seed as an herbal medicinal product. Various parts of the apricot plant are used worldwide for their anticancer properties, either as a primary remedy in traditional medicine or as a complementary or alternative medicine. The purpose of this review was to provide comprehensive and up-to-date information on ethnobotanical data, bioactive phytochemicals, anticancer potential, pharmacological applications, and toxicology of the genus Prunus armeniaca, thus providing new perspectives on future research directions. Included data were obtained from online databases such as PubMed/Medline, Google Scholar, Science direct, and Wiley Online Library. Multiple anticancer mechanisms have been identified in in vitro and in vivo studies, the most important mechanisms being apoptosis, antiproliferation, and cytotoxicity. The anticancer properties are probably mediated by the contained bioactive compounds, which can activate various anticancer mechanisms and signaling pathways such as tumor suppressor proteins that reduce the proliferation of tumor cells. Other pharmacological properties resulting from the analysis of experimental studies include neuroprotective, cardioprotective, antioxidant, immunostimulatory, antihyperlipidemic, antibacterial, and antifungal effects. In addition, data were provided on the toxicity of amygdalin, a compound found in apricot kernel seeds, which limits the long-term use of complementary/alternative products derived from P. armeniaca. This updated review showed that bioactive compounds derived from P. armeniaca are promising compounds for future research due to their important pharmacological properties, especially anticancer. A detailed analysis of the chemical structure of these compounds and their cytotoxicity should be carried out in future research. In addition, translational pharmacological studies are required for the correct determination of pharmacologically active doses in humans.
Collapse
Affiliation(s)
- Dusanka Kitic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Bojana Miladinovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Milica Randjelovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
| |
Collapse
|
10
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Mohamed NM, Ross SA. Protective effects of berberine on various kidney diseases: Emphasis on the promising effects and the underlined molecular mechanisms. Life Sci 2022; 306:120697. [PMID: 35718235 DOI: 10.1016/j.lfs.2022.120697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Berberine (BBR) is a pentacyclic benzylisoquinoline alkaloid that can be found in diversity of medicinal plants. BBR has a wide range of pharmacological bioactivities, in addition when administrated orally, it has a broad safety margin. It has been used as an antidiarrheal, antimicrobial, and anti-diabetic drug in Ayurvedic and Chinese medicine. Several scholars have found that BBR has promising renoprotective effects against different renal illnesses, including diabetic nephropathy, renal fibrosis, renal ischemia, renal aging, and renal stones. Also, it has renoprotective effects against nephrotoxicity induced by chemotherapy, heavy metal, aminoglycosides, NSAID, and others. These effects imply that BBR has an evolving therapeutic potential against acute renal failure and chronic renal diseases. Hence, we report herein the beneficial therapeutic renoprotective properties of BBR, as well as the highlighted molecular mechanism. In conclusion, the studies discussed throughout this review will afford a comprehensive overview about renoprotective effect of BBR and its therapeutic impact on different renal diseases.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
11
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
12
|
Fratianni F, Cozzolino R, d'Acierno A, Ombra MN, Spigno P, Riccardi R, Malorni L, Stocchero M, Nazzaro F. Biochemical Characterization of Some Varieties of Apricot Present in the Vesuvius Area, Southern Italy. Front Nutr 2022; 9:854868. [PMID: 35350414 PMCID: PMC8958034 DOI: 10.3389/fnut.2022.854868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The witnesses of the millenary history of Campania felix in southern Italy highlighted that several fruit and vegetables cultivated in such territory could potentially be a treasure trove of important health elements. Our work evaluated the content of β-carotene, ascorbic acid, and total phenolics and the antioxidant activity of ten typical varieties of apricots cultivated in the Vesuvius area in the Campania region. The total polyphenols varied between 10.24 and 34.04 mg/100 g of a fresh sample. The amount of ascorbic acid also varied greatly, ranging from 2.65 to 10.65 mg/100 g of a fresh product. B-Carotene reached values up to 0.522 mg/100 g of the fresh sample. The correlation analysis performed, accounting for these parameters, showed that the antioxidant activity, calculated by 2,2-diphenyl-1-picrylhydrazyl (DPPH assay) and azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) tests, was influenced mainly by the content of total polyphenols, with ρ = −0.762 and ρ = 0.875 when we considered DPPH and ABTS tests, respectively, slightly less by the content of ascorbic acid, and not by β-carotene. The dendrogram clustered eight varieties into two main groups; on the other hand, two varieties (“Vitillo” and “Preveta bella”) seemed hierarchically distant. The gas chromatography–mass spectrometry (GC–MS) analysis of volatile organic compounds (VOCs), herein performed for the first time, demonstrated the influence of the varieties on the VOC profiles, both from a qualitative and semiquantitative perspective, discriminating the varieties in different clusters, each of which was characterized by specific notes. α-Terpinolene was the only terpene identified by GC–MS that appeared to affect the antioxidant activity.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, National Research Council (ISA-CNR), Avellino, Italy
| | - Rosaria Cozzolino
- Institute of Food Science, National Research Council (ISA-CNR), Avellino, Italy
| | - Antonio d'Acierno
- Institute of Food Science, National Research Council (ISA-CNR), Avellino, Italy
| | - Maria Neve Ombra
- Institute of Food Science, National Research Council (ISA-CNR), Avellino, Italy
| | | | | | - Livia Malorni
- Institute of Food Science, National Research Council (ISA-CNR), Avellino, Italy
| | - Matteo Stocchero
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council (ISA-CNR), Avellino, Italy
- *Correspondence: Filomena Nazzaro
| |
Collapse
|
13
|
Arab HH, Abd El-Aal SA, Eid AH, Arafa ESA, Mahmoud AM, Ashour AM. Targeting inflammation, autophagy, and apoptosis by troxerutin attenuates methotrexate-induced renal injury in rats. Int Immunopharmacol 2021; 103:108284. [PMID: 34953450 DOI: 10.1016/j.intimp.2021.108284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Troxerutin, a bioflavonoid with marked immune-modulatory and antioxidant features, has been proven to ameliorate experimental cardiotoxicity, hepatotoxicity, and neurodegeneration. However, its impact on methotrexate (MTX)-induced nephrotoxicity has not been investigated. In the current work, we aimed to investigate the potential of troxerutin to combat MTX-triggered renal injury, exploring immune cell infiltration, inflammation, autophagy, and apoptosis, with emphasis on the HMGB1/RAGE/NF-κB, AMPK/mTOR, and Nrf2/HO-1 pathways. METHODOLOGY Troxerutin (150 mg/kg/day) was administered by oral gavage and the renal tissues were examined with the aid of biochemical assays, ELISA, histology, and immunohistochemistry. KEY FINDINGS Troxerutin mitigated MTX-induced renal dysfunction by significantly lowering creatinine, BUN, and KIM-1 alongside immune-cell infiltration and histopathologic aberrations. These favorable effects were mediated by inhibition of HMGB1/RAGE/NF-κB cascade via downregulating the protein expression of HMGB1, RAGE, and nuclear NF-κBp65 alongside its downstream signals, including COX-2 and TNF-α. Moreover, troxerutin activated the autophagy flux as evidenced by upregulating renal Beclin 1, lowering p62 SQSTM1 accumulation, and activation of AMPK/mTOR pathway, seen by increasing p-AMPK/total AMPK and lowering p-mTOR/total mTOR signals. In tandem, troxerutin combated renal apoptotic changes as proven with lowering caspase-3 activity, Bax expression, and Bax/Bcl-2 ratio and upregulating the proliferation signal PCNA. Additionally, the oxidative insult was attenuated by troxerutin, as evidenced by lowering NOX-1 and lipid peroxides, replenishing GSH, GPx, and SOD antioxidants, and activating Nrf2/HO-1 pathway. CONCLUSION Troxerutin attenuated MTX-triggered renal injury via inhibition of inflammation and apoptosis alongside activation of autophagy. Thus, it may serve as an adjunct modality for the management of MTX-linked nephrotoxicity.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq
| | - Ahmed H Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-suef University, Beni-suef 62514, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| |
Collapse
|
14
|
The Herbal Formula Granule Prescription Mahuang Decoction Ameliorated Chronic Kidney Disease Which Was Associated with Restoration of Dysbiosis of Intestinal Microbiota in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4602612. [PMID: 34257680 PMCID: PMC8249121 DOI: 10.1155/2021/4602612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/05/2020] [Accepted: 06/11/2021] [Indexed: 12/01/2022]
Abstract
Chronic kidney disease (CKD) has become a global health issue, and there is increasing evidence showing the beneficial roles of traditional Chinese medicine (TCM) in CKD treatment. Here, we studied the renoprotective role of Mahuang decoction, a famous TCM prescription, in a rat CKD model induced with the combination of doxorubicin and adenine. Our data showed that intragastric administration of Mahuang decoction inhibited the loss of bodyweight and attenuated proteinuria, serum creatinine, and blood urea nitrogen in CKD rats. Kidney histological analysis revealed decreased tubulointerstitial injury and fibrosis in CKD rats treated with Mahuang decoction accompanied with suppressed expression of TGF-β1 and phosphorylated NF-κB/P65 (p-P65) as indicated by immunohistochemistry. ELISA analysis demonstrated reduced serum levels of proinflammatory cytokines TNFα and IL-6. Most importantly, intestinal microbiota analysis by 16s rRNA-seq showed that Mahuang decoction restored the impaired richness and diversity of intestinal microflora and recovered the disrupted microbial community through reducing the abundance of deleterious microbes and promoting the expansion of beneficial microbes in CKD rats. Collectively, our findings demonstrated that Mahuang decoction mitigated kidney functional and structural impairment in CKD rats which were associated with the restoration of dysbiosis of intestinal microbiota, implying its potential in clinical CKD treatment.
Collapse
|
15
|
Hassanein EHM, Mohamed WR, Khalaf MM, Shalkami AGS, Sayed AM, Hemeida RAM. Diallyl disulfide ameliorates methotrexate-induced nephropathy in rats: Molecular studies and network pharmacology analysis. J Food Biochem 2021; 45:e13765. [PMID: 33997994 DOI: 10.1111/jfbc.13765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022]
Abstract
Methotrexate (MTX) is a promising chemotherapeutic agent. Its medical use is limited by induced nephropathy. Our study was designed to explore the reno-protective effect of diallyl disulfide (DADS), an organosulfur compound of garlic oil, on MTX-induced nephropathy. Adult rats were randomly divided into 4 groups; normal control, DADS (50 mg kg-1 day-1 , p.o.), MTX (20 mg/kg, i.p.) and DADS+MTX. DADS significantly decreased serum creatinine, urea, uric acid, and albumin levels with an improvement of final body weight. Additionally, DADS markedly attenuated MTX-induced elevations in renal MDA and NO 2 - contents with an increase in GSH content and SOD activity. Mechanistically, DADS effectively down-regulated mRNA expression level of renal p38 and NF-κB. Additionally, DADS positively regulated the NRF2 gene with a remarkable inhibition of Keap-1 gene. Furthermore, DADS up-regulated BCL2 protein and remarkably suppressed the expression of both BAX and caspase-3 proteins. Overall, DADS has favorable renal protection against MTX-induced nephropathy via modulation of Keap-1/NRF2, p38/NF-κB, and BCL2/BAX/caspase-3 signaling. PRACTICAL APPLICATIONS: Diallyl disulfide is one of the organosulfur compounds of garlic oil. Our study demonstrated that DADS substantially alleviated the decline of kidney function and renal injury induced by MTX. The antioxidative, anti-inflammatory, and anti-apoptotic properties may constitute an important part of its therapeutic applications via regulation of p38/NF-κB, Keap-1/NRF2, and BCL2/BAX/caspase-3 signaling pathways. Therefore, DADS could be a potential therapeutic adjunct in cancer chemotherapy to decrease the associated side effects of MTX. It should be further explored clinically as a protective agent for MTX-treated cancer patients.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Al-Azhar University, Assiut, Egypt
| | - Wafaa R Mohamed
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Khalaf
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Beni-Suef University, Beni-Suef, Egypt
| | - Abdel-Gawad S Shalkami
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Faculty of Science, Chemistry Department, Assiut University, Assiut, Egypt
| | - Ramadan A M Hemeida
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Al-Azhar University, Assiut, Egypt.,Faculty of Pharmacy, Department of Pharmacology and Toxicology, Deraya University, Menia, Egypt
| |
Collapse
|
16
|
Dar AA, Fehaid A, Alkhatani S, Alarifi S, Alqahtani WS, Albasher G, Almeer R, Alfarraj S, Moneim AA. The protective role of luteolin against the methotrexate-induced hepato-renal toxicity via its antioxidative, anti-inflammatory, and anti-apoptotic effects in rats. Hum Exp Toxicol 2021; 40:1194-1207. [PMID: 33530773 DOI: 10.1177/0960327121991905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methotrexate (MTX) is frequently used drug in treatment of cancer and autoimmune diseases. Unfortunately, MTX has many side effects including the hepato-renal toxicity. In this study, we hypothesized that Luteolin (Lut) exhibits protective effect against the MTX-induced hepato-renal toxicity. In order to investigate our hypothesis, the experiment was designed to examine the effect of exposure of male rats to MTX (20 mg/kg, i.p., at day 9) alone or together with Lut (50 mg/kg, oral for 14 days) compared to the control rats (received saline). The findings demonstrated that MTX treatment induced significant increases in the liver and kidney functions markers in serum samples including Aspartate transaminase (AST), Alanine transaminase (ALT), creatinine, urea and uric acid. MTX also mediated an oxidative stress expressed by elevated malondialdehyde (MDA) level and decreased level of reduced glutathione (GSH), antioxidant enzyme activities, and downregulation of the Nrf2 gene expression as an antioxidant trigger. Moreover, the inflammatory markers (NF-κB, TNF-α, and IL-1β) were significantly elevated upon MTX treatment. In addition, MTX showed an apoptotic response mediated by elevating the pro-apoptotic (Bax) and lowering the anti-apoptotic (Bcl-2) proteins. All of these changes were confirmed by the observed alterations in the histopathological examination of the hepatic and renal tissues. Lut exposure significantly reversed all the MTX-induced changes in the measured parameters suggesting its potential protective role against the MTX-induced toxicity. Finally, our findings concluded the antioxidative, anti-inflammatory and anti-apoptotic effects of Lut as a mechanism of its protective role against the MTX-induced hepato-renal toxicity in rats.
Collapse
Affiliation(s)
- A A Dar
- School of Environmental Science and Engineering, 74618Shaanxi University of Science and Technology, Xian, China
| | - A Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, 68779Mansoura University, Dakahlia, Egypt
| | - S Alkhatani
- Department of Zoology, College of Science, 37850King Saud University, Saudi Arabia
| | - S Alarifi
- Department of Zoology, College of Science, 37850King Saud University, Saudi Arabia
| | - W S Alqahtani
- Department of Zoology, College of Science, 37850King Saud University, Saudi Arabia
| | - G Albasher
- Department of Zoology, College of Science, 37850King Saud University, Saudi Arabia
| | - R Almeer
- Department of Zoology, College of Science, 37850King Saud University, Saudi Arabia
| | - S Alfarraj
- Department of Zoology, College of Science, 37850King Saud University, Saudi Arabia
| | - Ae Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, 68900Helwan University, Cairo, Egypt
| |
Collapse
|
17
|
Evaluation of the effect of methotrexate on the hippocampus, cerebellum, liver, and kidneys of adult male albino rat: Histopathological, immunohistochemical and biochemical studies. Acta Histochem 2021; 123:151682. [PMID: 33465564 DOI: 10.1016/j.acthis.2021.151682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Methotrexate (MTX) has been used for treatment of autoimmune diseases, inflammatory disorders as rheumatic arthritis, and different types of cancers. However, it has shown adverse effects on vital organs. The current study was conducted to investigate the toxic effect of MTX on the hippocampus, cerebellum, liver and kidneys of adult male albino rats. MTX was injected weekly at 5 mg/kg body weight via I/P injection for 6 weeks. At the end of the experiment, histopathological, immunohistochemical and biochemical evaluation were performed on the hippocampus, cerebellum, liver, and kidney tissues of the sacrificed rats. We observed that methotrexate induced neural tissue damage in the hippocampus and cerebellum, degeneration of hepatocytes, congestion of the central vein and blood sinusoids of the liver, distortion in the renal corpuscles and necrosis of the renal tubule. Immunohistochemical findings revealed strong positive expression of Caspase-3, PCNA and GFAP. Biochemical studies revealed significant elevation in the serum levels of AST and ALT, in addition to high serum concentrations of creatinine and urea. Also, MTX injection increased MDA, while it decreased GSH, SOD and AChE levels. We conclude the ability of MTX to induce oxidative stress that results into apoptosis and tissue injury, leading to neurotoxicity, hepatotoxicity, and nephrotoxicity.
Collapse
|
18
|
Song Y, Liu L, Liu B, Liu R, Chen Y, Li C, Liu G, Song Z, Lu C, Lu A, Liu Y. Interaction of nobiletin with methotrexate ameliorates 7-OH methotrexate-induced nephrotoxicity through endoplasmic reticulum stress-dependent PERK/CHOP signaling pathway. Pharmacol Res 2021; 165:105371. [PMID: 33460792 DOI: 10.1016/j.phrs.2020.105371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/09/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
Drug-induced nephrotoxicity is a frequent adverse event that contributes to acute kidney injury with tubular and/or glomerular lesions. Methotrexate (MTX) is a folate analog used against a myriad of malignancies and autoimmune diseases. Unfortunately, ambiguous renal toxicology limits its safe clinical usage. Based on our previous studies, 7-OH MTX as an overlooked oxidative metabolite of MTX was proposed to be the main culprit responsible for nephrotoxicity, while nobiletin, a naturally occurring polymethoxylated flavonoid screened from our prepared total phenolic extracts of Citrus aurantium L. (TPE-CA), was employed as a therapeutic agent for drug-drug interactions. According to the present study, nobiletin can ameliorate the renal accumulation of 7-OH MTX through the interaction with aldehyde oxidase. RNA-seq analysis revealed that 7-OH MTX was mainly related to protein processing in endoplasmic reticulum (ER) stress, with the PERK/CHOP pathway selected as the most significant for metabolic nephrotoxicity. Meanwhile, the cross-linked proteins and conducted signals were investigated by western blotting and further verified by GSK inhibition analyses. These results indicated that nobiletin protected renal function from MTX-induced nephrotoxicity by modulating metabolism and ameliorated the metabolic toxicity of 7-OH MTX on ER stress-induced PERK/CHOP conduction by maintaining Ca2+ homeostasis and reducing the production of reactive oxygen species.
Collapse
Affiliation(s)
- Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linlin Liu
- Dezhou Lianhe Hospital, Dezhou, 253000, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiqian Song
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
19
|
Abouelela ME, Orabi MA, Abdelhamid RA, Abdelkader MS, Madkor HR, Darwish FM, Hatano T, Elsadek BE. Ethyl acetate extract of Ceiba pentandra (L.) Gaertn. reduces methotrexate-induced renal damage in rats via antioxidant, anti-inflammatory, and antiapoptotic actions. J Tradit Complement Med 2020; 10:478-486. [PMID: 32953564 PMCID: PMC7484958 DOI: 10.1016/j.jtcme.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 01/26/2023] Open
Abstract
Methotrexate (MTX) is a chemotherapeutic agent and an immunosuppressant used to treat cancer and autoimmune diseases. However, its use is limited by its multi-organ toxicity, including nephrotoxicity, which is related to MTX-driven oxidative stress. Silencing oxidative stressors is therefore an important strategy in minimizing MTX adverse effects.Medicinal plants rich in phenolic compounds are probable candidates to overcome these oxidants. Herein, C. pentandra ethyl acetate extract showed powerful in vitro radical-scavenging potential (IC50 = 0.0716) comparable to those of the standard natural (ascorbic acid, IC50 = 0.045) and synthetic (BHA, IC50 = 0.056) antioxidants. The effect of C. pentandra ethyl acetate extract against MTX-induced nephrotoxicity in rats was evaluated by administering the extract (400 mg/kg/day) or the standard antioxidant silymarin (100 mg/kg/day) orally for 5 days before and 5 days after a single MTX injection (20 mg/kg, i.p.).C. pentandra showed slight superiorities over silymarin in restoring the MTX-impaired renal functions, with approximately twofold decreases in overall kidney function tests. C. pentandra also improved renal antioxidant capacity and reduced the MTX-induced oxidative stress. Moreover, C. pentandra inhibited MTX-initiated apoptotic and inflammatory cascades, and attenuated MTX-induced histopathological changes in renal tissue architecture.Phytochemical investigation of the extract led to the purification of the phenolics quercitrin (1), cinchonains 1a (2) and 1b (3), cis-clovamide (4), trans-clovamide (5), and glochidioboside (6); a structurally similar with many of the reported antioxidant and nephroprotective agents. In conclusion, these data demonstrate that C. pentandra exhibits nephroprotective effect against MTX-induced kidney damage via its antioxidant, antiapoptotic and anti-inflammatory mechanisms. TAXONOMY Functional Disorder, Traditional Medicine, Herbal Medicine.
Collapse
Affiliation(s)
- Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, P.O. Box 71524, Assiut, Egypt
| | - Mohamed A.A. Orabi
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, P.O. Box 71524, Assiut, Egypt
- Department of Pharmacognosy, College of Pharmacy, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Reda A. Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, P.O. Box 71524, Assiut, Egypt
| | - Mohamed S. Abdelkader
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Nasr City, Eastern Avenue, P.O. Box 11432, Sohag, Egypt
| | - Hafez R. Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, P.O. Box 71524, Assiut, Egypt
| | - Faten M.M. Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, P.O. Box 71526, Assiut, Egypt
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Kita-ku, Okayama, 700-8530, Japan
| | - Bakheet E.M. Elsadek
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, P.O. Box 71524, Assiut, Egypt
| |
Collapse
|
20
|
Gummy gold and silver nanoparticles of apricot (Prunus armeniaca) confer high stability and biological activity. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Jiang F, Zhang J, Wang S, Yang L, Luo Y, Gao S, Zhang M, Wu S, Hu S, Sun H, Wang Y. The apricot ( Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. HORTICULTURE RESEARCH 2019; 6:128. [PMID: 31754435 PMCID: PMC6861294 DOI: 10.1038/s41438-019-0215-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 05/23/2023]
Abstract
Apricots, scientifically known as Prunus armeniaca L, are drupes that resemble and are closely related to peaches or plums. As one of the top consumed fruits, apricots are widely grown worldwide except in Antarctica. A high-quality reference genome for apricot is still unavailable, which has become a handicap that has dramatically limited the elucidation of the associations of phenotypes with the genetic background, evolutionary diversity, and population diversity in apricot. DNA from P. armeniaca was used to generate a standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on Sequel SMRT Cells, generating a total of 16.54 Gb of PacBio subreads (N50 = 13.55 kb). The high-quality P. armeniaca reference genome presented here was assembled using long-read single-molecule sequencing at approximately 70× coverage and 171× Illumina reads (40.46 Gb), combined with a genetic map for chromosome scaffolding. The assembled genome size was 221.9 Mb, with a contig NG50 size of 1.02 Mb. Scaffolds covering 92.88% of the assembled genome were anchored on eight chromosomes. Benchmarking Universal Single-Copy Orthologs analysis showed 98.0% complete genes. We predicted 30,436 protein-coding genes, and 38.28% of the genome was predicted to be repetitive. We found 981 contracted gene families, 1324 expanded gene families and 2300 apricot-specific genes. The differentially expressed gene (DEG) analysis indicated that a change in the expression of the 9-cis-epoxycarotenoid dioxygenase (NCED) gene but not lycopene beta-cyclase (LcyB) gene results in a low β-carotenoid content in the white cultivar "Dabaixing". This complete and highly contiguous P. armeniaca reference genome will be of help for future studies of resistance to plum pox virus (PPV) and the identification and characterization of important agronomic genes and breeding strategies in apricot.
Collapse
Affiliation(s)
- Fengchao Jiang
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| | - Junhuan Zhang
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| | - Sen Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Li Yang
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| | - Yingfeng Luo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Shenghan Gao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Meiling Zhang
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| | - Shuangyang Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Haoyuan Sun
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| | - Yuzhu Wang
- Beijing Academy of Forestry and Pomology Sciences, 100093 Beijing, PR China
- Apricot Engineering and Technology Research Center, National Forestry and Grassland Administration, 100093 Beijing, PR China
| |
Collapse
|
22
|
Malik K, Ahmad M, Zafar M, Ullah R, Mahmood HM, Parveen B, Rashid N, Sultana S, Shah SN, Lubna. An ethnobotanical study of medicinal plants used to treat skin diseases in northern Pakistan. Altern Ther Health Med 2019; 19:210. [PMID: 31409400 PMCID: PMC6693210 DOI: 10.1186/s12906-019-2605-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/19/2019] [Indexed: 12/26/2022]
Abstract
Background Skin diseases are a major health concern especially in association with human immune deficiency syndrome and acquired an immune deficiency. The aim of this study was to document the ethnomedicinal information of plants used to treat skin diseases in Northern Pakistan. This is the first quantitative ethnobotanical study of therapeutic herbs utilized by the indigenous people of Northern Pakistan for skin diseases. Methods Interviews were taken to obtain information from 180 participants. Quantitative methods including fidelity level (FL), Frequency of citation (FC), Use-value (UV), Jaccard indices (JI), Family importance value (FIV), Relative frequency of citation (RFC) and Chi-square test were applied. Medicinal plants uses are also compared with 50 national and international publications. Results In this study, we recorded 106 plant species belonged to 56 floral families for treatment of skin ailments. The dominant life form reported was herb while the preferred method of utilization was powder, along with leaf as the most used plant part. RFC ranges from 0.07 to 0.25% whereas the highest FIV was recorded for family Pteridaceae. FL values range from 36.8 to 100%. The study reported 88% of new plant reports for the treatment of skin diseases. Conclusion The present study revealed the importance of several plants used to treat skin diseases by the local communities of Northern Pakistan. The available literature supported the evidence of plant dermatological properties. Plants having high UV and RFC can be considered for further scientific analysis. There is dire need to create awareness among local, government and scientific communities for the preservation of medicinal species and ethnomedicinal knowledge in Northern Pakistan. Electronic supplementary material The online version of this article (10.1186/s12906-019-2605-6) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Fernández-Martínez E, Lira-Islas IG, Cariño-Cortés R, Soria-Jasso LE, Pérez-Hernández E, Pérez-Hernández N. Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. J Food Biochem 2019; 43:e12986. [PMID: 31489674 DOI: 10.1111/jfbc.12986] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023]
Abstract
Chia seeds (Salvia hispanica L.) are rich in omega fatty acids. Dyslipidemia and steatohepatitis are diseases that require effective treatments in obese and non-obese patients. The aim was to evaluate the effect of chia intake on acute tyloxapol (TI)-induced dyslipidemia, on acute carbon tetrachloride (TC)-induced steatohepatitis, and on mixed damage (TC+TI) in non-obese rats. Four experimental groups were fed for 4 weeks a diet with established rodent food (DE), and four groups were fed a diet with 15% added chia (DC). Plasma samples were analyzed for total cholesterol, triglycerides, glucose, biochemical liver damage markers, and tumor necrosis factor-α (TNF-α). Liver samples were used to quantify glycogen, catalase, lipid peroxidation, and TNF-α. A histopathological analysis was performed. DC intake partially or totally prevented steatohepatitis, and reduced lipids in the dyslipidemic groups. The hypolipidemic and hepatoprotective effects of chia may be correlated to its high content of α-linolenic acid (omega-3) and phenolics. PRACTICAL APPLICATIONS: Metabolic syndrome is associated with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which are currently the most common causes of chronic liver disease, cirrhosis, and hepatocellular carcinoma (HCC) worldwide. Dyslipidemia is a significant risk factor for NAFLD and NASH. Non-obese patients may have NAFLD or NASH. Metabolic syndrome and dyslipidemia are more strongly associated with NAFLD in non-obese than in obese patients. This is the first study evaluating the hypolipidemic and hepatoprotective effects of chia seed intake on acute dyslipidemia and/or steatohepatitis caused by the individual or combined administration of the inducers tyloxapol and carbon tetrachloride, respectively, in non-obese rats. The pharmacological effects of dietary chia are correlated to its high content of omega-3 and omega-6 (1:1), protein, dietary fiber, and phenolics. The results suggest that inclusion of chia in diets of non-obese patients with dyslipidemia and/or NAFLD/NASH may improve their health state and preventing cirrhosis or HCC.
Collapse
Affiliation(s)
- Eduardo Fernández-Martínez
- Laboratory of Medicinal Chemistry and Pharmacology, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Ivet G Lira-Islas
- Laboratory of Medicinal Chemistry and Pharmacology, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Raquel Cariño-Cortés
- Laboratory of Medicinal Chemistry and Pharmacology, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Luis E Soria-Jasso
- Laboratory of Medicinal Chemistry and Pharmacology, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | | | - Nury Pérez-Hernández
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
24
|
Severin MJ, Campagno RV, Brandoni A, Torres AM. Time evolution of methotrexate‐induced kidney injury: A comparative study between different biomarkers of renal damage in rats. Clin Exp Pharmacol Physiol 2019; 46:828-836. [PMID: 31187885 DOI: 10.1111/1440-1681.13122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/29/2022]
Affiliation(s)
- María Julia Severin
- Pharmacology Area Faculty of Biochemical and Pharmaceutical Sciences National University of Rosario CONICET Rosario Argentina
| | - Romina Valeria Campagno
- Pharmacology Area Faculty of Biochemical and Pharmaceutical Sciences National University of Rosario CONICET Rosario Argentina
| | - Anabel Brandoni
- Pharmacology Area Faculty of Biochemical and Pharmaceutical Sciences National University of Rosario CONICET Rosario Argentina
| | - Adriana Mónica Torres
- Pharmacology Area Faculty of Biochemical and Pharmaceutical Sciences National University of Rosario CONICET Rosario Argentina
| |
Collapse
|
25
|
Involvement of Nrf2/HO-1 antioxidant signaling and NF-κB inflammatory response in the potential protective effects of vincamine against methotrexate-induced nephrotoxicity in rats: cross talk between nephrotoxicity and neurotoxicity. Arch Toxicol 2019; 93:1417-1431. [DOI: 10.1007/s00204-019-02429-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/04/2019] [Indexed: 10/26/2022]
|
26
|
Hassanein EH, Shalkami AGS, Khalaf MM, Mohamed WR, Hemeida RA. The impact of Keap1/Nrf2, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 signaling pathways in the protective effects of berberine against methotrexate-induced nephrotoxicity. Biomed Pharmacother 2019; 109:47-56. [DOI: 10.1016/j.biopha.2018.10.088] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 01/12/2023] Open
|
27
|
Arab HH, Salama SA, Maghrabi IA. Camel milk attenuates methotrexate-induced kidney injury via activation of PI3K/Akt/eNOS signaling and intervention with oxidative aberrations. Food Funct 2018; 9:2661-2672. [PMID: 29667662 DOI: 10.1039/c8fo00131f] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methotrexate (MTX) is a classical chemotherapeutic agent with nephrotoxicity as the most disturbing adverse effect. So far, its underlying molecular mechanisms, particularly PI3K/Akt/eNOS transduction, are inadequately explored. Several antioxidant modalities have been characterized to ameliorate MTX-induced renal injury. In this regard, Camel milk (CM) is a natural product with recognized antioxidant and anti-inflammatory features. Thus, the current study aimed to investigate the potential ameliorating effects of CM in MTX-induced kidney injury in rats. Renal tissues were studied in terms of renal injury markers, histopathology, oxidative stress, apoptosis and PI3K/Akt/eNOS signaling. CM was orally administered (10 ml kg-1) and the renal injury was induced by a single i.p. injection of MTX (20 mg kg-1). Interestingly, CM dose-dependently attenuated MTX-triggered increase of BUN and serum creatinine and renal Kim-1 expression and mitigated the renal histopathological changes. CM counteracted renal oxidative stress as manifested by lowering of lipid peroxides, restoration of NOX-1 levels and augmentation of the antioxidant defenses e.g., GSH, SOD, GPx and total antioxidant capacity. With respect to apoptosis, CM curbed the cleavage of PARP and caspase-3, downregulated p53, Bax and Cyt C proapoptotic signals and enhanced Bcl-2 and PCNA levels. In the same context, CM activated the prosurvival PI3K/Akt/eNOS pathway via enhancing PI3K p110, phospho-Akt and phospho-eNOS levels. Equally important, CM preconditioning did not interfere with MTX cytotoxicity in TK-10 or PC-3 cancer cells. Together, the current findings demonstrate, for the first time, the renoprotective effects of CM in MTX-induced kidney injury via activation of PI3K/Akt/eNOS signaling and combating oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hany H Arab
- Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia.
| | | | | |
Collapse
|
28
|
Mahmoud AM, Germoush MO, Al-Anazi KM, Mahmoud AH, Farah MA, Allam AA. Commiphora molmol protects against methotrexate-induced nephrotoxicity by up-regulating Nrf2/ARE/HO-1 signaling. Biomed Pharmacother 2018; 106:499-509. [DOI: 10.1016/j.biopha.2018.06.171] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
|
29
|
Hassanein EH, Mohamed WR, Shalkami AGS, Khalaf MM, Hemeida RA. Renoprotective effects of umbelliferone on methotrexate-induced renal injury through regulation of Nrf-2/Keap-1, P38MAPK/NF-κB, and apoptosis signaling pathways. Food Chem Toxicol 2018; 116:152-160. [DOI: 10.1016/j.fct.2018.03.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
|
30
|
The Encapsulation of Lycopene in Nanoliposomes Enhances Its Protective Potential in Methotrexate-Induced Kidney Injury Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2627917. [PMID: 29725494 PMCID: PMC5872654 DOI: 10.1155/2018/2627917] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/01/2018] [Indexed: 11/24/2022]
Abstract
Methotrexate is an antimetabolic drug with a myriad of serious side effects including nephrotoxicity, which presumably occurs due to oxidative tissue damage. Here, we evaluated the potential protective effect of lycopene, a potent antioxidant carotenoid, given in two different pharmaceutical forms in methotrexate-induced kidney damage in rats. Serum biochemical (urea and creatinine) and tissue oxidative damage markers and histopathological kidney changes were evaluated after systemic administration of both lycopene dissolved in corn oil and lycopene encapsulated in nanoliposomes. Similar to previous studies, single dose of methotrexate induced severe functional and morphological alterations of kidneys with cell desquamation, tubular vacuolation, and focal necrosis, which were followed by serum urea and creatinine increase and disturbances of tissue antioxidant status. Application of both forms of lycopene concomitantly with methotrexate ameliorated changes in serum urea and creatinine and oxidative damage markers and markedly reversed structural changes of kidney tissue. Moreover, animals that received lycopene in nanoliposome-encapsulated form showed higher degree of recovery than those treated with free lycopene form. The findings of this study indicate that treatment with nanoliposome-encapsulated lycopene comparing to lycopene in standard vehicle has an advantage as it more efficiently reduces methotrexate-induced kidney dysfunction.
Collapse
|
31
|
Kandemir FM, Kucukler S, Caglayan C, Gur C, Batil AA, Gülçin İ. Therapeutic effects of silymarin and naringin on methotrexate-induced nephrotoxicity in rats: Biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J Food Biochem 2017. [DOI: 10.1111/jfbc.12398] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fatih Mehmet Kandemir
- Department of Biochemistry; Faculty of Veterinary Medicine, Ataturk University; Erzurum Turkey
| | - Sefa Kucukler
- Department of Biochemistry; Faculty of Veterinary Medicine, Ataturk University; Erzurum Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine; Bingol University; Bingol Turkey
| | - Cihan Gur
- Department of Biochemistry; Faculty of Veterinary Medicine, Ataturk University; Erzurum Turkey
| | - Annour Adoum Batil
- Department of Biochemistry; Faculty of Veterinary Medicine, Ataturk University; Erzurum Turkey
| | - İlhami Gülçin
- Department of Chemistry, Science and Arts Faculty; Atatürk University; Erzurum Turkey
| |
Collapse
|
32
|
Gad AM, Hassan WA, Fikry EM. Significant curative functions of the mesenchymal stem cells on methotrexate-induced kidney and liver injuries in rats. J Biochem Mol Toxicol 2017; 31. [PMID: 28422374 DOI: 10.1002/jbt.21919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/18/2017] [Accepted: 02/25/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Wedad A Hassan
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Ebtehal Mohammad Fikry
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| |
Collapse
|
33
|
Zhang J, Wang Y, Sun KM, Fang K, Tang X. A study of oxidative stress induced by two polybrominated diphenyl ethers in the rotifer Brachionus plicatilis. MARINE POLLUTION BULLETIN 2016; 113:408-413. [PMID: 27765404 DOI: 10.1016/j.marpolbul.2016.10.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely dispersed persistent organic pollutants in the marine ecosystem. However, their toxic mechanisms in marine organisms, especially invertebrates, remain poorly understood. Two common congeners of PBDEs, tetrabrominated diphenyl ether-47 (BDE-47) and decabrominated diphenyl ether-209 (BDE-209), were investigated. Their toxic mechanisms, with a focus on oxidative stress, were examined in rotifer Brachionus plicatilis. Overproduction of reactive oxygen species (ROS) was induced by two PBDEs. The expression of superoxide dismutase (SOD) mRNA was increased, suggesting SOD play a main role in ROS-scavenging. The intercellular concentrations of calcium ([Ca2+]in) and the expression of calmodulin (CaM) mRNA were increased. This indicates the calcium ion (Ca2+) signaling channel is involved in PBDEs stress. Further analysis showed that the reproductive system might be the target site for toxicity of PBDEs. Moreover, high value of detection indexes in BDE-47 experimental groups suggested BDE-47 might cause higher oxidative damage than BDE-209 in rotifers.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Kai-Ming Sun
- The First Institute of Oceanography (FIO), State Oceanic Administration (SOA), Qingdao 266061, China
| | - Kuan Fang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
34
|
Veljković M, Pavlović DR, Stojiljković N, Ilić S, Jovanović I, Poklar Ulrih N, Rakić V, Veličković L, Sokolović D. Bilberry: Chemical Profiling,in Vitroandin VivoAntioxidant Activity and Nephroprotective Effect against Gentamicin Toxicity in Rats. Phytother Res 2016; 31:115-123. [DOI: 10.1002/ptr.5738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Milica Veljković
- Department of Physiology; University of Niš, Faculty of Medicine; Bulevar Dr Zoran Djindjić 81 Niš Serbia
| | - Dragana R. Pavlović
- Department of Pharmacy; University of Niš, Faculty of Medicine; Bulevar Dr Zoran Djindjić 81 Niš Serbia
| | - Nenad Stojiljković
- Department of Physiology; University of Niš, Faculty of Medicine; Bulevar Dr Zoran Djindjić 81 Niš Serbia
| | - Sonja Ilić
- Department of Physiology; University of Niš, Faculty of Medicine; Bulevar Dr Zoran Djindjić 81 Niš Serbia
| | - Ivan Jovanović
- Department of Anatomy; University of Niš, Faculty of Medicine; Bulevar Dr Zoran Djindjić 81 Niš Serbia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty; University of Ljubljana; Jamnikarjeva 101 Ljubljana Slovenia
| | - Violeta Rakić
- College of Agriculture and Food Technology; Ćirila i Metodija 1 Prokuplje Serbia
| | - Ljubinka Veličković
- Department of Pathology; University of Niš, Faculty of Medicine; Bulevar Dr Zoran Djindjić 81 Niš Serbia
| | - Dušan Sokolović
- Department of Biochemistry; University of Niš, Faculty of Medicine; Bulevar Dr Zoran Djindjić 81 Niš Serbia
| |
Collapse
|
35
|
Abd El-Twab SM, Hozayen WG, Hussein OE, Mahmoud AM. 18β-Glycyrrhetinic acid protects against methotrexate-induced kidney injury by up-regulating the Nrf2/ARE/HO-1 pathway and endogenous antioxidants. Ren Fail 2016; 38:1516-1527. [DOI: 10.1080/0886022x.2016.1216722] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
36
|
Yuksel Y, Yuksel R, Yagmurca M, Haltas H, Erdamar H, Toktas M, Ozcan O. Effects of quercetin on methotrexate-induced nephrotoxicity in rats. Hum Exp Toxicol 2016; 36:51-61. [PMID: 27005763 DOI: 10.1177/0960327116637414] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE This experimental study was conducted to elucidate the possible protective/therapeutic effects of quercetin against methotrexate (Mtx)-induced kidney toxicity with biochemical and histopathological studies. METHODS Twenty-four adult male rats were randomly divided into four groups, as follows: control group (saline intraperitoneally (i.p.), 9 days), Mtx group (20 mg/kg i.p., single dose), Mtx + quercetin group (50 mg/kg quercetin was orally administered 2 days before and 6 days after Mtx administration) and only quercetin group (50 mg/kg oral, 9 days). Structural changes were evaluated by hematoxylin-eosin and periodic acid-Schiff stainings. Apoptotic changes were investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and caspase-3 antibody. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured in tissue and plasma samples. RESULTS Mtx compared with the control group, there was significant increase in nephrotoxic tissue damage findings, in addition to apoptotic index (APOI) and caspase-3 expression ( p < 0.05). Mtx + quercetin group revealed significantly lower histopathological damage and APOI and caspase-3 expression decreased when compared to Mtx group. MDA levels were increased in Mtx group compared to others, and by the use of quercetin, this increase was significantly reduced. SOD levels were higher in Mtx group than others. This increase was evaluated as a relative increase arising from oxidative damage caused by Mtx. CONCLUSION As a result, Mtx administration may involve oxidative stress by causing structural and functional damage in kidney tissue in rats. Quercetin reduced the Mtx-induced oxidative stress through its antioxidant properties and so quercetin may be promising to alleviate Mtx-induced renal toxicity.
Collapse
Affiliation(s)
- Yasemin Yuksel
- 1 Department of Reproductive Endocrinology and IVF, Laboratory of ART, Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Ramazan Yuksel
- 2 Department of Physiology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Murat Yagmurca
- 3 Department of Histology and Embryology, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Hacer Haltas
- 4 Department of Pathology, Faculty of Medicine, Fatih University, Istanbul, Turkey
| | - Husamettin Erdamar
- 5 Department of Biochemistry, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Muhsin Toktas
- 6 Department of Anatomy, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Osman Ozcan
- 3 Department of Histology and Embryology, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| |
Collapse
|
37
|
Ulusoy HB, Öztürk İ, Sönmez MF. Protective effect of propolis on methotrexate-induced kidney injury in the rat. Ren Fail 2016; 38:744-50. [PMID: 26981953 DOI: 10.3109/0886022x.2016.1158070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objectives Propolis is a potent antioxidant and a free radical scavenger. Pharmacological induction of heat shock proteins (HSPs) has been investigated for restoring normal cellular function following an injury. In this study, effect of propolis on HSP-70 expression in methotrexate-induced nephrotoxicity and direct preventive effect of propolis in this toxicity were investigated. Material and methods A total of 40 male Wistar albino rats were divided into four groups: Group 1 was the untreated control. On the eighth day of the experiment, groups 2 and 3 received single intraperitoneal injections of methotrexate (MTX) at 20 mg/kg. Groups 3 and 4 received 100 mg/kg/day propolis (by oral gavage) for 15 d by the first day of the experimental protocol. Then the rats were decapitated under ketamine esthesia and their kidney tissues were removed. HSP-70 expression, apoptosis, and histopathological damage scores were then compared. Results MTX caused epithelial desquamation into the lumen of the tubules, dilatation, and congestion of the peritubular vessels and renal corpuscles with obscure Bowman's space. The number of apoptotic cells (p = 0.000) and HSP-70 (p = 0.002) expression were increased in group 2. Propolis prevented the rise in number of apoptotic cells (p = 0.017), HSP-70 (p = 0.000) expression, and improved kidney morphology. Conclusions It was found that methotrexate gives rise to serious damage in the kidney and propolis is a potent antioxidant agent in preventing kidney injury.
Collapse
Affiliation(s)
- Hasan Basri Ulusoy
- a Department of Pharmacology, Faculty of Medicine , Erciyes University , Kayseri , Turkey
| | - İsmet Öztürk
- b Department of Food Engineering, Faculty of Engineering , Erciyes University , Kayseri , Turkey
| | - Mehmet Fatih Sönmez
- c Department of Histology and Embryology, Faculty of Medicine , Erciyes University , Kayseri , Turkey
| |
Collapse
|
38
|
|
39
|
De Oliveira LG, Figueiredo LA, Fernandes-Cunha GM, Marina Barcelos DM, Machado LA, Dasilva GR, Sandra Aparecida Lima DM. Methotrexate Locally Released from Poly(e-Caprolactone) Implants: Inhibition of the Inflammatory Angiogenesis Response in a Murine Sponge Model and the Absence of Systemic Toxicity. J Pharm Sci 2015; 104:3731-42. [DOI: 10.1002/jps.24569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/15/2023]
|
40
|
Pioglitazone ameliorates methotrexate-induced renal endothelial dysfunction via amending detrimental changes in some antioxidant parameters, systemic cytokines and Fas production. Vascul Pharmacol 2015; 74:139-150. [DOI: 10.1016/j.vph.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/29/2015] [Accepted: 07/04/2015] [Indexed: 02/07/2023]
|
41
|
Erboga M, Aktas C, Erboga ZF, Donmez YB, Gurel A. Quercetin ameliorates methotrexate-induced renal damage, apoptosis and oxidative stress in rats. Ren Fail 2015; 37:1492-7. [PMID: 26338102 DOI: 10.3109/0886022x.2015.1074521] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND In the present study, the protective and therapeutic effects of quercetin (QE) on renal injury induced by methotrexate (MTX) have been examined. MATERIALS AND METHODS A total of 24 male rats were divided into the following three groups: control group, MTX group, and MTX + QE group. Rats in MTX group received 20 mg/kg of single dose of MTX, while those in MTX + QE group received 20 mg/kg of single dose MTX, in addition to 15 mg/kg of QE administered 30 min prior to MTX and in the following 5-day period as a single daily dose. At the end of the experimental period, renal tissues were removed for histopathological and biochemical assessments. RESULTS Light microscopic examination showed a disruption of the renal structure in rats in MTX group in the form of tubular degeneration and dilation, with shedding of the tubular epithelial cells into the lumen. QE treatment was associated with less marked degenerative changes, with a similar histological appearance to that of controls. Furthermore, QE treatment resulted in decreased the number of apoptotic cells. Biochemical assessments showed significantly higher malondialdehyde (MDA) levels in MTX group as compared to control and MTX + QE groups. superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) levels showed a significant decrease in MTX group as compared to controls. However, QE significantly suppressed MDA level, compensated deficits in the anti-oxidant defenses [reduced SOD, GSH-Px, and CAT levels] in kidney tissue resulted from MTX administration. CONCLUSIONS In conclusion, renal toxic effects of MTX may be alleviated by QE.
Collapse
Affiliation(s)
- Mustafa Erboga
- a Department of Histology and Embryology , Faculty of Medicine, University of Namik Kemal , Tekirdag , Turkey and
| | - Cevat Aktas
- a Department of Histology and Embryology , Faculty of Medicine, University of Namik Kemal , Tekirdag , Turkey and
| | - Zeynep Fidanol Erboga
- a Department of Histology and Embryology , Faculty of Medicine, University of Namik Kemal , Tekirdag , Turkey and
| | - Yeliz Bozdemir Donmez
- a Department of Histology and Embryology , Faculty of Medicine, University of Namik Kemal , Tekirdag , Turkey and
| | - Ahmet Gurel
- b Department of Biochemistry , Faculty of Medicine, University of Namik Kemal , Tekirdag , Turkey
| |
Collapse
|
42
|
Mechanisms of Thymoquinone Hepatorenal Protection in Methotrexate-Induced Toxicity in Rats. Mediators Inflamm 2015; 2015:859383. [PMID: 26089605 PMCID: PMC4455533 DOI: 10.1155/2015/859383] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022] Open
Abstract
To investigate mechanisms by which thymoquinone (TQ) can prevent methotrexate- (MTX-) induced hepatorenal toxicity, TQ (10 mg/kg) was administered orally for 10 days. In independent rat groups, MTX hepatorenal toxicity was induced via 20 mg/kg i.p. at the end of day 3 of experiment, with or without TQ. MTX caused deterioration in kidney and liver function, namely, blood urea nitrogen, creatinine, alanine aminotransferase, and aspartate aminotransferase. MTX also caused distortion in renal and hepatic histology, with significant oxidative stress, manifested by decrease in reduced glutathione and catalase, as well as increase in malondialdehyde levels. In addition, MTX caused nitrosative stress manifested by increased nitric oxide, with upregulation of inducible nitric oxide synthase. Furthermore, MTX caused hepatorenal inflammatory effects as shown by increased tumor necrosis factor-α, besides upregulation of necrosis factor-κB and cyclooxygenase-2 expressions. MTX also caused apoptotic effect, as it upregulated caspase 3 in liver and kidney. Using TQ concurrently with MTX restored kidney and liver functions, as well as their normal histology. TQ also reversed oxidative and nitrosative stress, as well as inflammatory and apoptotic signs caused by MTX alone. Thus, TQ may be beneficial adjuvant that confers hepatorenal protection to MTX toxicity via antioxidant, antinitrosative, anti-inflammatory, and antiapoptotic mechanisms.
Collapse
|
43
|
Shergis JL, Wu L, May BH, Zhang AL, Guo X, Lu C, Xue CC. Natural products for chronic cough: Text mining the East Asian historical literature for future therapeutics. Chron Respir Dis 2015; 12:204-11. [PMID: 25901012 DOI: 10.1177/1479972315583043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic cough is a significant health burden. Patients experience variable benefits from over the counter and prescribed products, but there is an unmet need to provide more effective treatments. Natural products have been used to treat cough and some plant compounds such as pseudoephedrine from ephedra and codeine from opium poppy have been developed into drugs. Text mining historical literature may offer new insight for future therapeutic development. We identified natural products used in the East Asian historical literature to treat chronic cough. Evaluation of the historical literature revealed 331 natural products used to treat chronic cough. Products included plants, minerals and animal substances. These natural products were found in 75 different books published between AD 363 and 1911. Of the 331 products, the 10 most frequently and continually used products were examined, taking into consideration findings from contemporary experimental studies. The natural products identified are promising and offer new directions in therapeutic development for treating chronic cough.
Collapse
Affiliation(s)
- Johannah Linda Shergis
- Traditional and Complementary Medicine Research Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, Victoria, Australia
| | - Lei Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Brian H May
- Traditional and Complementary Medicine Research Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, Victoria, Australia
| | - Anthony Lin Zhang
- Traditional and Complementary Medicine Research Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, Victoria, Australia
| | - Xinfeng Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Charlie Changli Xue
- Traditional and Complementary Medicine Research Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, Victoria, Australia Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
44
|
Ibrahim MA, El-Sheikh AAK, Khalaf HM, Abdelrahman AM. Protective effect of peroxisome proliferator activator receptor (PPAR)-α and -γ ligands against methotrexate-induced nephrotoxicity. Immunopharmacol Immunotoxicol 2014; 36:130-7. [PMID: 24521009 DOI: 10.3109/08923973.2014.884135] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT The anticancer drug methotrexate (MTX) may cause multi-organ toxicities, including nephrotoxicity. OBJECTIVE To investigate effects of peroxisome proliferator activator receptor (PPAR)-α and -γ agonists; fenofibrate (FEN) and pioglitazone (PIO), in MTX-induced nephrotoxicity in rats. METHODS Rats were given FEN or PIO (150 or 5 mg/kg/day, respectively) orally for 15 days. MTX was injected as a single dose of 20 mg/kg, i.p. at day 11 of experiment, with or without either PPAR agonists. RESULTS MTX induced renal toxicity, assessed by increase in serum urea and creatinine as well as histopathological alterations. MTX caused renal oxidative/nitrosative stress, indicated by decrease in GSH and catalase with increase in malondialdehyde and nitric oxide (NOx) levels. In addition, MTX increased renal level of the pro-inflammatory cytokine; tumor necrosis factor (TNF)-α and up-regulated the expression of both the inflammatory and apoptotic markers; NF-κB and caspase 3. Pre-administration of FEN or PIO to MTX-treated rats improved renal function and reversed oxidative/nitrosative parameters. Interestingly, pre-administration of PIO, but not FEN, decreased renal TNF-α level and NF-κB expression compared to MTX alone. Furthermore, PIO had more significant effect than FEN on reversing MTX-induced renal caspase 3 expression. DISCUSSION Both FEN and PIO conferred protection against MTX-induced nephrotoxicity through comparable amelioration of oxidative/nitrosative stress. FEN lacked any effect on TNF-α/NF-κB, which was reflected on its less improvement on renal histopathology and apoptosis. CONCLUSION At indicated dosage, PPAR-γ ligand; PIO shows better improvement of MTX-induced nephrotoxicity compared to PPAR-α ligand; FEN due to differential effect on TNF-α/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Mohamed A Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University , Minia , Egypt
| | | | | | | |
Collapse
|
45
|
Renoprotective effects of montelukast, a cysteinyl leukotriene receptor antagonist, against methotrexate-induced kidney damage in rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:341-53. [PMID: 24363042 DOI: 10.1007/s00210-013-0949-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/05/2013] [Indexed: 02/07/2023]
Abstract
Methotrexate (MTX) is a cytotoxic chemotherapeutic agent used for treatment of several cancers. Nephrotoxicity, an adverse side effect of high-dose MTX, is attributed to abnormal production of reactive oxygen species (ROS), inflammatory mediators, and neutrophil infiltration. Montelukast (MON) is a cysteinyl leukotriene receptor antagonist. Recently, it has gained a considerable interest as a ROS scavenger and inflammatory modulator. In this study, we investigated the effect of MON against MTX-induced nephrotoxicity. Rats were divided into four groups: control group, MON group (10 mg/kg, orally), MTX group (20 mg/kg, i.p., single injection), and MON + MTX group (MON was administered 5 days before and 5 days after MTX administration). At the end of the experiment, serum was collected for analysis of blood urea nitrogen (BUN) and creatinine. Glutathione (GSH), lipid peroxides (malondialdehyde), tumor necrosis factor alpha (TNF-α) levels, superoxide dismutase, myeloperoxidase activities, and nuclear factor kappa beta (NF-κB) protein expression were determined in renal tissues. In addition, kidney tissues were examined histopathologically and immunohistochemically for NF-κB. MTX administration produced acute renal damage as indicated from severe elevation in BUN and serum creatinine. The role of oxidative stress and inflammatory mechanisms in MTX-induced nephrotoxicity was evidenced from the unbalance in tissue oxidative parameters, increased TNF-α levels, and NF-κB expression in renal tissues. On the other hand, MON significantly reduced the toxic effects of MTX as indicted from normalization of kidney-specific parameters, oxidative stress, and inflammatory mediators. This data was further supported by histopathological studies. Thus, co-administration of MON may be promising in alleviating the systemic side effects of MTX.
Collapse
|
46
|
Ali N, Rashid S, Nafees S, Hasan SK, Sultana S. Beneficial effects of Chrysin against Methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis. Mol Cell Biochem 2013; 385:215-23. [PMID: 24154663 DOI: 10.1007/s11010-013-1830-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022]
Abstract
Methotrexate (MTX), a folic acid antagonist, an effective chemotherapeutic agent is used in the treatment of a wide range of tumors and autoimmune diseases. Moreover, hepatotoxicity limits its clinical use. Several studies have already confirmed that the oxidative stress plays a major role in the pathogenesis of MTX-induced damage in the various organs especially in liver. The aim of this study was to determine the protective effect of Chrysin against MTX-induced hepatic oxidative stress and apoptosis in rats. In the present study, efficacy of Chrysin was investigated against hepatotoxicity caused by MTX in terms of biochemical investigations of antioxidant enzymes, apoptosis, and histopathological alteration in rat liver. In the MTX-treated group there was a significant increase in alanine transaminase, aspartate aminotransferase, lactate dehydrogenase activity and malondialdehyde content as well as decreased glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase activities and reduced glutathione content were also observed compared to the control group as a marker of oxidative stress. Histopathological alterations and apoptosis through the immunopositive staining of p53, cleaved caspases-3 and Bcl-2-associated X protein in rat liver were observed. Pretreatment of Chrysin at both doses prevents the hepatotoxicity by ameliorating oxidative stress, histopathological alterations, and apoptosis and thus our results suggest that Chrysin has a protective effect against hepatotoxicity induced by MTX and it may, therefore, improve the therapeutic index of MTX if co-administration is done.
Collapse
Affiliation(s)
- Nemat Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | | | | | | | | |
Collapse
|