1
|
Santana-Sánchez P, Vaquero-García R, Legorreta-Haquet MV, Chávez-Sánchez L, Chávez-Rueda AK. Hormones and B-cell development in health and autoimmunity. Front Immunol 2024; 15:1385501. [PMID: 38680484 PMCID: PMC11045971 DOI: 10.3389/fimmu.2024.1385501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
The development of B cells into antibody-secreting plasma cells is central to the adaptive immune system as they induce protective and specific antibody responses against invading pathogens. Various studies have shown that, during this process, hormones can play important roles in the lymphopoiesis, activation, proliferation, and differentiation of B cells, and depending on the signal given by the receptor of each hormone, they can have a positive or negative effect. In autoimmune diseases, hormonal deregulation has been reported to be related to the survival, activation and/or differentiation of autoreactive clones of B cells, thus promoting the development of autoimmunity. Clinical manifestations of autoimmune diseases have been associated with estrogens, prolactin (PRL), and growth hormone (GH) levels. However, androgens, such as testosterone and progesterone (P4), could have a protective effect. The objective of this review is to highlight the links between different hormones and the immune response mediated by B cells in the etiopathogenesis of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). The data collected provide insights into the role of hormones in the cellular, molecular and/or epigenetic mechanisms that modulate the B-cell response in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Adriana Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico
| |
Collapse
|
2
|
Abstract
Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) are essential to normal growth, metabolism, and body composition, but in acromegaly, excesses of these hormones strikingly alter them. In recent years, the use of modern methodologies to assess body composition in patients with acromegaly has revealed novel aspects of the acromegaly phenotype. In particular, acromegaly presents a unique pattern of body composition changes in the setting of insulin resistance that we propose herein to be considered an acromegaly-specific lipodystrophy. The lipodystrophy, initiated by a distinctive GH-driven adipose tissue dysregulation, features insulin resistance in the setting of reduced visceral adipose tissue (VAT) mass and intra-hepatic lipid (IHL) but with lipid redistribution, resulting in ectopic lipid deposition in muscle. With recovery of the lipodystrophy, adipose tissue mass, especially that of VAT and IHL, rises, but insulin resistance is lessened. Abnormalities of adipose tissue adipokines may play a role in the disordered adipose tissue metabolism and insulin resistance of the lipodystrophy. The orexigenic hormone ghrelin and peptide Agouti-related peptide may also be affected by active acromegaly as well as variably by acromegaly therapies, which may contribute to the lipodystrophy. Understanding the pathophysiology of the lipodystrophy and how acromegaly therapies differentially reverse its features may be important to optimizing the long-term outcome for patients with this disease. This perspective describes evidence in support of this acromegaly lipodystrophy model and its relevance to acromegaly pathophysiology and the treatment of patients with acromegaly.
Collapse
Affiliation(s)
- Pamela U. Freda
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
3
|
Huang Z, Xiao L, Xiao Y, Chen C. The Modulatory Role of Growth Hormone in Inflammation and Macrophage Activation. Endocrinology 2022; 163:6607489. [PMID: 35695371 DOI: 10.1210/endocr/bqac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Inflammation is a body's response to remove harmful stimuli and heal tissue damage, which is involved in various physiology and pathophysiology conditions. If dysregulated, inflammation may lead to significant negative impacts. Growth hormone (GH) has been shown responsible for not only body growth but also critical in the modulation of inflammation. In this review, we summarize the current clinical and animal studies about the complex and critical role of GH in inflammation. Briefly, GH excess or deficiency may lead to pathological inflammatory status. In inflammatory diseases, GH may serve as an inflammatory modulator to control the disease progression and promote disease resolution. The detailed mechanisms and signaling pathways of GH on inflammation, with a focus on the modulation of macrophage polarization, are carefully discussed with potential direction for future investigations.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), QUT, Brisbane, QLD 4000, Australia
| | - Lan Xiao
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), QUT, Brisbane, QLD 4000, Australia
| | - Yin Xiao
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), QUT, Brisbane, QLD 4000, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Early Life Nociception is Influenced by Peripheral Growth Hormone Signaling. J Neurosci 2021; 41:4410-4427. [PMID: 33888610 DOI: 10.1523/jneurosci.3081-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
A number of cellular systems work in concert to modulate nociceptive processing in the periphery, but the mechanisms that regulate neonatal nociception may be distinct compared with adults. Our previous work indicated a relationship between neonatal hypersensitivity and growth hormone (GH) signaling. Here, we explored the peripheral mechanisms by which GH modulated neonatal nociception under normal and injury conditions (incision) in male and female mice. We found that GH receptor (GHr) signaling in primary afferents maintains a tonic inhibition of peripheral hypersensitivity. After injury, a macrophage dependent displacement of injury-site GH was found to modulate neuronal transcription at least in part via serum response factor (SRF) regulation. A single GH injection into the injured hindpaw muscle effectively restored available GH signaling to neurons and prevented acute pain-like behaviors, primary afferent sensitization, and neuronal gene expression changes. GH treatment also inhibited long-term somatosensory changes observed after repeated peripheral insult. Results may indicate a novel mechanism of neonatal nociception.SIGNIFICANCE STATEMENT Although it is noted that mechanisms of pain development in early life are unique compared with adults, little research focuses on neonatal-specific peripheral mechanisms of nociception. This gap is evident in the lack of specialized care for infants following an injury including surgeries. This report evaluates how distinct cellular systems in the periphery including the endocrine, immune and nervous systems work together to modulate neonatal-specific nociception. We uncovered a novel mechanism by which muscle injury induces a macrophage-dependent sequestration of peripheral growth hormone (GH) that effectively removes its normal tonic inhibition of neonatal nociceptors to promote acute pain-like behaviors. Results indicate a possible new strategy for treatment of neonatal postsurgical pain.
Collapse
|
5
|
Fedullo AL, Schiattarella A, Morlando M, Raguzzini A, Toti E, De Franciscis P, Peluso I. Mediterranean Diet for the Prevention of Gestational Diabetes in the Covid-19 Era: Implications of Il-6 In Diabesity. Int J Mol Sci 2021; 22:1213. [PMID: 33530554 PMCID: PMC7866163 DOI: 10.3390/ijms22031213] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this review is to highlight the influence of the Mediterranean Diet (MedDiet) on Gestational Diabetes Mellitus (GDM) and Gestational Weight Gain (GWG) during the COVID-19 pandemic era and the specific role of interleukin (IL)-6 in diabesity. It is known that diabetes, high body mass index, high glycated hemoglobin and raised serum IL-6 levels are predictive of poor outcomes in coronavirus disease 2019 (COVID-19). The immunopathological mechanisms of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection include rising levels of several cytokines and in particular IL-6. The latter is associated with hyperglycemia and insulin resistance and could be useful for predicting the development of GDM. Rich in omega-3 polyunsaturated fatty acids, vitamins, and minerals, MedDiet improves the immune system and could modulate IL-6, C reactive protein and Nuclear Factor (NF)-κB. Moreover, polyphenols could modulate microbiota composition, inhibit the NF-κB pathway, lower IL-6, and upregulate antioxidant enzymes. Finally, adhering to the MedDiet prior to and during pregnancy could have a protective effect, reducing GWG and the risk of GDM, as well as improving the immune response to viral infections such as COVID-19.
Collapse
Affiliation(s)
- Anna Lucia Fedullo
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| | - Antonio Schiattarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (M.M.); (P.D.F.)
| | - Maddalena Morlando
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (M.M.); (P.D.F.)
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (M.M.); (P.D.F.)
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| |
Collapse
|
6
|
De Luca F. Regulatory role of NF-κB in growth plate chondrogenesis and its functional interaction with Growth Hormone. Mol Cell Endocrinol 2020; 514:110916. [PMID: 32569858 DOI: 10.1016/j.mce.2020.110916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/26/2022]
Abstract
Nuclear Factor kappa B (NF-kB) is a family of transcription factors that participates in the regulation of cell proliferation, migration, and apoptosis. Impaired NF-kB activity appears to be involved in the pathophysiology of inflammatory states, autoimmune diseases, and cancer. Genetic manipulation in mice leading to impaired NF-kB function is associated with abnormal limb development and delayed bone growth. We have previously shown in rodent cultured chondrocytes and cultured metatarsal bones that NF-kB promotes longitudinal bone growth and growth plate chondrocyte function. These NF-kB growth-promoting effects appear to be facilitated by Growth Hormone (GH) and Insulin-like Growth factor-1 (IGF-1). These stimulatory effects of GH and IGF-1 on NF-kB activity are supported by observational evidence in humans; a number of individuals carrying mutations that alter NF-kB function exhibit growth failure and GH insensitivity.
Collapse
Affiliation(s)
- Francesco De Luca
- Division of Endocrinology and Diabetes, Children's Mercy Kansas City, University of Missouri Kansas City-School of Medicine, Kansas City, MO, 64111, USA.
| |
Collapse
|
7
|
Fleming T, Balderas-Márquez JE, Epardo D, Ávila-Mendoza J, Carranza M, Luna M, Harvey S, Arámburo C, Martínez-Moreno CG. Growth Hormone Neuroprotection Against Kainate Excitotoxicity in the Retina is Mediated by Notch/PTEN/Akt Signaling. Invest Ophthalmol Vis Sci 2020; 60:4532-4547. [PMID: 31675424 DOI: 10.1167/iovs.19-27473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the retina, growth hormone (GH) promotes axonal growth, synaptic restoration, and protective actions against excitotoxicity. Notch signaling pathway is critical for neural development and participates in the retinal neuroregenerative process. We investigated the interaction of GH with Notch signaling pathway during its neuroprotective effect against excitotoxic damage in the chicken retina. Methods Kainate (KA) was used as excitotoxic agent and changes in the mRNA expression of several signaling markers were determined by qPCR. Also, changes in phosphorylation and immunoreactivity were determined by Western blotting. Histology and immunohistochemistry were performed for morphometric analysis. Overexpression of GH was performed in the quail neuroretinal-derived immortalized cell line (QNR/D) cell line. Exogenous GH was administered to retinal primary cell cultures to study the activation of signaling pathways. Results KA disrupted the retinal cytoarchitecture and induced significant cell loss in several retinal layers, but the coaddition of GH effectively prevented these adverse effects. We showed that GH upregulates the Notch signaling pathway during neuroprotection leading to phosphorylation of the PI3K/Akt signaling pathways through downregulation of PTEN. In contrast, cotreatment of GH with the Notch signaling inhibitor, DAPT, prevented its neuroprotective effect against KA. We identified binding sites in Notch1 and Notch2 genes for STAT5. Also, GH prevented Müller cell transdifferentiation and downregulated Sox2, FGF2, and PCNA after cotreatment with KA. Additionally, GH modified TNF receptors immunoreactivity suggesting anti-inflammatory actions. Conclusions Our data indicate that the neuroprotective effects of GH against KA injury in the retina are mediated through the regulation of Notch signaling. Additionally, anti-inflammatory and antiproliferative effects were observed.
Collapse
Affiliation(s)
- Thomas Fleming
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Jerusa E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - David Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - José Ávila-Mendoza
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
8
|
Kim HA, Kwon NS, Baek KJ, Kim DS, Yun HY. Leucine-rich glioma inactivated 3: Integrative analyses support its role in the cytokine network. Int J Mol Med 2017; 40:251-259. [PMID: 28534931 DOI: 10.3892/ijmm.2017.2988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/08/2017] [Indexed: 11/05/2022] Open
Abstract
Leucine-rich glioma inactivated (LGI)3 is a secreted protein member of LGI family. We previously repo-rted that LGI3 was upregulated in adipose tissues from obese mice and suppressed adipogenesis through its receptor, a disintegrin and metalloproteinase domain-containing protein 23 (ADAM23). We demonstrated that LGI3 regulated tumor necrosis factor-α and adiponectin, and proposed that LGI3 may be a pro-inflammatory adipokine involved in adipose tissue inflammation. In this study, we analyzed adipokine and cytokine profiles in LGI3 knockout mice and demonstrated that multiple factors were increased or decreased in the adipose tissues and plasma of the LGI3 knockout mice. Phosphoprotein array analysis revealed increases in the phosphorylation levels of Akt, AMP-activated protein kinase (AMPK), Bad, extracellular signal-regulated kinase (Erk)1/2, glycogen synthase kinase 3α (GSK3α), phosphatase and tensin homolog (PTEN) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in the LGI3-treated 3T3-L1 pre-adipocytes. Treatment with LGI3 increased the expression of various inflammatory genes in pre-adipocytes, adipocytes and macrophages. Integrative functional enrichment analysis for all LGI3-regulated gene products suggested their involvement in a number of biological processes, including cancer, inflammatory response, response to wounding, as well as cell proliferation and differentiation. Protein interaction network analysis of LGI3‑regulated gene products revealed that 94% of the gene products formed a cluster of interaction networks. Taken together, these results support the critical involvement of LGI3 in the cytokine network by interplaying with multiple adipokines, cytokines and signaling proteins.
Collapse
Affiliation(s)
- Hyun A Kim
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Nyoun Soo Kwon
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Kwang Jin Baek
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Sweetwyne MT, Gruenwald A, Niranjan T, Nishinakamura R, Strobl LJ, Susztak K. Notch1 and Notch2 in Podocytes Play Differential Roles During Diabetic Nephropathy Development. Diabetes 2015; 64:4099-111. [PMID: 26293507 PMCID: PMC4657584 DOI: 10.2337/db15-0260] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022]
Abstract
Notch pathway activation in podocytes has been shown to play an important role in diabetic kidney disease (DKD) development; however, the receptors and ligands involved in the process have not been identified. Here, we report that conditional deletion of Notch1 in podocytes using NPHS2(cre)Notch1(flox/flox) animals resulted in marked amelioration of DKD. On the contrary, podocyte-specific genetic deletion of Notch2 had no effect on albuminuria and mesangial expansion. Notch1-null podocytes were protected from apoptosis and dedifferentiation in vitro, likely explaining the protective phenotype in vivo. Deletion of Notch1 in podocytes also resulted in an increase in Notch2 expression, indicating an interaction between the receptors. At the same time, transgenic overexpression of Notch2 in podocytes did not induce phenotypic changes, while constitutive expression of Notch1 caused rapid development of albuminuria and glomerulosclerosis. In summary, our studies indicate that Notch1 plays a distinct (nonredundant) role in podocytes during DKD development.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers/metabolism
- Cell Dedifferentiation
- Cell Line, Transformed
- Cells, Cultured
- Crosses, Genetic
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/prevention & control
- Glomerular Mesangium/metabolism
- Glomerular Mesangium/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Podocytes/metabolism
- Podocytes/pathology
- Protein Interaction Domains and Motifs
- RNA, Messenger/metabolism
- Receptor, Notch1/chemistry
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch2/chemistry
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Mariya T Sweetwyne
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Antje Gruenwald
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thiruvur Niranjan
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Lothar J Strobl
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Savastano S, Di Somma C, Barrea L, Colao A. The complex relationship between obesity and the somatropic axis: the long and winding road. Growth Horm IGF Res 2014; 24:221-226. [PMID: 25315226 DOI: 10.1016/j.ghir.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/08/2023]
Abstract
Despite the considerable body of evidence pointing to a possible relationship between the state of the adipose tissue depots and regulation of the somatotropic axis, to date the relationship between obesity and low growth hormone (GH) status remains incompletely understood. The low GH status in obesity is mainly considered as a functional condition, largely reversible after a sustained weight loss. Moreover, due to the effects of the adiposity on the regulation of the somatotropic axis, the application of GH stimulation tests in obesity may also lead to an incorrect diagnosis of GH deficieny (GHD). On the other hand, similar to patients with GHD unrelated to obesity, the reduced GH response to stimulation testing in obese individuals is associated with increased prevalence of cardiovascular risk factors and detrimental alterations of body composition, which contribute to worsening their cardio-metabolic risk profile. In addition, the reduced GH secretion may result in reduced serum insulin-like growth factor (IGF)-1 levels, and the concordance of low peak GH and low IGF-1 identifies a subset of obese individuals with high cardiovascular risk. Furthermore, after weight loss, the normalization of the GH response and IGF-1 levels may or may not occur, and in patients undergoing bariatric surgery the persistence of a low GH status may affect the post-operative outcomes. In this review, we will provide an overview on some clinically relevant aspects of the relationship between obesity axis and the somatotropic axis in the light of the recently published research.
Collapse
Affiliation(s)
- Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, Naples, Italy.
| | | | | | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, Naples, Italy
| |
Collapse
|