1
|
Mannan A, Mohan M, Gulati A, Dhiman S, Singh TG. Aquaporin proteins: A promising frontier for therapeutic intervention in cerebral ischemic injury. Cell Signal 2024; 124:111452. [PMID: 39369758 DOI: 10.1016/j.cellsig.2024.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Cerebral ischemic injury is characterized by reduced blood flow to the brain, remains a significant cause of morbidity and mortality worldwide. Despite improvements in therapeutic approaches, there is an urgent need to identify new targets to lessen the effects of ischemic stroke. Aquaporins, a family of water channel proteins, have recently come to light as promising candidates for therapeutic intervention in cerebral ischemic injury. There are 13 aquaporins identified, and AQP4 has been thoroughly involved with cerebral ischemia as it has been reported that modulation of AQP4 activity can offers a possible pathway for therapeutic intervention along with their role in pH, osmosis, ions, and the blood-brain barrier (BBB) as possible therapeutic targets for cerebral ischemia injury. The molecular pathways which can interacts with particular cellular pathways, participation in neuroinflammation, and possible interaction with additional proteins thought to be involved in the etiology of a stroke. Understanding these pathways offers crucial information on the diverse role of AQPs in cerebral ischemia, paving the door for the development of focused/targeted therapeutics.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anshika Gulati
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
2
|
Rizor EJ, Babenko V, Dundon NM, Beverly‐Aylwin R, Stump A, Hayes M, Herschenfeld‐Catalan L, Jacobs EG, Grafton ST. Menstrual cycle-driven hormone concentrations co-fluctuate with white and gray matter architecture changes across the whole brain. Hum Brain Mapp 2024; 45:e26785. [PMID: 39031470 PMCID: PMC11258887 DOI: 10.1002/hbm.26785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
Cyclic fluctuations in hypothalamic-pituitary-gonadal axis (HPG-axis) hormones exert powerful behavioral, structural, and functional effects through actions on the mammalian central nervous system. Yet, very little is known about how these fluctuations alter the structural nodes and information highways of the human brain. In a study of 30 naturally cycling women, we employed multidimensional diffusion and T1-weighted imaging during three estimated menstrual cycle phases (menses, ovulation, and mid-luteal) to investigate whether HPG-axis hormone concentrations co-fluctuate with alterations in white matter (WM) microstructure, cortical thickness (CT), and brain volume. Across the whole brain, 17β-estradiol and luteinizing hormone (LH) concentrations were directly proportional to diffusion anisotropy (μFA; 17β-estradiol: β1 = 0.145, highest density interval (HDI) = [0.211, 0.4]; LH: β1 = 0.111, HDI = [0.157, 0.364]), while follicle-stimulating hormone (FSH) was directly proportional to CT (β1 = 0 .162, HDI = [0.115, 0.678]). Within several individual regions, FSH and progesterone demonstrated opposing relationships with mean diffusivity (Diso) and CT. These regions mainly reside within the temporal and occipital lobes, with functional implications for the limbic and visual systems. Finally, progesterone was associated with increased tissue (β1 = 0.66, HDI = [0.607, 15.845]) and decreased cerebrospinal fluid (CSF; β1 = -0.749, HDI = [-11.604, -0.903]) volumes, with total brain volume remaining unchanged. These results are the first to report simultaneous brain-wide changes in human WM microstructure and CT coinciding with menstrual cycle-driven hormone rhythms. Effects were observed in both classically known HPG-axis receptor-dense regions (medial temporal lobe, prefrontal cortex) and in other regions located across frontal, occipital, temporal, and parietal lobes. Our results suggest that HPG-axis hormone fluctuations may have significant structural impacts across the entire brain.
Collapse
Affiliation(s)
- Elizabeth J. Rizor
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Viktoriya Babenko
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- BIOPAC Systems, IncGoletaCaliforniaUSA
| | - Neil M. Dundon
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Department of Child and Adolescent Psychiatry, Psychotherapy and PsychosomaticsUniversity of FreiburgFreiburgGermany
| | - Renee Beverly‐Aylwin
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Alexandra Stump
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Margaret Hayes
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Emily G. Jacobs
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Scott T. Grafton
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| |
Collapse
|
3
|
Khaksari M, Shahryari M, Raji-Amirhasani A, Soltani Z, Bibak B, Keshavarzi Z, Shakeri F. Aloe vera Leaf Extract Reduced BBB Permeability and Improved Neurological Results after Traumatic Brain Injury: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:5586814. [PMID: 39040520 PMCID: PMC11262876 DOI: 10.1155/2024/5586814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/24/2024]
Abstract
Introduction Recognizing the importance of medicinal plants and the absence of specific medications for traumatic brain injury (TBI) treatment, this study was conducted to evaluate the effects of an aqueous extract of Aloe vera on oxidative stress, blood-brain barrier (BBB) permeability, and neurological scores following TBI. Materials and Methods Adult male rats were categorized into five groups: sham, TBI, vehicle, low-dose Aloe vera (LA), and high-dose Aloe vera (HA). We induced diffuse TBI using the Marmaro model and administered the aqueous Aloe vera leaf extract, as well as vehicle, via intraperitoneal injection half an hour after TBI. Neurological outcomes were assessed both before and several hours after TBI. Additionally, oxidative stress factors were measured 24 hr after TBI, and Evans blue content (a BBB permeability index) was determined 5 hr after TBI in both serum and brain. Results Both LA and HA reduced the increase in BBB permeability after TBI, with HA having a more pronounced effect than LA. Both Aloe vera doses decreased brain MDA levels, increased brain TAC, and lowered both serum and brain PC levels. The impact of Aloe vera on brain oxidative parameters was more significant than on serum. HA also counteracted the declining effects of TBI on neurological outcomes at 4 and 24 hr post-TBI. Conclusion This study suggests that Aloe vera extract may reduce BBB permeability and improve neurological outcomes after TBI by decreasing oxidative factors and increasing antioxidant factors.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and PharmacologyAfzalipour Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Shahryari
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of PhysiologyNeuroscience Research CenterMedical FacultyGolestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Raji-Amirhasani
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and PharmacologyAfzalipour Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Physiology Research CenterInstitute of NeuropharmacologyKerman University of Medical Sciences, Kerman, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and PharmacologySchool of MedicineNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Department of Physiology and PharmacologySchool of MedicineNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
4
|
Murata EM, Pritschet L, Grotzinger H, Taylor CM, Jacobs EG. Circadian rhythms tied to changes in brain morphology in a densely-sampled male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588906. [PMID: 38645226 PMCID: PMC11030376 DOI: 10.1101/2024.04.10.588906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Circadian, infradian, and seasonal changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species. However, the relationship between circadian changes in steroid hormone production and rhythmic changes in brain morphology in humans is largely unknown. Here, we examined the relationship between diurnal fluctuations in steroid hormones and multiscale brain morphology in a precision imaging study of a male who completed forty MRI and serological assessments at 7 A.M. and 8 P.M. over the course of a month, targeting hormone concentrations at their peak and nadir. Diurnal fluctuations in steroid hormones were tied to pronounced changes in global and regional brain morphology. From morning to evening, total brain volume, gray matter volume, and cortical thickness decreased, coincident with decreases in steroid hormone concentrations (testosterone, estradiol, and cortisol). In parallel, cerebrospinal fluid and ventricle size increased from A.M. to P.M. Global changes were driven by decreases within the occipital and parietal cortices. These findings highlight natural rhythms in brain morphology that keep time with the diurnal ebb and flow of steroid hormones.
Collapse
Affiliation(s)
- Elle M. Murata
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Caitlin M. Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Emily G. Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| |
Collapse
|
5
|
Zhou Z, Li Y, Peng R, Shi M, Gao W, Lei P, Zhang J. Progesterone induces neuroprotection associated with immune/inflammatory modulation in experimental traumatic brain injury. Neuroreport 2024; 35:352-360. [PMID: 38526937 PMCID: PMC10965124 DOI: 10.1097/wnr.0000000000002013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 03/27/2024]
Abstract
An imbalance of immune/inflammatory reactions aggravates secondary brain injury after traumatic brain injury (TBI) and can deteriorate clinical prognosis. So far, not enough therapeutic avenues have been found to prevent such an imbalance in the clinical setting. Progesterone has been shown to regulate immune/inflammatory reactions in many diseases and conveys a potential protective role in TBI. This study was designed to investigate the neuroprotective effects of progesterone associated with immune/inflammatory modulation in experimental TBI. A TBI model in adult male C57BL/6J mice was created using a controlled contusion instrument. After injury, the mice received consecutive progesterone therapy (8 mg/kg per day, i.p.) until euthanized. Neurological deficits were assessed via Morris water maze test. Brain edema was measured via the dry-wet weight method. Immunohistochemical staining and flow cytometry were used to examine the numbers of immune/inflammatory cells, including IBA-1 + microglia, myeloperoxidase + neutrophils, and regulatory T cells (Tregs). ELISA was used to detect the concentrations of IL-1β, TNF-α, IL-10, and TGF-β. Our data showed that progesterone therapy significantly improved neurological deficits and brain edema in experimental TBI, remarkably increased regulatory T cell numbers in the spleen, and dramatically reduced the activation and infiltration of inflammatory cells (microglia and neutrophils) in injured brain tissue. In addition, progesterone therapy decreased the expression of the pro-inflammatory cytokines IL-1β and TNF-α but increased the expression of the anti-inflammatory cytokine IL-10 after TBI. These findings suggest that progesterone administration could be used to regulate immune/inflammatory reactions and improve outcomes in TBI.
Collapse
Affiliation(s)
- Ziwei Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital
| | - Yadan Li
- Department of Geriatrics, Tianjin Medical University General Hospital
- Intensive Care Units, Tianjin Huanhu Hospital
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital
| | - Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital
| | - Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital
| |
Collapse
|
6
|
Sunny A, James RR, Menon SR, Rayaroth S, Daniel A, Thompson NA, Tharakan B. Matrix Metalloproteinase-9 inhibitors as therapeutic drugs for traumatic brain injury. Neurochem Int 2024; 172:105642. [PMID: 38008261 DOI: 10.1016/j.neuint.2023.105642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality among young adults and the elderly. In the United States, TBI is responsible for around 30 percent of all injuries brought on by injuries in general. Vasogenic cerebral edema due to blood-brain barrier (BBB) dysfunction and the associated elevation of intracranial pressure (ICP) are some of the major causes of secondary injuries following traumatic brain injury. Matrix metalloproteinase-9 (MMP-9) is a therapeutic target for being an enzyme that degrades the proteins that make up a part of the microvascular basal lamina as well as inter-endothelial tight junctions of the blood-brain barrier. MMP-9-mediated BBB dysfunctions and the compromise of the BBB is a major pathway that leads the development of vasogenic cerebral edema, elevation of ICP, poor cerebral perfusion and brain herniation following traumatic brain injury. That makes MMP-9 an effective therapeutic target and endogenous or exogenous MMP-9 inhibitors as therapeutic drugs for preventing secondary brain damage after traumatic brain injury. Although our understanding of the mechanisms that underlie the primary and secondary stages of damage following a TBI has significantly improved in recent years, such information has not yet resulted in the successful development of novel pharmacological treatment options for traumatic brain injury. Recent pre-clinical and/or clinical studies have demonstrated that there are several compounds with specific or non-specific MMP-9 inhibitory properties either directly binding and inhibiting MMP-9 or by indirectly inhibiting MMP-9, with potential as therapeutic agents for traumatic brain injury. This article reviews the efficacy of several such medications and potential agents that include endogenous and exogeneous compounds that are at various levels of research and development. MMP-9-based therapeutic drug development has enormous potential in the pharmacological treatment of cerebral edema and/or neuronal injury resulting from traumatic brain injury.
Collapse
Affiliation(s)
- Angel Sunny
- Icahn School of Medicine at Mount Sinai, Elmhurst, NY, USA
| | | | | | | | - Abhijith Daniel
- Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Namita Ann Thompson
- Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
El-Bana MA, El-Daly SM, Omara EA, Morsy SM, El-Naggar ME, Medhat D. Preparation of pumpkin oil-based nanoemulsion as a potential estrogen replacement therapy to alleviate neural-immune interactions in an experimental postmenopausal model. Prostaglandins Other Lipid Mediat 2023; 166:106730. [PMID: 36931593 DOI: 10.1016/j.prostaglandins.2023.106730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
As estrogen production decreases during menopause; the brain's metabolism tends to stall and become less effective. Estrogen most likely protects against neurodegeneration. Consequently, a comprehensive study of the benefits of hormone replacement therapy as a neuroprotective effect is urgently required. This study was designed to fabricate pumpkin seed oil nanoparticles (PSO) in nanoemulsion form (PSO-NE) and investigate their potential role in attenuating the neural-immune interactions in an experimental postmenopausal model.Sixty female white albino rats were divided into six groups: control, sham, ovariectomized (OVX), and three OVX groups treated with 17β-estradiol, PSO, and PSO-NE respectively. Transmission Electron Microscopy (TEM), and particle size analyzer were performed for nanoemulsion evaluation. Serum levels of estrogen, brain amyloid precursor protein (APP), serum levels of nuclear factor kappa B (NF-κβ), interleukin 6 (IL-6), transthyretin (TTR), and synaptophysin (SYP) were evaluated. The expression of estrogen receptors (ER-α, β) in the brain tissue was estimated. The findings revealed that the approached PSO-NE system was able to reduce the interfacial tension, enhance the dispersion entropy, lower the system free energy to an extremely small value, and augment the interfacial area. PSO-NE, showed a significant increase in the levels of estrogen, brain APP, SYP, and TTR accompanied with a significant increased in the expression of brain ER-α, β compared to the OVX group. In conclusion, the phytoestrogen content of PSO exhibited a significant prophylactic effect on neuro-inflammatory interactions, ameliorating both estrogen levels and the inflammatory cascades.
Collapse
Affiliation(s)
- Mona A El-Bana
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt; Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Enayat A Omara
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Safaa M Morsy
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, Dokki, Giza, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
8
|
Nasre-Nasser RG, Severo MMR, Pires GN, Hort MA, Arbo BD. Effects of Progesterone on Preclinical Animal Models of Traumatic Brain Injury: Systematic Review and Meta-analysis. Mol Neurobiol 2022; 59:6341-6362. [PMID: 35922729 DOI: 10.1007/s12035-022-02970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 12/09/2022]
Abstract
Since the publication of two phase III clinical trials not supporting the use of progesterone in patients with traumatic brain injury (TBI), several possible explanations have been postulated, including limitations in the analysis of results from preclinical evidence. Therefore, to address this question, a systematic review and meta-analysis was performed to evaluate the effects of progesterone as a neuroprotective agent in preclinical animal models of TBI. A total of 48 studies were included for review: 29 evaluated brain edema, 21 evaluated lesion size, and 0 studies reported the survival rate. In the meta-analysis, it was found that progesterone reduced brain edema (effect size - 1.73 [- 2.02, - 1.44], p < 0.0001) and lesion volume (effect size - 0.40 [- 0.65, - 0.14], p = 0.002). Lack of details in the studies hindered the assessment of risk of bias (through the SYRCLE tool). A funnel plot asymmetry was detected, suggesting a possible publication bias. In conclusion, preclinical studies show that progesterone has an anti-edema effect in animal models of TBI, decreasing lesion volume or increasing remaining tissue. However, more studies are needed using assessing methods with lower risk of histological artifacts.
Collapse
Affiliation(s)
- Raif Gregorio Nasre-Nasser
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Manoela Rezende Severo
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2600, Building UFRGS 21116, Room 430, Zip code, Porto Alegre - RS, 90035-003, Brazil
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA), Rio de Janeiro, Brazil
| | - Mariana Appel Hort
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Dutra Arbo
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil.
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2600, Building UFRGS 21116, Room 430, Zip code, Porto Alegre - RS, 90035-003, Brazil.
| |
Collapse
|
9
|
Li B, Wei M, Wan X, Chen Z, Liu M, Fan Z, Yang L. Neuroprotective effects of lentivirus-mediated aquaporin-4 gene silencing in rat model of traumatic brain injury. Neurol Res 2022; 44:692-699. [PMID: 35189787 DOI: 10.1080/01616412.2022.2039509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a common clinical condition caused by external force. Aquaporin-4 (AQP4) in astrocytes participates in the generation of cell swelling in TBI. METHODS This research explored the effect of AQP4 gene silencing in a TBI rat model. A hydraulic craniocerebral trauma instrument was employed for establishing the TBI rat model. AQP4 expression in the brain was inhibited by the injection of AQP4 shRNA-lentiviral vector. The expression of relative genes was evaluated by Western blot and qRT-PCR. Neuronal apoptosis was analyzed by TUNEL assay. RESULTS AQP4 shRNA treatment inhibited AQP4 expression in the brain of rats with TBI. AQP4 shRNA alleviated TBI-induced brain edema and neurological deficit in rats. Neuronal apoptosis and astrocyte activation in TBI rats were reduced by AQP4 silencing. CONCLUSION This research demonstrated that AQP4 shRNA-induced silencing of AQP4 in the TBI rat model reduced the expression of AQP4 and GFAP, alleviated brain edema, neurological deficit, neuronal apoptosis and inhibited astrocyte activation.
Collapse
Affiliation(s)
- Bo Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Neursurgery, Dong Zhimen Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Meiping Wei
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiangdong Wan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zeshang Chen
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Minghao Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenzeng Fan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lijun Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Dadgostar E, Rahimi S, Nikmanzar S, Nazemi S, Naderi Taheri M, Alibolandi Z, Aschner M, Mirzaei H, Tamtaji OR. Aquaporin 4 in Traumatic Brain Injury: From Molecular Pathways to Therapeutic Target. Neurochem Res 2022; 47:860-871. [PMID: 35088218 DOI: 10.1007/s11064-021-03512-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is known as an acute degenerative pathology of the central nervous system, and has been shown to increase brain aquaporin 4 (AQP4) expression. Various molecular mechanisms affect AQP4 expression, including neuronal high mobility group box 1, forkhead box O3a, vascular endothelial growth factor, hypoxia-inducible factor-1 α (HIF-1 α) sirtuin 2, NF-κB, Malat1, nerve growth factor and Angiotensin II receptor type 1. In addition, inhibition of AQP4 with FK-506, MK-801 (indirectly by targeting N-methyl-D-aspartate receptor), inactivation of adenosine A2A receptor, levetiracetam, adjudin, progesterone, estrogen, V1aR inhibitor, hypertonic saline, erythropoietin, poloxamer 188, brilliant blue G, HIF-1alpha inhibitor, normobaric oxygen therapy, astaxanthin, epigallocatechin-3-gallate, sesamin, thaliporphine, magnesium, prebiotic fiber, resveratrol and omega-3, as well as AQP4 gene silencing lead to reduced edema upon TBI. This review summarizes current knowledge and evidence on the relationship between AQP4 and TBI, and the potential mechanisms involved.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rahimi
- School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran
| | - Sina Nazemi
- Tracheal Disease Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Naderi Taheri
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alibolandi
- Anatomical Science Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Reza Tamtaji
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Sun X, Hu Y, Zhou H, Wang S, Zhou C, Lin L, Zhu T, Ge J, Han J, Zhou Y, Jin G, Wang Y, Zu J, Shi H, Yang X, Zan K, Wang J, Hua F. Inhibition of progesterone receptor membrane component-1 exacerbates neonatal hypoxic-ischemic cerebral damage in male mice. Exp Neurol 2021; 347:113893. [PMID: 34653511 DOI: 10.1016/j.expneurol.2021.113893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/04/2022]
Abstract
This study investigated the expression of progesterone receptor membrane component 1 (pgrmc1) in the brains of male and female mice, and the effect of inhibiting pgrmc1 on neonatal hypoxic-ischemic (HI) cerebral injury in male mice. A mouse model of neonatal HI brain injury was established, and AG205, a specific antagonist of pgrmc1, was injected into the left lateral cerebral ventricle 1 h before HI. Histological staining, behavior testing, Western blots, and quantitative PCR (qPCR) were employed to evaluate pgrmc1 expression, brain damage, neurological function, and molecular mechanisms. Results demonstrated that the mRNA and protein levels of pgrmc1 increased significantly in the cortex and hippocampus 72 h after HI without sex differences. The inhibition of pgrmc1 exacerbated the neonatal brain damage in the acute stage of HI in male mice as seen in the increase in brain water content, infarction area, and neuronal death. Inhibition of pgrmc1 also aggravated the neurological dysfunction and anxiety induced by HI brain injury. In addition, inhibition of pgrmc1 activated the NF-kB signaling and NF-κB-mediated cytokines, and inhibited BDNF/PI3K/AKT pathway in the brains of the newborn HI mice. The results indicated that pgrmc1 inhibition exacerbated the brain damage in newborn male mice subjected to HI by activating IκBα/NFκB signaling and inhibiting BDNF/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Hu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Shang Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Chao Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Li Lin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Taiyang Zhu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Ji Ge
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jingjing Han
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Guoliang Jin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yuqiao Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jie Zu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Hongjuan Shi
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xingxing Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Kun Zan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jun Wang
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fang Hua
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
12
|
Amirkhosravi L, Khaksari M, Sheibani V, Shahrokhi N, Ebrahimi MN, Amiresmaili S, Salmani N. Improved spatial memory, neurobehavioral outcomes, and neuroprotective effect after progesterone administration in ovariectomized rats with traumatic brain injury: Role of RU486 progesterone receptor antagonist. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:349-359. [PMID: 33995946 PMCID: PMC8087858 DOI: 10.22038/ijbms.2021.50973.11591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The contribution of classic progesterone receptors (PR) in interceding the neuroprotective efficacy of progesterone (P4) on the prevention of brain edema and long-time behavioral disturbances was assessed in traumatic brain injury (TBI). MATERIALS AND METHODS Female Wistar rats were ovariectomized and apportioned into 6 groups: sham, TBI, oil, P4, vehicle, and RU486. P4 or oil was injected following TBI. The antagonist of PR (RU486) or DMSO was administered before TBI. The brain edema and destruction of the blood-brain barrier (BBB) were determined. Intracranial pressure (ICP), cerebral perfusion pressure (CPP), and beam walk (BW) task were evaluated previously and at various times post-trauma. Long-time locomotor and cognitive consequences were measured one day before and on days 3, 7, 14, and 21 after the trauma. RESULTS RU486 eliminated the inhibitory effects of P4 on brain edema and BBB leakage (P<0.05, P<0.001, respectively). RU486 inhibited the decremental effect of P4 on ICP as well as the increasing effect of P4 on CPP (P<0.001) after TBI. Also, RU486 inhibited the effect of P4 on the increase in traversal time and reduction in vestibulomotor score in the BW task (P<0.001). TBI induced motor, cognitive, and anxiety-like disorders, which lasted for 3 weeks after TBI; but, P4 prevented these cognitive and behavioral abnormalities (P<0.05), and RU486 opposed this P4 effect (P<0.001). CONCLUSION The classic progesterone receptors have neuroprotective effects and prevent long-time behavioral and memory deficiency after brain trauma.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Neuroscience Research and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Centers, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Navid Ebrahimi
- Neuroscience Research and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Neda Salmani
- Department of Psychology, Genetic Institute, Islamic Azad University- Zarand Branch, Kerman, Iran
| |
Collapse
|
13
|
Wang X, Zhou X, Xia X, Zhang Y. Estradiol attenuates LPS-induced acute lung injury via induction of aquaporins AQP1 and AQP5. EUR J INFLAMM 2021; 19:205873922110491. [DOI: 10.1177/20587392211049197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Background Acute lung injury (ALI) is associated with increased inflammation and oxidative stress. Estradiol is produced by the ovaries and is the most active hormone of estrogen. Our aim was to investigate whether estradiol contributes to protect against lipopolysaccharide (LPS)-induced ALI via induction of aquaporins AQP1 and AQP5 and the underlying mechanisms. Methods and results For induction of ALI, LPS was applied once by intraperitoneal injection in SD rats 14 days after oophorectomy. To assess the therapeutic effects of estradiol on LPS-induced ALI, estradiol was subcutaneously injected for 1 h prior to LPS challenge. Estradiol can significantly attenuate the lung edema reflected by decreasing wet-to-dry weight ratio and permeability of lung and total protein concentration of bronchial lavage fluid (BALF). Results of histological detection showed that estradiol attenuated the lung injury reflected by reducing edema, congestion, and thickening pulmonary septal of lung tissues. In addition, estradiol attenuated TNF-α, IL-1β, and IL-6 and oxidative stress in lung tissues. Estradiol was more effective than estradiol associated with ERα antagonist or ERβ antagonist in protecting against LPS-induced ALI in rats. Mechanistically, we investigate whether estradiol regulates the expression of AQP1 and AQP5 in lung tissues. Of interest, estradiol upregulates AQP1 and AQP5 mRNA and protein expression. Taken together, these results demonstrate that estradiol can increase the expression of AQP1 and AQP5, which plays a critical role in ameliorating oxidative stress and downregulating inflammatory responses induced by LPS.Conclusion Therefore, these findings strongly suggest that AQP1 and AQP5 mediate the anti-inflammatory and antioxidant effects of estradiol.
Collapse
Affiliation(s)
- Xiaobo Wang
- Internal Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiuyun Zhou
- Blood Purification Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiumei Xia
- Department of Imaging Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yili Zhang
- Health Management Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
14
|
Ginsberg Y, Gutzeit O, Hadad S, Divon MY, Khatib N, Fainaru O, Weiner Z, Beloosesky R. Maternal Progesterone Treatment Reduces Maternal Inflammation-Induced Fetal Brain Injury in a Mouse Model of Preterm Birth. Reprod Sci 2021; 28:166-176. [PMID: 32833191 DOI: 10.1007/s43032-020-00272-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
Maternal natural vaginal progesterone (nVP) administration has been shown to reduce the risk of preterm birth (PTB). The largest randomized trial of nVP for PTB (OPPTIMUM) noted a sonographic reduction in neonatal brain injury following nVP treatment. We investigated the neuroinflammatory protective effect of maternal nVP in a mouse model for maternal inflammation. Pregnant mice (n = 24) were randomized to nVP (1 mg/day) or vehicle from days 13-16 of gestation. At days 15 and 16, lipopolysaccharide (30 μg) or saline were administered. Mice were sacrificed 4 h following the last injection. Fetal brains and placentas were collected. Levels of NF-κB, nNOS, IL-6, and TNFα were determined by Western blot. Maternal lipopolysaccharide significantly increased fetal brain levels of IL-6 (0.33 ± 0.02 vs. 0.11 ± 0.01 u), TNFα (0.3 ± 0.02 vs. 0.10 ± 0.01 u), NF-κB (0.32 ± 0.01 vs. 0.17 ± 0.01 u), and nNOS (0.24 ± 0.04 vs. 0.08 ± 0.01 u), and reduced the total glutathione levels (0.014 ± 0.001 vs. 0.026 ± 0.001 pmol/μl; p < 0.01) compared with control. Maternal nVP significantly reduced fetal brain levels of IL-6 (0.14 ± 0.01 vs. 0.33 ± 0.02 u), TNFα (0.2 ± 0.06 vs. 0.3 ± 0.02 u), NF-κB (0.16 ± 0.01 vs 0.32 ± 0.01 u), and nNOS (0.14 ± 0.01 vs 0.24 ± 0.04 u), and prevented the reduction of fetal brain total glutathione levels (0.022 ± 0.001 vs. 0.014 ± 0.001 pmol/μl; p < 0.01) to levels similar to controls. A similar pattern was demonstrated in the placenta. Maternal nVP for PTB may protect the fetal brain from inflammation-induced brain injury by inhibiting specific inflammatory and oxidative pathways in both brain and placenta.
Collapse
Affiliation(s)
- Yuval Ginsberg
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel.
| | - Ola Gutzeit
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Salim Hadad
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Michael Y Divon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Lenox Hill Hospital, Northwell Health, New York City, NY, USA
| | - Nizar Khatib
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Ofer Fainaru
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| |
Collapse
|
15
|
Shakkour Z, Habashy KJ, Berro M, Takkoush S, Abdelhady S, Koleilat N, Eid AH, Zibara K, Obeid M, Shear D, Mondello S, Wang KK, Kobeissy F. Drug Repurposing in Neurological Disorders: Implications for Neurotherapy in Traumatic Brain Injury. Neuroscientist 2020; 27:620-649. [PMID: 33089741 DOI: 10.1177/1073858420961078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) remains a significant leading cause of death and disability among adults and children globally. To date, there are no Food and Drug Administration-approved drugs that can substantially attenuate the sequelae of TBI. The innumerable challenges faced by the conventional de novo discovery of new pharmacological agents led to the emergence of alternative paradigm, which is drug repurposing. Repurposing of existing drugs with well-characterized mechanisms of action and human safety profiles is believed to be a promising strategy for novel drug use. Compared to the conventional discovery pathways, drug repurposing is less costly, relatively rapid, and poses minimal risk of the adverse outcomes to study on participants. In recent years, drug repurposing has covered a wide range of neurodegenerative diseases and neurological disorders including brain injury. This review highlights the advances in drug repurposing and presents some of the promising candidate drugs for potential TBI treatment along with their possible mechanisms of neuroprotection. Edaravone, glyburide, ceftriaxone, levetiracetam, and progesterone have been selected due to their potential role as putative TBI neurotherapeutic agents. These drugs are Food and Drug Administration-approved for purposes other than brain injuries; however, preclinical and clinical studies have shown their efficacy in ameliorating the various detrimental outcomes of TBI.
Collapse
Affiliation(s)
- Zaynab Shakkour
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Moussa Berro
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samira Takkoush
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nadia Koleilat
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Makram Obeid
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Deborah Shear
- Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Sicilia, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Amirkhosravi L, Khaksari M, Soltani Z, Esmaeili-Mahani S, Asadi Karam G, Hoseini M. E2-BSA and G1 exert neuroprotective effects and improve behavioral abnormalities following traumatic brain injury: The role of classic and non-classic estrogen receptors. Brain Res 2020; 1750:147168. [PMID: 33096091 DOI: 10.1016/j.brainres.2020.147168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
The role of classical and non-classical estrogen receptors (ERs) in mediating the neuroprotective effects of this hormone on brain edema and long-term behavioral disorders was evaluated after traumatic brain injury (TBI). Ovariectomized rats were divided as follows: E2 (17 β-estradiol), E2-BSA (E2 conjugated to bovine serum albumin), G1 [G-protein-coupled estrogen receptor agonist (GPER)] or their vehicle was injected following TBI, whereas ICI (classical estrogen receptor antagonist), G15 (GPER antagonist), ICI + G15, and their vehicle were injected before the induction of TBI and the injection of E2 and E2-BSA. Brain water (BWC) and Evans blue (EB) contents were measured 24 h and 5 h after TBI, respectively. Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) were measured before and at different times after TBI. Locomotor activity, anxiety-like behavior, and spatial memory were assessed on days 3, 7, 14, and 21 after injury. E2, E2-BSA, and G1 prevented the increase of BWC and EB content after TBI, and these effects were inhibited by ICI and G15. ICI and G15 also inhibited the beneficial effects of E2, E2-BSA on ICP, as well as CPP, after trauma. E2, E2-BSA, and G1 prevented the cognitive deficiency and behavioral abnormalities induced by TBI. Similar to the above parameters, ICI and G15 also reversed this E2 and E2-BSA effects on days 3, 7, 14, and 21. Our findings indicated that the beneficial effects of E2-BSA and E2 were inhibited by both ICI and G15, suggesting that GPER and classic ERs were involved in mediating the long-term effects of E2.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman, Iran
| | - Mohammad Khaksari
- Neuroscience and Endocrinology and Metabolism Research Centers, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholamreza Asadi Karam
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Hoseini
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
17
|
Guerrero-García J. The role of astrocytes in multiple sclerosis pathogenesis. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
Soltani N, Soltani Z, Khaksari M, Ebrahimi G, Hajmohammmadi M, Iranpour M. The Changes of Brain Edema and Neurological Outcome, and the Probable Mechanisms in Diffuse Traumatic Brain Injury Induced in Rats with the History of Exercise. Cell Mol Neurobiol 2020; 40:555-567. [PMID: 31836968 DOI: 10.1007/s10571-019-00753-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Since no definitive treatment has been suggested for diffuse traumatic brain injury (TBI), and also as the effect of exercise has been proven to be beneficial in neurodegenerative diseases, the effect of endurance exercise on the complications of TBI along with its possible neuroprotective mechanism was investigated in this study. Our objective was to find out whether previous endurance exercise influences brain edema and neurological outcome in TBI. We also assessed the probable mechanism of endurance exercise effect in TBI. Rats were randomly assigned into four groups of sham, TBI, exercise + sham and exercise + TBI. Endurance exercise was carried out before TBI. Brain edema was assessed by calculating the percentage of brain water content 24 h after the surgery. Neurological outcome was evaluated by obtaining veterinary coma scale (VCS) at - 1, 1, 4 and 24 h after the surgery. Interleukin-1β (IL-1β), total antioxidant capacity (TAC), malondialdehyde (MDA), protein carbonyl and histopathological changes were evaluated 24 h after the surgery. Previous exercise prevented the increase in brain water content, MDA level, histopathological edema and apoptosis following TBI. The reduction in VCS in exercise + TBI group was lower than that of TBI group. In addition, a decrease in the level of serum IL-1β and the content of brain protein carbonyl was reported in exercise + TBI group in comparison with the TBI group. We suggest that the previous endurance exercise prevents brain edema and improves neurological outcome following diffuse TBI, probably by reducing apoptosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Nasrin Soltani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghasem Ebrahimi
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojdeh Hajmohammmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Sara S, Mohammad K, Nader S, Maryam I, Marzieh S, Elham J, Neda S. Using the NGF/IL-6 ratio as a reliable criterion to show the beneficial effects of progesterone after experimental diffuse brain injury. Heliyon 2020; 6:e03844. [PMID: 32373743 PMCID: PMC7191606 DOI: 10.1016/j.heliyon.2020.e03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/08/2019] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
Acute progesterone injection has been shown to reduce brain edema following traumatic brain injury (TBI) due to its neuroprotective effect. We investigated the effects of sustained release of progesterone through implantation of subcutaneous capsules on rat's brain edema and alteration of cerebrospinal fluid (CSF), and serum ratio of NGF/IL-6 after TBI. This experiment was performed on ovariectomized (OVX) rats and the brain injury was induced by Marmarou's method. A high and a low dose of progesterone (HP and LP) was injected intraperitoneally two h after the brain injury. In addition, in the capsule progesterone-treated group (CP), the intervention was implemented 6 h after the brain injury. Brain edema, NGF and IL-6 biomarkers in serum and cerebrospinal fluid (CSF) were measured 48 h after the TBI in injection groups and one week after the TBI in the CP group. No significant difference was found in the two groups or in the admonition methods. After TBI, the NGF level increased and IL-6 level decreased by injection of both doses, as well as by taking the capsule. Ratio of NGF/IL-6 in CSF increased significantly by all forms of progesterone administration. The increase in the level of NGF and IL-6 after TBI was higher in CSF than in serum. These results indicated that effects of progesterone in capsule form were better than the injection form. Progesterone probably works by increasing NGF and reducing IL-6. Future studies should investigate the ratio of these biomarkers as a variable to determine the neuroprotective effects of another drug.
Collapse
Affiliation(s)
- Shirazpour Sara
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Khaksari Mohammad
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahrokhi Nader
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Iranpour Maryam
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahryari Marzieh
- Department of Physiology, Neuroscience Research Center, Medical Faculty, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jafari Elham
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Salmani Neda
- Department of Psychology, Genetic Institute, Islamic Azad University of Zarand, Keman, Iran
| |
Collapse
|
20
|
Hajmohammadi M, Khaksari M, Soltani Z, Shahrokhi N, Najafipour H, Abbasi R. The Effect of Candesartan Alone and Its Combination With Estrogen on Post-traumatic Brain Injury Outcomes in Female Rats. Front Neurosci 2019; 13:1043. [PMID: 31849571 PMCID: PMC6901902 DOI: 10.3389/fnins.2019.01043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/13/2019] [Indexed: 01/31/2023] Open
Abstract
Aim: The aim of this study was to evaluate the effect of candesartan (angiotensin II type I receptor blocker) alone and its combination with estrogen on the changes in brain edema, intracranial pressure (ICP), and cerebral perfusion pressure (CPP) following diffuse traumatic brain injury (TBI) in female rats. Methods: TBI was induced in ovariectomized female rats using Marmarou's method. The treatment groups received low-dose (LC) and high-dose (HC) candesartan, estrogen (E2), a combination of estrogen vehicle and candesartan vehicle (oil + vehicle), or a combination of estrogen with low-dose (E2 + LC), or with high-dose (E2 + HC) candesartan. ICP and CPP were measured before and several times after TBI, and the brain water content (brain edema) was measured 24 h after TBI. Results: After the TBI, brain edema and ICP in the estrogen group were lower than in the vehicle and TBI groups. Brain edema and ICP in the HC group were lower than in the vehicle group after TBI. Although there was no significant difference in brain edema and ICP between the LC and vehicle groups, significant differences in these variables were observed when the E2 + LC and E2 + HC groups were compared with the oil + vehicle group after TBI. A significant increase in CPP was observed in the estrogen group 4 and 24 h post-TBI, while this increase was found in the HC and E2 + LC groups 24 h post-TBI. Conclusions: A low dose of candesartan did not exert a protective effect on TBI outcomes, but such an effect did appear after combination with estrogen. This finding suggests that interaction between low-dose candesartan and estrogen improves TBI-induced consequences.
Collapse
Affiliation(s)
- Mojdeh Hajmohammadi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Abbasi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
21
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
22
|
Progesterone Is More Effective Than Dexamethasone in Prolonging Overall Survival and Preserving Neurologic Function in Experimental Animals with Orthotopic Glioblastoma Allografts. World Neurosurg 2019; 125:e497-e507. [PMID: 30710720 DOI: 10.1016/j.wneu.2019.01.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Dexamethasone (DEXA) has been widely used in the management of peritumoral brain edema. DEXA, however, has many systemic side effects and can interact negatively with glioma therapy. Progesterone (PROG), however, is a well-tolerated and readily accessible anti-inflammatory and antiedema agent, with potent neuroprotective properties. We investigated whether PROG could serve as a viable alternative to DEXA in the management of peritumoral brain edema. METHODS We used an orthotopic C6 glioblastoma model with male Sprague-Dawley rats. Tumor grafts were allowed to grow for 14 days before drug treatment with DEXA 1 mg/kg, PROG 10 mg/kg, or PROG 20 mg/kg for 5 consecutive days. The overall animal survival and neurologic function were evaluated. Mechanistic studies on blood-brain barrier permeability and angiogenic responses were performed on the ex vivo tumor grafts. RESULTS We found that all drug treatments prolonged overall survival to different extents. PROG 10 mg led to significantly longer survival and better preservation of neurologic function and body weight. The blood-brain barrier permeability was better preserved with PROG 10 mg than with DEXA, possibly through downregulation of matrix metalloproteinase-9 and aquaporin-4 expression. Antiangiogenic responses were also observed in the PROG group. CONCLUSIONS The present proof-of-concept pilot study has provided novel information on the use of PROG as a corticosteroid-sparing agent in brain tumor management. Further translational and clinical studies are warranted.
Collapse
|
23
|
Robison LS, Gannon OJ, Salinero AE, Zuloaga KL. Contributions of sex to cerebrovascular function and pathology. Brain Res 2018; 1710:43-60. [PMID: 30580011 DOI: 10.1016/j.brainres.2018.12.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Sex differences exist in how cerebral blood vessels function under both physiological and pathological conditions, contributing to observed sex differences in risk and outcomes of cerebrovascular diseases (CBVDs), such as vascular contributions to cognitive impairment and dementia (VCID) and stroke. Throughout most of the lifespan, women are protected from CBVDs; however, risk increases following menopause, suggesting sex hormones may play a significant role in this protection. The cerebrovasculature is a target for sex hormones, including estrogens, progestins, and androgens, where they can influence numerous vascular functions and pathologies. While there is a plethora of information on estrogen, the effects of progestins and androgens on the cerebrovasculature are less well-defined. Estrogen decreases cerebral tone and increases cerebral blood flow, while androgens increase tone. Both estrogens and androgens enhance angiogenesis/cerebrovascular remodeling. While both estrogens and androgens attenuate cerebrovascular inflammation, pro-inflammatory effects of androgens under physiological conditions have also been demonstrated. Sex hormones exert additional neuroprotective effects by attenuating oxidative stress and maintaining integrity and function of the blood brain barrier. Most animal studies utilize young, healthy, gonadectomized animals, which do not mimic the clinical conditions of aging individuals likely to get CBVDs. This is also concerning, as sex hormones appear to mediate cerebrovascular function differently based on age and disease state (e.g. metabolic syndrome). Through this review, we hope to inspire others to consider sex as a key biological variable in cerebrovascular research, as greater understanding of sex differences in cerebrovascular function will assist in developing personalized approaches to prevent and treat CBVDs.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Olivia J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| |
Collapse
|
24
|
Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, Schäfer KH, Mautes AE, Schwerdtfeger K, Oertel J. Changes in Posttraumatic Brain Edema in Craniectomy-Selective Brain Hypothermia Model Are Associated With Modulation of Aquaporin-4 Level. Front Neurol 2018; 9:799. [PMID: 30333785 PMCID: PMC6176780 DOI: 10.3389/fneur.2018.00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Both hypothermia and decompressive craniectomy have been considered as a treatment for traumatic brain injury. In previous experiments we established a murine model of decompressive craniectomy and we presented attenuated edema formation due to focal brain cooling. Since edema development is regulated via function of water channel proteins, our hypothesis was that the effects of decompressive craniectomy and of hypothermia are associated with a change in aquaporin-4 (AQP4) concentration. Male CD-1 mice were assigned into following groups (n = 5): sham, decompressive craniectomy, trauma, trauma followed by decompressive craniectomy and trauma + decompressive craniectomy followed by focal hypothermia. After 24 h, magnetic resonance imaging with volumetric evaluation of edema and contusion were performed, followed by ELISA analysis of AQP4 concentration in brain homogenates. Additional histopathological analysis of AQP4 immunoreactivity has been performed at more remote time point of 28d. Correlation analysis revealed a relationship between AQP4 level and both volume of edema (r2 = 0.45, p < 0.01, **) and contusion (r2 = 0.41, p < 0.01, **) 24 h after injury. Aggregated analysis of AQP4 level (mean ± SEM) presented increased AQP4 concentration in animals subjected to trauma and decompressive craniectomy (52.1 ± 5.2 pg/mL, p = 0.01; *), but not to trauma, decompressive craniectomy and hypothermia (45.3 ± 3.6 pg/mL, p > 0.05; ns) as compared with animals subjected to decompressive craniectomy only (32.8 ± 2.4 pg/mL). However, semiquantitative histopathological analysis at remote time point revealed no significant difference in AQP4 immunoreactivity across the experimental groups. This suggests that AQP4 is involved in early stages of brain edema formation after surgical decompression. The protective effect of selective brain cooling may be related to change in AQP4 response after decompressive craniectomy. The therapeutic potential of this interaction should be further explored.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Institute of Neuropathology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Cosmin Glameanu
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Andreas Müller
- Department of Radiology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Markus Klotz
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Christoph Sippl
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
25
|
Abstract
Several lines of evidence indicate that female sex is a protective factor in trauma and hemorrhage. In both clinical and experimental studies, proestrus females have been shown to have better chances of survival and reduced rates of posttraumatic sepsis. Estrogen receptors are expressed in a variety of tissues and exert genomic, as well as nongenomic effects. By improving cardiac, pulmonary, hepatic, and immune function, estrogens have been shown to prolong survival in animal models of hemorrhagic shock. Despite encouraging results from experimental studies, retrospective clinical studies have not clearly pointed to advantages of estrogens following trauma-hemorrhage, which may be due to insufficient study design. Therefore, this review aims to give an overview on the current evidence and emphasizes on the importance of further clinical investigation on estrogens following trauma.
Collapse
|
26
|
Khaksari M, Hajmohammadi M, Sepehri G. The effect of angiotensin receptor type 2 inhibition and estrogen on experimental traumatic brain injury. ARCHIVES OF TRAUMA RESEARCH 2018. [DOI: 10.4103/atr.atr_51_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Post-injury administration of a combination of memantine and 17β-estradiol is protective in a rat model of traumatic brain injury. Neurochem Int 2017; 111:57-68. [DOI: 10.1016/j.neuint.2017.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 11/23/2022]
|
28
|
Dehghan F, Shahrokhi N, Khaksari M, Soltani Z, Asadikorom G, Najafi A, Shahrokhi N. Does the administration of melatonin during post-traumatic brain injury affect cytokine levels? Inflammopharmacology 2017; 26:1017-1023. [PMID: 29159715 DOI: 10.1007/s10787-017-0417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 01/11/2023]
Abstract
Increased levels of inflammatory cytokines after traumatic brain injury (TBI) can lead to brain edema and neuronal death. In this study, the effect of melatonin on pro-inflammatory (IL-1ß, IL-6, and TNF-α) and anti-inflammatory (IL-10) cytokines following TBI was investigated considering anti-inflammatory effect of melatonin. Male Wistar rats were divided into five groups: Sham, TBI, TBI + VEH (vehicle), TBI + 5 mg dose of melatonin (MEL5), TBI + 20 mg dose of melatonin (MEL20). Diffuse TBI was induced by Marmarou method. Melatonin was administered 1, 24, 48 and 72 h after TBI through i.p. Brain water content and brain levels of pro-inflammatory (IL-1ß, IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines were measured 72 h after TBI. The IL-1ß levels decreased in the TBI + MEL5 and TBI + MEL20 groups in comparison to TBI + VEH group (p < 0.001). The levels of IL-6 and TNF-α also decreased in melatonin-treated groups compared to control group (p < 0.001). The amount of IL-10 decreased after TBI. But melatonin administration increased the IL-10 levels in comparison with TBI + VEH group (p < 0.001). The results showed that melatonin administration affected the brain levels of pro-inflammatory and anti-inflammatory cytokines involving in brain edema led to neuronal protection after TBI.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Afzalipour Faculty of Medical, Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikorom
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Najafi
- Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Nava Shahrokhi
- Medical School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
29
|
Effects of Female Sex Steroids Administration on Pathophysiologic Mechanisms in Traumatic Brain Injury. Transl Stroke Res 2017; 9:393-416. [PMID: 29151229 DOI: 10.1007/s12975-017-0588-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Secondary brain damage following initial brain damage in traumatic brain injury (TBI) is a major cause of adverse outcomes. There are many gaps in TBI research and a lack of therapy to limit debilitating outcomes in TBI or enhance the neurogenesis, despite pre-clinical and clinical research performed in TBI. Females show harmful outcomes against brain damage including TBI less than males, independent of different TBI occurrence. A significant reduction in secondary brain damage and improvement in neurologic outcome post-TBI has been reported following the use of progesterone and estrogen in many experimental studies. Although useful features of sex steroids including progesterone have been identified in TBI clinical trials I and II, clinical trials III have been unsuccessful. This review article focuses on evidence of secondary injury mechanisms and neuroprotective effects of estrogen and progesterone in TBI. Understanding these mechanisms may enable researchers to achieve greater success in TBI clinical studies. It seems that the design of clinical studies should be revised due to translation loss of animal studies to clinical studies. The heterogeneous and complex nature of TBI, the endogenous levels of sex hormones at the time of taking these hormones, the therapeutic window of the drug, the dosage of the drug, the selection of appropriate targets in evaluation, the determination of responsive population, gender and age based on animal studies should be considered in the design of TBI human studies in future.
Collapse
|
30
|
Guerrero-García JJ. The role of astrocytes in multiple sclerosis pathogenesis. Neurologia 2017; 35:400-408. [PMID: 28958395 DOI: 10.1016/j.nrl.2017.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/31/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. DEVELOPMENT This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. CONCLUSIONS Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS.
Collapse
Affiliation(s)
- J J Guerrero-García
- Doctorado en Ciencias Biomédicas (DCB), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México; Unidad Médica de Alta Especialidad (UMAE), Hospital de Pediatría (HP), Centro Médico Nacional de Occidente (CMNO), IMSS, Guadalajara, Jalisco, México.
| |
Collapse
|
31
|
Raghava N, Das BC, Ray SK. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. ACTA ACUST UNITED AC 2017; 6:15-29. [PMID: 28845391 PMCID: PMC5567743 DOI: 10.2147/nan.s105134] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the estrogens that are biosynthesized in the human body, 17β-estradiol (estradiol or E2) is the most common and the best estrogen for neuroprotection in animal models of the central nervous system (CNS) injuries such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic brain injury (IBI). These CNS injuries are not only serious health problems, but also enormous economic burden on the patients, their families, and the society at large. Studies from animal models of these CNS injuries provide insights into the multiple neuroprotective mechanisms of E2 and also suggest the possibility of translating the therapeutic efficacy of E2 in the treatment SCI, TBI, and IBI in humans in the near future. The pathophysiology of these injuries includes loss of motor function in the limbs, arms and their extremities, cognitive deficit, and many other serious consequences including life-threatening paralysis, infection, and even death. The potential application of E2 therapy to treat the CNS injuries may become a trend as the results are showing significant therapeutic benefits of E2 for neuroprotection when administered into the animal models of SCI, TBI, and IBI. This article describes the plausible mechanisms how E2 works with or without the involvement of estrogen receptors and provides an overview of the known neuroprotective effects of E2 in these three CNS injuries in different animal models. Because activation of estrogen receptors has profound implications in maintaining and also affecting normal physiology, there are notable impediments in translating E2 therapy to the clinics for neuroprotection in CNS injuries in humans. While E2 may not yet be the sole molecule for the treatment of CNS injuries due to the controversies surrounding it, the neuroprotective effects of its metabolite and derivative or combination of E2 with another therapeutic agent are showing significant impacts in animal models that can potentially shape the new treatment strategies for these CNS injuries in humans.
Collapse
Affiliation(s)
- Narayan Raghava
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Bhaskar C Das
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
32
|
Stekovic S, Ruckenstuhl C, Royer P, Winkler-Hermaden C, Carmona-Gutierrez D, Fröhlich KU, Kroemer G, Madeo F. The neuroprotective steroid progesterone promotes mitochondrial uncoupling, reduces cytosolic calcium and augments stress resistance in yeast cells. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:191-199. [PMID: 28660203 PMCID: PMC5473691 DOI: 10.15698/mic2017.06.577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022]
Abstract
The steroid hormone progesterone is not only a crucial sex hormone, but also serves as a neurosteroid, thus playing an important role in brain function. Epidemiological data suggest that progesterone improves the recovery of patients after traumatic brain injury. Brain injuries are often connected to elevated calcium spikes, reactive oxygen species (ROS) and programmed cell death affecting neurons. Here, we establish a yeast model to study progesterone-mediated cytoprotection. External supply of progesterone protected yeast cells from apoptosis-inducing stress stimuli and resulted in elevated mitochondrial oxygen uptake accompanied by a drop in ROS generation and ATP levels during chronological aging. In addition, cellular Ca2+ concentrations were reduced upon progesterone treatment, and this effect occurred independently of known Ca2+ transporters and mitochondrial respiration. All effects were also independent of Dap1, the yeast orthologue of the progesterone receptor. Altogether, our observations provide new insights into the cytoprotective effects of progesterone.
Collapse
Affiliation(s)
- Slaven Stekovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Christoph Ruckenstuhl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Philipp Royer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | | | | | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, Austria
| |
Collapse
|
33
|
Velosky AG, Tucker LB, Fu AH, Liu J, McCabe JT. Cognitive performance of male and female C57BL/6J mice after repetitive concussive brain injuries. Behav Brain Res 2017; 324:115-124. [PMID: 28214540 DOI: 10.1016/j.bbr.2017.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/24/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
Abstract
In contact sports, repetitive concussive brain injury (rCBI) is the prevalent form of head injury seen in athletes. The need for effective treatment is urgent as rCBI has been associated with a host of cognitive, behavioral and neurological complaints. There has been a growing trend in the use of female animals in pre-clinical research, but few studies have investigated possible sex differences following rCBI. The goal of the current study was to determine any differences between male and female C57BL/6J mice on assessments of learning and memory after repetitive concussive injury. Following rCBI by impact to the scalp, male mice exhibited longer righting reflexes during acute recovery. In both sexes, there were no evident histopathological changes observed in the underlying cerebral cortex or hippocampus. Reactive astrogliosis was elevated in the corpus callosum and optic tract, and astrogliosis was slightly less in the optic tract of female mice. rCBI mice exhibited impairment during the learning phase of the Morris water maze (MWM), but female mice, in comparison to male mice, were observed to have superior spatial memory during standard MWM probe trials. Female mice were overall more active, evidenced by greater distances traveled in the y-maze and greater swim speeds in the MWM. The results of this study demonstrate sex differences in cognitive performance following rCBI and support previous research suggesting the neuroprotective role of sex in brain injury.
Collapse
Affiliation(s)
- Alexander G Velosky
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States
| | - Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Amanda H Fu
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Jiong Liu
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States
| | - Joseph T McCabe
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.
| |
Collapse
|
34
|
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and disability, and the identification of effective, inexpensive and widely practicable treatments for brain injury is of great public health importance worldwide. Progesterone is a naturally produced hormone that has well-defined pharmacokinetics, is widely available, inexpensive, and has steroidal, neuroactive and neurosteroidal actions in the central nervous system. It is, therefore, a potential candidate for treating TBI patients. However, uncertainty exists regarding the efficacy of this treatment. This is an update of our previous review of the same title, published in 2012. OBJECTIVES To assess the effects of progesterone on neurologic outcome, mortality and disability in patients with acute TBI. To assess the safety of progesterone in patients with acute TBI. SEARCH METHODS We updated our searches of the following databases: the Cochrane Injuries Group's Specialised Register (30 September 2016), the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 9, 2016), MEDLINE (Ovid; 1950 to 30 September 2016), Embase (Ovid; 1980 to 30 September 2016), Web of Science Core Collection: Conference Proceedings Citation Index-Science (CPCI-S; 1990 to 30 September 2016); and trials registries: Clinicaltrials.gov (30 September 2016) and the World Health Organization (WHO) International Clinical Trials Registry Platform (30 September 2016). SELECTION CRITERIA We included randomised controlled trials (RCTs) of progesterone versus no progesterone (or placebo) for the treatment of people with acute TBI. DATA COLLECTION AND ANALYSIS Two review authors screened search results independently to identify potentially relevant studies for inclusion. Independently, two review authors selected trials that met the inclusion criteria from the results of the screened searches, with no disagreement. MAIN RESULTS We included five RCTs in the review, with a total of 2392 participants. We assessed one trial to be at low risk of bias; two at unclear risk of bias (in one multicentred trial the possibility of centre effects was unclear, whilst the other trial was stopped early), and two at high risk of bias, due to issues with blinding and selective reporting of outcome data.All included studies reported the effects of progesterone on mortality and disability. Low quality evidence revealed no evidence of a difference in overall mortality between the progesterone group and placebo group (RR 0.91, 95% CI 0.65 to 1.28, I² = 62%; 5 studies, 2392 participants, 2376 pooled for analysis). Using the GRADE criteria, we assessed the quality of the evidence as low, due to the substantial inconsistency across studies.There was also no evidence of a difference in disability (unfavourable outcomes as assessed by the Glasgow Outcome Score) between the progesterone group and placebo group (RR 0.98, 95% CI 0.89 to 1.06, I² = 37%; 4 studies; 2336 participants, 2260 pooled for analysis). We assessed the quality of this evidence to be moderate, due to inconsistency across studies.Data were not available for meta-analysis for the outcomes of mean intracranial pressure, blood pressure, body temperature or adverse events. However, data from three studies showed no difference in mean intracranial pressure between the groups. Data from another study showed no evidence of a difference in blood pressure or body temperature between the progesterone and placebo groups, although there was evidence that intravenous progesterone infusion increased the frequency of phlebitis (882 participants). There was no evidence of a difference in the rate of other adverse events between progesterone treatment and placebo in the other three studies that reported on adverse events. AUTHORS' CONCLUSIONS This updated review did not find evidence that progesterone could reduce mortality or disability in patients with TBI. However, concerns regarding inconsistency (heterogeneity among participants and the intervention used) across included studies reduce our confidence in these results.There is no evidence from the available data that progesterone therapy results in more adverse events than placebo, aside from evidence from a single study of an increase in phlebitis (in the case of intravascular progesterone).There were not enough data on the effects of progesterone therapy for our other outcomes of interest (intracranial pressure, blood pressure, body temperature) for us to be able to draw firm conclusions.Future trials would benefit from a more precise classification of TBI and attempts to optimise progesterone dosage and scheduling.
Collapse
Affiliation(s)
- Junpeng Ma
- West China Hospital, Sichuan UniversityDepartment of NeurosurgeryNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Siqing Huang
- West China Hospital, Sichuan UniversityDepartment of NeurosurgeryNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Shu Qin
- West China Hospital, Sichuan UniversityDepartment of NeurosurgeryNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Chao You
- West China Hospital, Sichuan UniversityDepartment of NeurosurgeryNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Yunhui Zeng
- West China Hospital, Sichuan UniversityDepartment of NeurosurgeryNo. 37, Guo Xue XiangChengduSichuanChina610041
| | | |
Collapse
|
35
|
Wang B, Yang R, Ju Q, Liu S, Zhang Y, Ma Y. Clinical effects of joint application of β-sodium aescinate and mannitol in treating early swelling after upper limb trauma surgery. Exp Ther Med 2016; 12:3320-3322. [PMID: 27882156 PMCID: PMC5103786 DOI: 10.3892/etm.2016.3743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to examine the clinical merits of joint application of β-sodium aescinate and mannitol for the treatment of early swelling of upper limb trauma after surgery. We verified whether the expression of serum aquaporin 1 (AQP-1) was involved in swelling mechanism. A total of 102 patients with swelling after upper limb trauma surgery were enrolled into the study and divided randomly into 3 groups (n=34 cases per group). Group A was treated with β-sodium aescinate; group B was treated with with mannitol and group C was treated with both β-sodium aescinate and mannitol. The expression level of AQP-1, and clinical effects and complications before and after treatment were compared§. The time of swelling subsidence in group C was significantly shorter than that of the other two groups and differences were statistically significant (P<0.05). The recovery ratio and total efficiency in group C were significantly higher than those in other two groups and differences were statistically significant (P<0.05). Three and seven days after treatment, the AQP-1 levels in group A and group C were decreased and AQP-1 level decreased further with time. Differences of comparison within groups were statistically significant (P<0.05), although the differences of comparison between the groups showed no statistical significance (P>0.05). We also compared the AQP-1 level in group B before and after treatment, and the differences were not statistically significant (P>0.05). When the complication incidence in the 3 groups was compared, no statistical significance was detected (P>0.05). We concluded that the joint use of β-sodium aescinate and mannitol in treating early swelling after upper limb trauma surgery produced satisfactory outcomes. This might be related to reduction of the AQP-1 level.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopeadic Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Ruixiang Yang
- Department of Orthopeadic Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Qing Ju
- Department of Hospital Infection-Control, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Shaofeng Liu
- Patient Service Center, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Yongchun Zhang
- Department of Orthopeadic Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Yong Ma
- Department of Orthopeadic Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
36
|
Lifshitz J, Rowe RK, Griffiths DR, Evilsizor MN, Thomas TC, Adelson PD, McIntosh TK. Clinical relevance of midline fluid percussion brain injury: Acute deficits, chronic morbidities and the utility of biomarkers. Brain Inj 2016; 30:1293-1301. [PMID: 27712117 DOI: 10.1080/02699052.2016.1193628] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND After 30 years of characterisation and implementation, fluid percussion injury (FPI) is firmly recognised as one of the best-characterised reproducible and clinically relevant models of TBI, encompassing concussion through diffuse axonal injury (DAI). Depending on the specific injury parameters (e.g. injury site, mechanical force), FPI can model diffuse TBI with or without a focal component and may be designated as mild-to-severe according to the chosen mechanical forces and resulting acute neurological responses. Among FPI models, midline FPI may best represent clinical diffuse TBI, because of the acute behavioural deficits, the transition to late-onset behavioural morbidities and the absence of gross histopathology. REVIEW The goal here was to review acute and chronic physiological and behavioural deficits and morbidities associated with diffuse TBI induced by midline FPI. In the absence of neurodegenerative sequelae associated with focal injury, there is a need for biomarkers in the diagnostic, prognostic, predictive and therapeutic approaches to evaluate outcomes from TBI. CONCLUSIONS The current literature suggests that midline FPI offers a clinically-relevant, validated model of diffuse TBI to investigators wishing to evaluate novel therapeutic strategies in the treatment of TBI and the utility of biomarkers in the delivery of healthcare to patients with brain injury.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | - Rachel K Rowe
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA
| | - Daniel R Griffiths
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Megan N Evilsizor
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Theresa C Thomas
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | - P David Adelson
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | | |
Collapse
|