1
|
Wu W, Meng F, Zhang H, Tian H, Zhang X. Neutrophil PPIF exacerbates lung ischemia-reperfusion injury after lung transplantation by promoting calcium overload-induced neutrophil extracellular traps formation. Int Immunopharmacol 2024; 142:113051. [PMID: 39236457 DOI: 10.1016/j.intimp.2024.113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Lung ischemia-reperfusion (I/R) injury is the main risk factor for primary graft dysfunction and patient death after lung transplantation (LTx). It is widely accepted that the main pathological mechanism of lung I/R injury are calcium overload, oxygen free radical explosion and neutrophil-mediated damage, which leading to the lack of effective treatment options. The aim of this study was to further explore the mechanisms of lung I/R injury after LTx and to provide potential therapeutic strategies. Our bioinformatics analysis revealed that the neutrophil extracellular traps (NETs) formation was closely involved in lung I/R injury after LTx, which was accompanied by up-regulation of peptidylprolyl isomerase F (PPIF) and peptidyl arginine deiminase 4 (PADI4). We further established an orthotopic LTx mouse model to simulate lung I/R injury in vivo, and found that PPIF and PADI4 inhibitors effectively reduced neutrophil infiltration, NETs formation, inflammatory response, and lung I/R injury. In the neutrophil model induced by HL-60 cell line in vitro, we found that PPIF inhibitor cyclosporin A (Cys A) better alleviated calcium overload induced inflammatory response, reactive oxygen species content and NETs formation. Further study demonstrated that interfering with neutrophil PPIF protected mitochondrial function by alleviating store-operated calcium entry (SOCE) during calcium overload and played the above positive role. On this basis, we found that the reduction of calcium content in neutrophils was accompanied by the inhibition of calcineurin (CN) and nuclear factor of activated T cells (NFAT). In conclusion, our findings suggested that neutrophil PPIF could serve as a novel biomarker and potential therapeutic target of lung I/R injury after LTx, which provided new clues for its treatment by inhibiting calcium overload-induced NETs formation.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Wang Y, Li F, Wei S, Li W, Wu J, Li S, Hu X, Tang T, Liu X. Puerarin-Loaded Liposomes Co-Modified by Ischemic Myocardium-Targeting Peptide and Triphenylphosphonium Cations Ameliorate Myocardial Ischemia-Reperfusion Injury. Int J Nanomedicine 2024; 19:7997-8014. [PMID: 39130683 PMCID: PMC11317047 DOI: 10.2147/ijn.s468394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Mitochondrial damage may lead to uncontrolled oxidative stress and massive apoptosis, and thus plays a pivotal role in the pathological processes of myocardial ischemia-reperfusion (I/R) injury. However, it is difficult for the drugs such as puerarin (PUE) to reach the mitochondrial lesion due to lack of targeting ability, which seriously affects the expected efficacy of drug therapy for myocardial I/R injury. Methods We prepared triphenylphosphonium (TPP) cations and ischemic myocardium-targeting peptide (IMTP) co-modified puerarin-loaded liposomes (PUE@T/I-L), which effectively deliver the drug to mitochondria and improve the effectiveness of PUE in reducing myocardial I/R injury. Results In vitro test results showed that PUE@T/I-L had sustained release and excellent hemocompatibility. Fluorescence test results showed that TPP cations and IMTP double-modified liposomes (T/I-L) enhanced the intracellular uptake, escaped lysosomal capture and promoted drug targeting into the mitochondria. Notably, PUE@T/I-L inhibited the opening of the mitochondrial permeability transition pore, reduced intracellular reactive oxygen species (ROS) levels and increased superoxide dismutase (SOD) levels, thereby decreasing the percentage of Hoechst-positive cells and improving the survival of hypoxia-reoxygenated (H/R)-injured H9c2 cells. In a mouse myocardial I/R injury model, PUE@T/I-L showed a significant myocardial protective effect against myocardial I/R injury by protecting mitochondrial integrity, reducing myocardial apoptosis and decreasing infarct size. Conclusion This drug delivery system exhibited excellent mitochondrial targeting and reduction of myocardial apoptosis, which endowed it with good potential extension value in the precise treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Fengmei Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
3
|
Chen S, Chen W, Li Z, Yue J, Yung KKL, Li R. Regulation of PM 2.5 on mitochondrial damage in H9c2 cells through miR-421/SIRT3 pathway and protective effect of miR-421 inhibitor and resveratrol. J Environ Sci (China) 2024; 138:288-300. [PMID: 38135396 DOI: 10.1016/j.jes.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 12/24/2023]
Abstract
Fine particulate matter (PM2.5) exposure is associated with cardiovascular disease (CVD) morbidity and mortality. Mitochondria are sensitive targets of PM2.5, and mitochondrial dysfunction is closely related to the occurrence of CVD. The epigenetic mechanism of PM2.5-triggered mitochondrial injury of cardiomyocytes is unclear. This study focused on the miR-421/SIRT3 signaling pathway to investigate the regulatory mechanism in cardiac mitochondrial dynamics imbalance in rat H9c2 cells induced by PM2.5. Results illustrated that PM2.5 impaired mitochondrial function and caused dynamics homeostasis imbalance. Besides, PM2.5 up-regulated miR-421 and down-regulated SIRT3 gene expression, along with decreasing p-FOXO3a (SIRT3 downstream target gene) and p-Parkin expression and triggering abnormal expression of fusion gene OPA1 and fission gene Drp1. Further, miR-421 inhibitor (miR-421i) and resveratrol significantly elevated the SIRT3 levels in H9c2 cells after PM2.5 exposure and mediated the expression of SOD2, OPA1 and Drp1, restoring the mitochondrial morphology and function. It suggests that miR-421/SIRT3 pathway plays an epigenetic regulatory role in mitochondrial damage induced by PM2.5 and that miR-421i and resveratrol exert protective effects against PM2.5-incurred cardiotoxicity.
Collapse
Affiliation(s)
- Shanshan Chen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wenqi Chen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhiping Li
- Institute of Judicial Identification Techniques for Environmental Damage, Shanxi University and Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan 030006, China
| | - Jianwei Yue
- Institute of Judicial Identification Techniques for Environmental Damage, Shanxi University and Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan 030006, China
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China; Institute of Judicial Identification Techniques for Environmental Damage, Shanxi University and Shanxi Unisdom Testing Technology Co., Ltd., Taiyuan 030006, China; Shanxi Yellow River Laboratory, Taiyuan 030006, China.
| |
Collapse
|
4
|
Chen C, Wang J, Zhu X, Hu J, Liu C, Liu L. Energy metabolism and redox balance: How phytochemicals influence heart failure treatment. Biomed Pharmacother 2024; 171:116136. [PMID: 38215694 DOI: 10.1016/j.biopha.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Heart Failure (HF) epitomizes a formidable global health quandary characterized by marked morbidity and mortality. It has been established that severe derangements in energy metabolism are central to the pathogenesis of HF, culminating in an inadequate cardiac energy milieu, which, in turn, precipitates cardiac pump dysfunction and systemic energy metabolic failure, thereby steering the trajectory and potential recuperation of HF. The conventional therapeutic paradigms for HF predominantly target amelioration of heart rate, and cardiac preload and afterload, proffering symptomatic palliation or decelerating the disease progression. However, the realm of therapeutics targeting the cardiac energy metabolism remains largely uncharted. This review delineates the quintessential characteristics of cardiac energy metabolism in healthy hearts, and the metabolic aberrations observed during HF, alongside the associated metabolic pathways and targets. Furthermore, we delve into the potential of phytochemicals in rectifying the redox disequilibrium and the perturbations in energy metabolism observed in HF. Through an exhaustive analysis of recent advancements, we underscore the promise of phytochemicals in modulating these pathways, thereby unfurling a novel vista on HF therapeutics. Given their potential in orchestrating cardiac energy metabolism, phytochemicals are emerging as a burgeoning frontier for HF treatment. The review accentuates the imperative for deeper exploration into how these phytochemicals specifically intervene in cardiac energy metabolism, and the subsequent translation of these findings into clinical applications, thereby broadening the horizon for HF treatment modalities.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
5
|
Hasan GM, Anwar S, Shamsi A, Sohal SS, Hassan MI. The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications. Front Pharmacol 2024; 14:1330098. [PMID: 38239205 PMCID: PMC10794744 DOI: 10.3389/fphar.2023.1330098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Traumatic brain injury (TBI) leads to brain damage, comprising both immediate primary damage and a subsequent cascade of secondary injury mechanisms. The primary injury results in localized brain damage, while the secondary damage initiates inflammatory responses, followed by the disruption of the blood-brain barrier, infiltration of peripheral blood cells, brain edema, and the release of various immune mediators, including chemotactic factors and interleukins. TBI disrupts molecular signaling, cell structures, and functions. In addition to physical tissue damage, such as axonal injuries, contusions, and haemorrhages, TBI interferes with brain functioning, impacting cognition, decision-making, memory, attention, and speech capabilities. Despite a deep understanding of the pathophysiology of TBI, an intensive effort to evaluate the underlying mechanisms with effective therapeutic interventions is imperative to manage the repercussions of TBI. Studies have commenced to explore the potential of employing natural compounds as therapeutic interventions for TBI. These compounds are characterized by their low toxicity and limited interactions with conventional drugs. Moreover, many natural compounds demonstrate the capacity to target various aspects of the secondary injury process. While our understanding of the pathophysiology of TBI, there is an urgent need for effective therapeutic interventions to mitigate its consequences. Here, we aimed to summarize the mechanism of action and the role of phytochemicals against TBI progression. This review discusses the therapeutic implications of various phytonutrients and addresses primary and secondary consequences of TBI. In addition, we highlighted the roles of emerging phytochemicals as promising candidates for therapeutic intervention of TBI. The review highlights the neuroprotective roles of phytochemicals against TBI and the mechanistic approach. Furthermore, our efforts focused on the underlying mechanisms, providing a better understanding of the therapeutic potential of phytochemicals in TBI therapeutics.
Collapse
Affiliation(s)
- Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Wang R, Dong S, Xia R, Sun M, Sun Y, Ren H, Zhang Y, Xia Z, Yao S, Wang T. Kinsenoside mitigates myocardial ischemia/reperfusion-induced ferroptosis via activation of the Akt/Nrf2/HO-1 pathway. Eur J Pharmacol 2023; 956:175985. [PMID: 37572943 DOI: 10.1016/j.ejphar.2023.175985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Ischemia-induced myocardial infarction is regarded as one of the major killers of humans worldwide. Kinsenoside (KD), a primary active ingredient derived from Anoectochilus roxburghii, shows antioxidant and vascular protective properties. Myocardial ischemia/reperfusion (I/R) injury is associated with oxidative damage and could be regulated by KD. However, its targets and the exact mechanism by which it operates remains unclear. The aim of this study was to investigate the role of KD in myocardial I/R injury and to define the mechanism by which it works. We established both myocardial I/R model in vivo and hypoxia/reoxygenation (H/R) cardiomyocyte model in vitro in this study. KD can attenuate I/R-induced myocardial injury in vivo and inhibit H/R-induced injury in vitro in a dose-dependent manner. KD increased mitochondrial membrane potential, SOD activity, and GSH activity in cardiomyocytes, whereas MDA accumulation, iron accumulation, and Mito-ROS production were decreased. We intersected differentially expressed genes (DEGs) from RNA-seq results with ferroptosis-related genes, and found KD significantly downregulated COX2 expression and upregulated GPX4 expression. These findings were further confirmed by Western blot analysis. Additionally, KD increased AKT phosphorylation and Nrf2 translocation into the nucleus, as well as HO-1 expression. When Akt or Nrf2 were inhibited in the KD group, the anti-ferroptosis properties of KD were nullified. Thus, Kinsenoside may exert anti-ferroptosis effect in myocardial I/R injury by decreasing mitochondrial dysfunction and increasing anti-oxidation through the Akt/Nrf2/HO-1 signaling pathway, suggesting it could be used as a potential therapeutic agent for myocardial reperfusion injury.
Collapse
Affiliation(s)
- Rong Wang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Siwei Dong
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Rui Xia
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China; Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Meng Sun
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yi Sun
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hong Ren
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, HK SAR, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Tingting Wang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
7
|
Wang H, Fu L, Li Y, Wei L, Gu X, Li H, Li J, Wen S. m6A methyltransferase WTAP regulates myocardial ischemia reperfusion injury through YTHDF1/FOXO3a signaling. Apoptosis 2023; 28:830-839. [PMID: 36894806 DOI: 10.1007/s10495-023-01818-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 03/11/2023]
Abstract
N6-methyladenosine (m6A) is emerging as an essential regulator in the progression of myocardial ischemia reperfusion (I/R) injury. However, the in-depth functions and mechanisms for m6A are still unclear. This work aimed to explore the potential functions and mechanisms for myocardial I/R injury. In this study, m6A methyltransferase WTAP and m6A modification level elevated in the hypoxia/reoxygenation (H/R) induced rat cardiomyocytes (H9C2) and I/R injury rat model. Bio-functional cellular experiments demonstrated that knockdown of WTAP remarkably released the proliferation and reduced the apoptosis and inflammatory cytokines induced by H/R. Moreover, exercise training alleviated WTAP level in exercise-trained rats. Mechanistically, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) revealed that a remarkable m6A modification site was found in the 3'-UTR of FOXO3a mRNA. Moreover, WTAP triggered the installation of m6A modification on FOXO3a mRNA through m6A reader YTHDF1, thereby enhancing the stability of FOXO3a mRNA. Collectively, WTAP/YTHDF1/m6A/FOXO3a axis regulates the myocardial I/R injury progression, which provides new insights for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Hui Wang
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Liujing Fu
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Yin Li
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Liudong Wei
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Xiufeng Gu
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Huanming Li
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Jie Li
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Shangyu Wen
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China.
| |
Collapse
|
8
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
9
|
Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury. J Control Release 2023; 353:563-590. [PMID: 36496052 DOI: 10.1016/j.jconrel.2022.11.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Myocardial ischemia-reperfusion injury (IRI) is becoming a typical cardiovascular disease with increasing worldwide incidence. It is usually induced by the restoration of normal blood flow to the ischemic myocardium after a period of recanalization and directly leads to myocardial damage. Notably, the pathological mechanism of myocardial IRI is closely related to inflammation, oxidative stress, Ca2+ overload, and the opening of mitochondrial permeability transition pore channels. Therefore, monitoring of these changes and imaging lesions is a key to timely clinical diagnosis. Nanomedicines have shown great value in the diagnosis and treatment of myocardial IRI, with advantages including passive/active targeting, prolonged circulation, improved bioavailability, versatile carrier selection, and synergistic integration of different imaging and therapeutic agents in single particles with the same pharmaceutics. Because theranostic nanomedicines for myocardial IRI have advanced rapidly, we conduct an updated review on this topic. The special focus is on how to rationally design the nanomedicines to achieve optimal imaging and therapy. We hope this review would stimulate the interest of researchers with different backgrounds and expedite the development of nanomedicines for myocardial IRI.
Collapse
|
10
|
Er-xian ameliorates myocardial ischemia-reperfusion injury in rats through RISK pathway involving estrogen receptors. Chin J Nat Med 2022; 20:902-913. [PMID: 36549804 DOI: 10.1016/s1875-5364(22)60213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 12/24/2022]
Abstract
Curculigo orchioides (CUR) and Epimedium (EPI) are traditional Chinese medicines with estrogen-like biological activity, called Xianmao and Xianlingpi (Er-xian) in Chinese. However, whether Er-xian exerts protective effects on myocardial ischemia-reperfusion injury (MIRI) is unknown. This study aimed to investigate the cardioprotective effects of Er-xian preconditioning against MIRI and the underlying mechanisms. CUR or EPI was administered intragastrically to aged female rats as a monotherapy or combination therapy. 2 weeks later, a rat MIRI model was established. Myocardial infarction size, myocardial morphology, cTnT, cell apoptosis rate, intracellular calcium concentration, mitochondrial permeability transition pore (MPTP) opening and reperfusion injury salvage kinase (RISK) signaling pathway molecules were observed after the surgery. To evaluate the mechanisms of Er-xian, estrogen receptors antagonists ICI 182780 and G15 were used. In this study, Er-xian notably alleviated myocardial tissue damage, maintained mitochondrial morphology, reduced infarct size and cardiac markers, and increased sera levels of E2. Moreover, Er-xian inhibited calcium overload and mPTP opening, and decreased cardiomyocyte apoptosis. We found that the dual therapy of CUR and EPI elicited more noticeable results than CUR or EPI monotherapy. The significant protective effects of Er-xian on ischemia-reperfusion myocardium were attributed to the up-regulation of AKT, ERK1/2 and GSK-3β phosphorylation levels. The cardioprotective effects of Er-xian were significantly reduced after estrogen receptor blockade, especially GPER30. These results indicate that Er-xian attenuates MIRI through RISK signaling pathway and estrogen receptors are the critical mediators.
Collapse
|
11
|
Peng JF, Salami OM, Habimana O, Xie YX, Yao H, Yi GH. Targeted Mitochondrial Drugs for Treatment of Ischemia-Reperfusion Injury. Curr Drug Targets 2022; 23:1526-1536. [PMID: 36100990 DOI: 10.2174/1389450123666220913121422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury is a complex hemodynamic pathology that is a leading cause of death worldwide and occurs in many body organs. Numerous studies have shown that mitochondria play an important role in the occurrence mechanism of ischemia-reperfusion injury and that mitochondrial structural abnormalities and dysfunction lead to the disruption of the homeostasis of the whole mitochondria. At this time, mitochondria are not just sub-organelles to produce ATP but also important targets for regulating ischemia-reperfusion injury; therefore, drugs targeting mitochondria can serve as a new strategy to treat ischemia-reperfusion injury. Based on this view, in this review, we discuss potential therapeutic agents for both mitochondrial structural abnormalities and mitochondrial dysfunction, highlighting the application and prospects of targeted mitochondrial drugs in the treatment of ischemia-reperfusion injury, and try to provide new ideas for the clinical treatment of the ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jin-Fu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | | | - Olive Habimana
- International College, University of South China, 28 W Chang-sheng Road, Hengyang, Hunan, 421001, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Hui Yao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
12
|
Zhang Y, Lu J, Ma Y, Sun L, Wang S, Yue X, Yu J, Xue P. Establishment of fingerprint and mechanism of anti-myocardial ischemic effect of Syringa pinnatifolia. Biomed Chromatogr 2022; 36:e5475. [PMID: 35947036 DOI: 10.1002/bmc.5475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To establish the fingerprint of Syringa pinnatifolia Hemsl. (SP), analyze the blood components of SP, and explore the possible mechanism of SP's anti-myocardial ischemia, so as to provide scientific basis for the follow-up development and research of SP and lay a foundation for its clinical application. METHODS The fingerprint of SP was established by UPLC-QE-MS and GC-MS. A rat Myocardial infarction (MI) was constructed by ligating the left anterior descending branch (LAD) of the rat coronary artery, and SP alcohol extract was administered to evaluate its anti-myocardial ischemic effect. We analyzed the blood components of SP, screened the active compounds, established a database of SP anti-myocardial ischemic targets, and explored the possible mechanism of SP in treating MI by bioinformatics. The rats were examined by echocardiography, serum biomarkers were determined, and pathological changes were observed by histopathological examination. TUNEL staining was performed to detect the apoptotic level of cells, and western blot and qRT-PCR were performed to detect the expression levels of Bcl-2, Bax and caspase-3 in heart tissues. RESULTS In the fingerprint of SP, 24 common peaks were established, and the similarity evaluation results of 10 batches of SP were all > 0.9. UPLC-QE-MS and GC-MS detected a total of 17 active ingredients in the drug-containing serum, including terpenoids, flavonoids, phenols, phenylpropanoids and phenolic acids, the most abundant of which was resveratrol. Enrichment analysis of SP targets against myocardial ischemia revealed that key candidate targets of SP were significantly enriched in multiple pathways associated with apoptosis. Resveratrol was administered to the successfully modeled rats, and the results showed that the resveratrol group significantly reduced LVEDd and LVEDs and significantly increased EF and FS in all groups compared with the model group. Resveratrol significantly reduced the levels of CK-MB and LDH in serum compared to the model group (p < 0.001). Hematoxylin-eosin (HE) staining of rat myocardial tissue showed that all lesions were reduced under microscopic observation in the resveratrol group compared with the model group. RT-PCR and western blot results showed that resveratrol group down-regulated the expression of the pro-apoptotic factor Bax, up-regulated the expression of the anti-apoptotic factor Bcl-2, and decreased the expression of Caspase-3. CONCLUSION The established fingerprints are accurate, reliable and reproducible, and can be used as an effective method for the quality control of the herbs. The anti-myocardial ischemia effect of SP may be that resveratrol can improve cardiac function and inhibit cardiomyocyte apoptosis to protect cardiomyocytes. The present study provides ample evidence for the clinical use of SP, suggesting that this drug has great potential in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Ye Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Jingkun Lu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Lijun Sun
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Suwei Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Xin Yue
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Jiuwang Yu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Peifeng Xue
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| |
Collapse
|
13
|
Wang X, Simayi A, Fu J, Zhao X, Xu G. Resveratrol mediates the miR-149/HMGB1 axis and regulates the ferroptosis pathway to protect myocardium in endotoxemia mice. Am J Physiol Endocrinol Metab 2022; 323:E21-E32. [PMID: 35532075 DOI: 10.1152/ajpendo.00227.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endotoxemia is a common complication often used to model the acute inflammatory response associated with endotoxemia. Resveratrol has been shown to exert a wide range of therapeutic effects due to its anti-inflammatory and antioxidant properties. This study explored the effect of resveratrol on endotoxemia. Lipopolysaccharide (LPS)-induced endotoxemia mouse model and endotoxemia myocardial injury cell model were established and treated with resveratrol. Cardiomyocyte activity, lactate dehydrogenase (LDH) content in cell supernatant, glutathione (GSH) consumption, lipid reactive oxygen species (ROS) production, and iron accumulation were detected. Cardiac function indexes [left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), ejection fraction (EF)%, and fractional shortening (FS)%] were measured using echocardiography. The creatine kinase muscle/brain isoenzyme (CK-MB) and CK levels in the serum were detected using an automatic biochemical analyzer. The downstream target of miR-149 was predicted, and the binding relationship between miR-149 and high mobility group box 1 (HMGB1) was verified using a dual-luciferase assay. miR-149 and HMGB1 expressions were detected using RT-qPCR and Western blot. After resveratrol treatment, cardiomyocyte viability and GSH were increased, and LDH secretion, lipid ROS production, lipid peroxidation, and iron accumulation were decreased, and cardiac function and cardiomyocyte injury were improved. Resveratrol improved LPS-induced endotoxemia cardiomyocyte injury by upregulating miR-149 and inhibiting ferroptosis. Resveratrol inhibited HMGB1 expression by upregulating miR-149. HMGB1 upregulation reversed the inhibitory effect of miR-149 on LPS-induced ferroptosis in cardiomyocytes. Resveratrol upregulated miR-149 and downregulated HMGB1 to inhibit ferroptosis and improve myocardial injury in mice with LPS-induced endotoxemia. Collectively, resveratrol upregulated miR-149, downregulated HMGB1, and inhibited the ferroptosis pathway, thus improving cardiomyocyte injury in LPS-induced endotoxemia.NEW & NOTEWORTHY Sepsis is an unusual systemic reaction. Resveratrol is involved in sepsis treatment. This study explored the mechanism of resveratrol in sepsis by regulating the miR-149/HMGB1 axis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Alimujiang Simayi
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Juan Fu
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Xuan Zhao
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Guiping Xu
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| |
Collapse
|
14
|
Wang Y, Shou X, Fan Z, Cui J, Xue D, Wu Y. A Systematic Review and Meta-Analysis of Phytoestrogen Protects Against Myocardial Ischemia/Reperfusion Injury: Pre-Clinical Evidence From Small Animal Studies. Front Pharmacol 2022; 13:847748. [PMID: 35668938 PMCID: PMC9166621 DOI: 10.3389/fphar.2022.847748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/26/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Phytoestrogens are a class of natural compounds that have structural similarities to estrogens. They have been identified to confer potent cardioprotective effects in experimental myocardial ischemia-reperfusion injury (MIRI) animal models. We aimed to investigate the effect of PE on MIRI and its intrinsic mechanisms. Methods: A systematic search was conducted to identify PEs that have been validated in animal studies or clinical studies as effective against MIRI. Then, we collected studies that met inclusion and exclusion criteria from January 2016 to September 2021. The SYRCLE's RoB tool was used to evaluate the quality. Data were analyzed by STATA 16.0 software. Results: The search yielded 18 phytoestrogens effective against heart disease. They are genistein, quercetin, biochanin A, formononetin, daidzein, kaempferol, icariin, puerarin, rutin, notoginsenoside R1, tanshinone IIA, ginsenoside Rb1, ginsenoside Rb3, ginsenoside Rg1, ginsenoside Re, resveratrol, polydatin, and bakuchiol. Then, a total of 20 studies from 17 articles with a total of 355 animals were included in this meta-analysis. The results show that PE significantly reduced the myocardial infarct size in MIRI animals compared with the control group (p < 0.001). PE treatment significantly reduced the creatine kinase level (p < 0.001) and cTnI level (p < 0.001), increased left ventricular ejection fraction (p < 0.001) and left ventricular fractional shortening (p < 0.001) in MIRI animals. In addition, PE also exerts a significant heart rate lowering effect (p < 0.001). Conclusion: Preclinical evidence suggests that PE can be multi-targeted for cardioprotective effects in MIRI. More large animal studies and clinical research are still needed in the future to further confirm its role in MIRI.
Collapse
Affiliation(s)
- Yumeng Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xintian Shou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongjing Fan
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Cui
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Donghua Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Mitochondrial Damage in Myocardial Ischemia/Reperfusion Injury and Application of Natural Plant Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8726564. [PMID: 35615579 PMCID: PMC9126658 DOI: 10.1155/2022/8726564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022]
Abstract
Ischemic heart disease (IHD) is currently one of the leading causes of death among cardiovascular diseases worldwide. In addition, blood reflow and reperfusion paradoxically also lead to further death of cardiomyocytes and increase the infarct size. Multiple evidences indicated that mitochondrial function and structural disorders were the basic driving force of IHD. We summed up the latest evidence of the basic associations and underlying mechanisms of mitochondrial damage in the event of ischemia/reperfusion (I/R) injury. This review then reviewed natural plant products (NPPs) which have been demonstrated to mitochondria-targeted therapeutic effects during I/R injury and the potential pathways involved. We realized that NPPs mainly maintained the integrality of mitochondria membrane and ameliorated dysfunction, such as improving abnormal mitochondrial calcium handling and inhibiting oxidative stress, so as to protect cardiomyocytes during I/R injury. This information will improve our knowledge of mitochondrial biology and I/R-induced injury's pathogenesis and exhibit that NPPs hold promise for translation into potential therapies that target mitochondria.
Collapse
|
16
|
Su X, Zhou M, Li Y, Zhang J, An N, Yang F, Zhang G, Yuan C, Chen H, Wu H, Xing Y. Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomed Pharmacother 2022; 149:112893. [PMID: 35366532 DOI: 10.1016/j.biopha.2022.112893] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with ischemic heart disease receiving reperfusion therapy still need to face left ventricular remodeling and heart failure after myocardial infarction. Reperfusion itself paradoxically leads to further cardiomyocyte death and systolic dysfunction. Ischemia/reperfusion (I/R) injury can eliminate the benefits of reperfusion therapy in patients and causes secondary myocardial injury. Mitochondrial dysfunction and structural disorder are the basic driving force of I/R injury. We summarized the basic relationship and potential mechanisms of mitochondrial injury in the development of I/R injury. Subsequently, this review summarized the natural products (NPs) that have been proven to targeting mitochondrial therapeutic effects during I/R injury in recent years and related cellular signal transduction pathways. We found that these NPs mainly protected the structural integrity of mitochondria and improve dysfunction, such as reducing mitochondrial division and fusion abnormalities, improving mitochondrial Ca2+ overload and inhibiting reactive oxygen species overproduction, thereby playing a role in protecting cardiomyocytes during I/R injury. This data would deepen the understanding of I/R-induced mitochondrial pathological process and suggested that NPs are expected to be transformed into potential therapies targeting mitochondria.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingyang Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chao Yuan
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Hongjin Wu
- Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing 100191, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
17
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
18
|
Chen C, Yu LT, Cheng BR, Xu JL, Cai Y, Jin JL, Feng RL, Xie L, Qu XY, Li D, Liu J, Li Y, Cui XY, Lu JJ, Zhou K, Lin Q, Wan J. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front Cardiovasc Med 2022; 8:792592. [PMID: 35252368 PMCID: PMC8893235 DOI: 10.3389/fcvm.2021.792592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is one of the most effective reperfusion strategies for acute myocardial infarction (AMI) despite myocardial ischemia/reperfusion (I/R) injury, causing one of the causes of most cardiomyocyte injuries and deaths. The pathological processes of myocardial I/R injury include apoptosis, autophagy, and irreversible cell death caused by calcium overload, oxidative stress, and inflammation. Eventually, myocardial I/R injury causes a spike of further cardiomyocyte injury that contributes to final infarct size (IS) and bound with hospitalization of heart failure as well as all-cause mortality within the following 12 months. Therefore, the addition of adjuvant intervention to improve myocardial salvage and cardiac function calls for further investigation. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in Chinese herbal medicine. Great effort has been put into phytochemicals because they are often in line with the expectations to improve myocardial I/R injury without compromising the clinical efficacy or to even produce synergy. We summarized the previous efforts, briefly outlined the mechanism of myocardial I/R injury, and focused on exploring the cardioprotective effects and potential mechanisms of all phytochemical types that have been investigated under myocardial I/R injury. Phytochemicals deserve to be utilized as promising therapeutic candidates for further development and research on combating myocardial I/R injury. Nevertheless, more studies are needed to provide a better understanding of the mechanism of myocardial I/R injury treatment using phytochemicals and possible side effects associated with this approach.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Tong Yu
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiang-Lin Xu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Cai
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lin Jin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ru-Li Feng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yan Qu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qian Lin
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
- Jie Wan
| |
Collapse
|
19
|
The Effect of Resveratrol on Sphingosine-1 and Oxidative/ Nitrosative Stress in an Experimental Heart Ischemia Reperfusion Model. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2021-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Objectives: Resveratrol (RSV) is a natural polyphenolic compound showing significant antioxidant effects. In this study, we aimed to investigate the effects of resveratrol on the sphingosine-1-phosphate (S1P) and oxidative stress biomarkers in hearth ischemia-reperfusion (I/R).
Materials and Methods: The biochemical and histopathological effects of RSV on cardiac ischemia-reperfusion injury were investigated through ELISA- and light microscope.
Results: We observed statistically significant differences between the treatment group and the control group in terms of malondialdehyde (MDA) level, catalase (CAT) and superoxide dismutase (SOD) activities (p<0.05). Histopathologically, we also observed decreased Polymorphonuclear Leucocyte (PMNL) infiltration, myocardial edema, miyositolysis in the treatment group compared to the I/R and sham groups.
Conclusion: Resveratrol may play an important role in cardiac I/R injury through its anti-inflammatory and antioxidant effects which were biochemically and histopathologically confirmed in the present study.
Collapse
|
20
|
Zhao Y, Yu S, Huang Z, Chen J, Zhang X, Qu C. Therapeutic Effects of Sirtuin 1 Activator on Glaucoma Mice and the Regulation Mechanism of Mitogen-Activated Protein Kinase Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study focused on the therapeutic effects of resveratrol, sirtuin 1 (Sirt1) activator, on glaucoma, and its influence on mitogen-activated protein kinase (MAPK) pathway. Specifically, C57BL/6 mice were used and the glaucoma mouse model was established by intraperitoneal injection
of N-methyl-D-aspartate (NMDA). According to different treatment methods, they were randomly rolled into 3 groups: control group (no treatment), model group (glaucoma mouse model), and resveratrol (Res) group (intraperitoneal injection of 20 mg/kg resveratrol solution on the basis of model
group). The intraocular pressure was measured, and Sirt1 mRNA and protein expression was detected using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Subsequently, hematoxylin-eosin staining was used to observe histopathological morphology, the immunofluorescence
labeling was used to identify retinal survival ganglia, and Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) and Western blot were for apoptotic cells determination and the expression of c-Jun N-terminal kinase (JNK), extracellular regulated protein
kinase (ERK), and p38 protein in mitogen-activated protein kinase (MAPK) pathway, respectively. The model group showed lower intraocular pressure, Sirt1 mRNA and protein expression, number of survival retinal ganglion cells (RGCs), and thinner retina versus the control group (P <
0.05), but number of apoptotic RGCs and the phosphorylation levels of the three kinds of protein were higher (P < 0.05), and it exhibited no notable difference from the Res group (P > 0.05). Also, compared with the control group, the number of survival RGCs in the Res group
was reduced (P < 0.05), but no notable difference was noted in the retinal thickness, the number of apoptotic RGCs, and the phosphorylation levels of the three kinds of protein (P > 0.05). In conclusion, resveratrol, the Sirt1 activator, can inhibit RGCs apoptosis through
the MAPK signaling pathway and improve the pathological manifestations of glaucoma animal models, thus playing a protective role of the retina.
Collapse
Affiliation(s)
- Yuee Zhao
- Department of Ophthalmology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Songping Yu
- Department of Ophthalmology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Zhenqiang Huang
- Clinical Laboratory, Lishui People’s Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Jiaqi Chen
- Clinical Laboratory, Lishui People’s Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Xuying Zhang
- Clinical Laboratory, Lishui People’s Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Chunsheng Qu
- Clinical Laboratory, Lishui People’s Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| |
Collapse
|
21
|
Raj P, Thandapilly SJ, Wigle J, Zieroth S, Netticadan T. A Comprehensive Analysis of the Efficacy of Resveratrol in Atherosclerotic Cardiovascular Disease, Myocardial Infarction and Heart Failure. Molecules 2021; 26:6600. [PMID: 34771008 PMCID: PMC8587649 DOI: 10.3390/molecules26216600] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/31/2023] Open
Abstract
Atherosclerosis, myocardial infarction (MI) and heart failure (HF) are the main causes of mortality and morbidity around the globe. New therapies are needed to better manage ischemic heart disease and HF as existing strategies are not curative. Resveratrol is a stilbene polyphenolic compound with favorable biological effects that counter chronic diseases. Current evidence suggests that resveratrol is cardioprotective in animal models of atherosclerosis, ischemic heart disease, and HF. Though clinical studies for resveratrol have been promising, evidence remains inadequate to introduce it to the clinical setting. In this narrative review, we have comprehensively discussed the relevant compelling evidence regarding the efficacy of resveratrol as a new therapeutic agent for the management of atherosclerosis, MI and HF.
Collapse
Affiliation(s)
- Pema Raj
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada;
- Agriculture and Agri-Food Canada, Winnipeg, MB R3C 1B2, Canada;
| | | | - Jeffrey Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Shelley Zieroth
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Section of Cardiology, Department of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Netticadan
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada;
- Agriculture and Agri-Food Canada, Winnipeg, MB R3C 1B2, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
22
|
Nan J, Li J, Lin Y, Saif Ur Rahman M, Li Z, Zhu L. The interplay between mitochondria and store-operated Ca 2+ entry: Emerging insights into cardiac diseases. J Cell Mol Med 2021; 25:9496-9512. [PMID: 34564947 PMCID: PMC8505841 DOI: 10.1111/jcmm.16941] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Store‐operated Ca2+ entry (SOCE) machinery, including Orai channels, TRPCs, and STIM1, is key to cellular calcium homeostasis. The following characteristics of mitochondria are involved in the physiological and pathological regulation of cells: mitochondria mediate calcium uptake through calcium uniporters; mitochondria are regulated by mitochondrial dynamic related proteins (OPA1, MFN1/2, and DRP1) and form mitochondrial networks through continuous fission and fusion; mitochondria supply NADH to the electron transport chain through the Krebs cycle to produce ATP; under stress, mitochondria will produce excessive reactive oxygen species to regulate mitochondria‐endoplasmic reticulum interactions and the related signalling pathways. Both SOCE and mitochondria play critical roles in mediating cardiac hypertrophy, diabetic cardiomyopathy, and cardiac ischaemia‐reperfusion injury. All the mitochondrial characteristics mentioned above are determinants of SOCE activity, and vice versa. Ca2+ signalling dictates the reciprocal regulation between mitochondria and SOCE under the specific pathological conditions of cardiomyocytes. The coupling of mitochondria and SOCE is essential for various pathophysiological processes in the heart. Herein, we review the research focussing on the reciprocal regulation between mitochondria and SOCE and provide potential interplay patterns in cardiac diseases.
Collapse
Affiliation(s)
- Jinliang Nan
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| | - Jiamin Li
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| | - Yinuo Lin
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Muhammad Saif Ur Rahman
- Zhejiang University-University of Edinburgh Biomedical Institute, Haining, Zhejiang, China.,Clinical Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengzheng Li
- Department of Neurology, Research Institute of Experimental Neurobiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Lingjun Zhu
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| |
Collapse
|
23
|
Li T, Chen Z, Zhou Y, Li H, Xie J, Li L. Resveratrol Pretreatment Inhibits Myocardial Apoptosis in Rats Following Coronary Microembolization via Inducing the PI3K/Akt/GSK-3β Signaling Cascade. Drug Des Devel Ther 2021; 15:3821-3834. [PMID: 34522086 PMCID: PMC8434837 DOI: 10.2147/dddt.s323555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose Coronary microembolization (CME) is associated with progressive cardiac dysfunction, myocardial inflammation, and apoptosis. Resveratrol (RES) has a considerable role in cardioprotection. However, the contribution and possible mechanisms of RES in CME have not been clearly understood. Methods In the current study, 40 SD rats were randomly selected and categorized into various groups including CME, CME + resveratrol (CME + RES), CME + resveratrol+ LY294002 (CME + RES + LY), and sham groups (10 animals in each group). The inert plastic microspheres (42 μm) were injected into the rats’ left ventricle for developing the CME model. Then resveratrol (25 mg/kg/d) was given to the rats in the CME + RES and CME + RES + LY groups for one week before CME induction. Furthermore, LY294002 (10 mg/kg) was intraperitoneally injected into the rats of the CME + RES + LY group 0.5 hours before CME modeling. The cardiac functions, serum levels of myocardial injury biomarkers, myocardial histopathology, and mRNA and proteins associated with myocardial apoptosis were all assessed 12 hours after surgery. Results The results revealed that resveratrol pretreatment alleviated the CME-induced myocardial damage by improving cardiac dysfunction, and lowering the serum level of myocardial injury biomarkers, myocardial microinfarct size, and cardiomyocyte apoptotic index. Pretreatment with resveratrol reduced the level of proteins and mRNAs associated with the pro-apoptosis in myocardial tissues and increased the levels of proteins and mRNAs associated with the anti-apoptosis. Moreover, the combined treatment of resveratrol and LY294002 reversed the observed protective effects. Conclusion Resveratrol can inhibit cardiomyocyte apoptosis, thus attenuating the CME-induced myocardial injury by triggering the PI3K/Akt/GSK-3β cascade.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Zhiqing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Haoliang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| |
Collapse
|
24
|
Su Z, Guo Y, Huang X, Feng B, Tang L, Zheng G, Zhu Y. Phytochemicals: Targeting Mitophagy to Treat Metabolic Disorders. Front Cell Dev Biol 2021; 9:686820. [PMID: 34414181 PMCID: PMC8369426 DOI: 10.3389/fcell.2021.686820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic disorders include metabolic syndrome, obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular diseases. Due to unhealthy lifestyles such as high-calorie diet, sedentary and physical inactivity, the prevalence of metabolic disorders poses a huge challenge to global human health, which is the leading cause of global human death. Mitochondrion is the major site of adenosine triphosphate synthesis, fatty acid β-oxidation and ROS production. Accumulating evidence suggests that mitochondrial dysfunction-related oxidative stress and inflammation is involved in the development of metabolic disorders. Mitophagy, a catabolic process, selectively degrades damaged or superfluous mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial function. It is considered to be one of the major mechanisms responsible for mitochondrial quality control. Growing evidence shows that mitophagy can prevent and treat metabolic disorders through suppressing mitochondrial dysfunction-induced oxidative stress and inflammation. In the past decade, in order to expand the range of pharmaceutical options, more and more phytochemicals have been proven to have therapeutic effects on metabolic disorders. Many of these phytochemicals have been proved to activate mitophagy to ameliorate metabolic disorders. Given the ongoing epidemic of metabolic disorders, it is of great significance to explore the contribution and underlying mechanisms of mitophagy in metabolic disorders, and to understand the effects and molecular mechanisms of phytochemicals on the treatment of metabolic disorders. Here, we investigate the mechanism of mitochondrial dysfunction in metabolic disorders and discuss the potential of targeting mitophagy with phytochemicals for the treatment of metabolic disorders, with a view to providing a direction for finding phytochemicals that target mitophagy to prevent or treat metabolic disorders.
Collapse
Affiliation(s)
- Zuqing Su
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanru Guo
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiufang Huang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Effects of atorvastatin on sevoflurane postconditioning in in vivo rabbit hearts. J Oral Biosci 2021; 63:253-258. [PMID: 34280533 DOI: 10.1016/j.job.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Myocardial ischemia-reperfusion injury is a phenomenon that promotes myocardial damage when the blood supply returns to the tissue after a period of ischemia. Anesthetic postconditioning involves myocardial protection against myocardial I/R injury. The effects of atorvastatin (ATV) on sevoflurane postconditioning against myocardial ischemia-reperfusion injury have not been thoroughly studied. The present study aimed to investigate if ATV interacts synergistically with sevoflurane postconditioning against myocardial infarction in rabbit hearts in vivo. METHODS Twenty-eight male rabbits underwent 30 min of left anterior descending coronary artery occlusion that was followed by reperfusion for 180 min under ketamine/xylazine (K/X) anesthesia. Rabbits were randomly assigned to four groups that included Group K/X (under K/X anesthesia only), Group POST (sevoflurane exposure at initial reperfusion), Group ATV (ATV 5 mg/kg/day administered before ischemia), and Group ATV + POST (POST intervention with atorvastatin administered once daily for 3 days). At the end of reperfusion, the myocardial infarct size and the area at risk were both measured. RESULTS The mean infarct sizes in the POST, ATV, and ATV + POST groups were significantly smaller compared to those in the K/X group. Furthermore, the mean infarct size in Group ATV + POST was significantly smaller than was that in Group POST and significantly smaller compared to that in Group ATV. CONCLUSION The combination of sevoflurane postconditioning and pre-administration of ATV further reduced the myocardial infarction size compared to that observed with sevoflurane postconditioning alone or ATV alone. Our data suggest that sevoflurane postconditioning and ATV may function additively to enhance cardioprotection.
Collapse
|
26
|
Soltan F, Esmaili Dahej M, Yadegari M, Moradi A, Hafizi Barjin Z, Safari F. Resveratrol Confers Protection Against Ischemia/Reperfusion Injury by Increase of Angiotensin (1-7) Expression in a Rat Model of Myocardial Hypertrophy. J Cardiovasc Pharmacol 2021; 78:e55-e64. [PMID: 34232225 DOI: 10.1097/fjc.0000000000001035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Left ventricular hypertrophy (LVH) makes the heart vulnerable to ischemia/reperfusion (IR) injury. Angiotensin (Ang) (1-7) is recognized as a cardioprotective peptide. We investigated the effect of polyphenol resveratrol on myocardial IR injury after hypertrophy and examined cardiac content of Ang (1-7) and transcription of its receptor (MasR). Rats were divided into sham-operated, LVH, IR, LVH + IR, and resveratrol + LVH + IR groups. Myocardial hypertrophy and IR models were created by abdominal aortic banding and left coronary artery occlusion, respectively. To evaluate the electrocardiogram parameters and incidence of arrhythmias, electrocardiogram was recorded by subcutaneous leads (lead II). Blood pressure was measured through the left carotid artery. Infarct size was determined by the triphenyl tetrazolium chloride staining. The Ang (1-7) level was evaluated by immunohistochemistry. The Mas receptor mRNA level was assessed by the real-time real time reverse transcription polymerase chain reaction technique. QT-interval duration, infarct size, and incidence of ischemia-induced arrhythmia were significantly higher in the LVH + IR group. However, in the resveratrol-treated group, these parameters were decreased significantly. The cardiac level of Ang (1-7) was decreased in untreated hypertrophied hearts (LVH and LVH + IR groups). Pretreatment with resveratrol normalized the cardiac level of Ang (1-7). The mRNA level of Mas receptor was increased in all of hypertrophied hearts in the presence or absence of resveratrol. Resveratrol can decrease IR injury in rats with LVH. The anti-ischemic effect of resveratrol may be related to the enhancement of Ang (1-7)/MasR axis.
Collapse
Affiliation(s)
| | | | | | - Ali Moradi
- Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ; and
| | | | - Fatemeh Safari
- Departments of Physiology
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
27
|
STIM1, STIM2, and PDI Participate in Cellular Fate Decisions in Low Energy Availability Induced by 3-NP in Male Rats. Neurotox Res 2021; 39:1459-1469. [PMID: 34173958 DOI: 10.1007/s12640-021-00388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Impairment in the energetic function of mitochondria is seen in many neurologic disorders like neurodegeneration. It disrupts ATP production, gives rise to oxidative stress, and ultimately challenges the viability of neurons. In this situation, neural cells use complex crosstalk between various subcellular elements to make live-or-die decisions about their fate. This study aimed to describe a part of the molecular changes and the outcome of the cellular decision during an energy crisis in neural cells in a time-dependent manner in the striatum. Adult male rats were treated with single or multiple 3-nitropropionic acid (3-NP) doses, a mitochondrial toxin, for 1 to 5 days. We found that protein disulfide isomerase (PDI) activity was decreased on the third day and remained lower than the control group up to the fifth day. However, on the day 1 and day 2 of 3-NP treatment, the stromal interaction molecule (STIM) 1 and STIM2 significantly decreased. On the third day, STIM1 and STIM2 were increased and reached the level of controls and remained the same up to the fifth day. In this condition, cell death was significantly higher than the controls from the third day up to the fifth day. We also showed that even a single dose of 3-NP reduced the brain volume. These data suggest that the STIM1, STIM2, and PDI activity changes may be involved in the outcome of cellular fate decisions. It also suggests that cells may reduce STIM1 and STIM2 as a defense mechanism against low energy availability.
Collapse
|
28
|
Systematic Pharmacology Reveals the Antioxidative Stress and Anti-Inflammatory Mechanisms of Resveratrol Intervention in Myocardial Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5515396. [PMID: 34093716 PMCID: PMC8163539 DOI: 10.1155/2021/5515396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/10/2021] [Accepted: 04/17/2021] [Indexed: 11/21/2022]
Abstract
Objective To explore the oxidative stress and inflammatory mechanisms of resveratrol intervention in myocardial ischemia-reperfusion injury (MIRI). Methods The potential targets of resveratrol were predicted by PharmMapper. The MIRI genes were collected by Online Mendelian Inheritance in Man (OMIM), GeneCards is used to collect related disease genes, and String is used for enrichment analysis. Animal experiments were then performed to verify the systematic pharmacological results. Hematoxylin-eosin (HE) staining was used to observe myocardial damage. The levels of serum interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in each experimental group were detected. The protein and mRNA expressions of Toll-like receptor 4 (TLR4), nuclear factor-kappa (NF-κB) p65, IL-1β, IL-6, and TNF-α in rat myocardial tissue were measured. Results The results of systematic pharmacology showed that insulin resistance, FoxO signaling pathway, adipocytokine signaling pathway, insulin signaling pathway, PI3K-Akt signaling pathway, ErbB signaling pathway, T-cell receptor signaling pathway, peroxisome proliferator-activated receptors (PPAR) signaling pathway, Ras signaling pathway, TNF signaling pathway, and so on were regulated to improve MIRI. The results of animal experiments showed that the myocardial cells of the sham operation group were arranged in fibrous form, and the myocardial ischemia-reperfusion injury group had obvious cell morphology disorder. Compared with the MIRI group, the resveratrol group had a certain degree of relief. Compared with the MIRI group, serum IL-1β, TNF-α, and IL-6 in the resveratrol group was significantly reduced (P < 0.05), and myocardial tissue TLR4, NF-κB p65, IL-1β, IL-6, and TNF-α mRNA and protein expressions were significantly reduced (P < 0.05). Conclusion Resveratrol can effectively improve MIRI, and its mechanism may be related to antioxidative stress and anti-inflammatory.
Collapse
|
29
|
Ma G, Bi S, Zhang P. Long non-coding RNA MIAT regulates ox-LDL-induced cell proliferation, migration and invasion by miR-641/STIM1 axis in human vascular smooth muscle cells. BMC Cardiovasc Disord 2021; 21:248. [PMID: 34016053 PMCID: PMC8139145 DOI: 10.1186/s12872-021-02048-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Background Atherosclerosis (AS) is a primary cause of coronary heart and vascular diseases. Long non-coding RNAs (lncRNAs) are indicated to regulate AS progression. This study aimed to reveal the biological roles of lncRNA myocardial infarction associated transcript (MIAT) in oxidized low-density lipoprotein (ox-LDL)-induced human vascular smooth muscle cells (VSMCs). Methods The RNA levels of MIAT, microRNA-641 (miR-641) and stromal interaction molecule 1 (STIM1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels were determined by western blot analysis. Cell proliferation was assessed by cell colony formation and DNA content quantitation assays. Cell migration and invasion were demonstrated by wound-healing and transwell assays. The putative binding relationships between miR-641 and MIAT or STIM1 were predicted by starbase online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. Results MIAT and STIM1 expression were substantially upregulated, whereas miR-641 expression was downregulated in ox-LDL-induced VSMCs compared with control groups. Functionally, MIAT silencing attenuated ox-LDL-induced cell proliferation, migration and invasion in VSMCs; however, these effects were impaired by miR-641 inhibitor. STIM1 overexpression also restrained miR-641-mediated impacts on cell proliferation and metastasis under ox-LDL. Mechanistically, MIAT acted as a sponge for miR-641, and miR-641 was associated with STIM1. Conclusions MIAT silencing hindered ox-LDL-induced cell proliferation, migration and invasion by downregulating STIM1 expression through binding to miR-641 in VSMCs. The mechanism provided us with a new target for AS therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02048-9.
Collapse
Affiliation(s)
- Gang Ma
- Deptment of Cardiac Surgury, Zibo Central Hospital, Zibo, 255036, Shandong, People's Republic of China
| | - Shuting Bi
- Deptment of Cardiac Surgury, Zibo Central Hospital, Zibo, 255036, Shandong, People's Republic of China
| | - Pengfei Zhang
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, No.105, Jiefang Road, Jinan, 250013, Shandong, People's Republic of China. .,Department of Cardiac Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
30
|
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M, Zhang D. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B 2021; 11:1098-1116. [PMID: 34094822 PMCID: PMC8144890 DOI: 10.1016/j.apsb.2020.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a global public health problem with high morbidity and mortality. A large number of studies have shown that HF is caused by severe energy metabolism disorders, which result in an insufficient heart energy supply. This deficiency causes cardiac pump dysfunction and systemic energy metabolism failure, which determine the development of HF and recovery of heart. Current HF therapy acts by reducing heart rate and cardiac preload and afterload, treating the HF symptomatically or delaying development of the disease. Drugs aimed at cardiac energy metabolism have not yet been developed. In this review, we outline the main characteristics of cardiac energy metabolism in healthy hearts, changes in metabolism during HF, and related pathways and targets of energy metabolism. Finally, we discuss drugs that improve cardiac function via energy metabolism to provide new research ideas for the development and application of drugs for treating HF.
Collapse
|
31
|
Lele W, Lei L, Liting Q. Resveratrol sensitizes A549 cells to irradiation damage via suppression of store-operated calcium entry with Orai1 and STIM1 downregulation. Exp Ther Med 2021; 21:587. [PMID: 33850559 PMCID: PMC8027717 DOI: 10.3892/etm.2021.10019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023] Open
Abstract
Resveratrol is a natural polyphenol with multiple positive biofunctions and was found to have potential as a radiosensitizer with an intricate molecular mechanism. Store-operated calcium entry (SOCE) is a novel intracellular calcium regulatory pattern that is mainly mediated by iron channels, such as by the stromal interaction molecule (STIM) and calcium release-activated calcium channel protein (Orai) families. SOCE was recently reported to be suppressed via the downregulation of STIM or Orai families for the promotion of tumor cell death induced by resveratrol. In the present study, resveratrol combined with irradiation treatment were found to induce more evident cell damage compared with irradiation treatment alone, as shown with Cell Counting Kit-8 assay and mitochondrial membrane potential detection with rhodamine 123. Additionally, resveratrol combined with irradiation treatment decreased the expression of STIM1 and Orai1, while it had no effects on STIM2, Orai2 and Orai3. Moreover, resveratrol combined with irradiation treatment lead to alleviated thapsigargin-induced SOCE. In addition, overexpression of STIM1 and Orai1 reversed resveratrol-induced SOCE inhibition and reduced death in A549 cells under irradiation. In summary, the present results revealed that resveratrol can significantly enhance the effect of irradiation damage on lung adenocarcinoma A549 cells, and this effect may be mediated by suppression of SOCE with reduced expression of both STIM1 and Orai1.
Collapse
Affiliation(s)
- Wu Lele
- Department of General Medicine, First People's Hospital of Yuhang, Hangzhou, Zhejiang 311100, P.R. China.,Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| | - Lv Lei
- Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China.,Epigenetic Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| | - Qian Liting
- Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China.,Epigenetic Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
32
|
Hu Y, Pan H, Peng J, He J, Tang M, Yan S, Rong J, Li J, Zheng Z, Wang H, Liu Y, Zhong X. Resveratrol inhibits necroptosis by mediating the TNF-α/RIP1/RIP3/MLKL pathway in myocardial hypoxia/reoxygenation injury. Acta Biochim Biophys Sin (Shanghai) 2021; 53:430-437. [PMID: 33686403 DOI: 10.1093/abbs/gmab012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Resveratrol (RES) protects myocardial cells from hypoxia/reoxygenation (H/R)-caused injury. However, the mechanism of this effect has not been clarified. Thus, in this study, we aimed to determine whether RES attenuates H/R-induced cell necroptosis by inhibiting the tumor necrosis factor-alpha (TNF-α)/receptor-interacting protein kinase 1 (RIP1)/RIP3/mixed-lineage kinase domain-like (MLKL) signaling pathway. Rat myocardial ischemia/reperfusion (I/R) models and H/R-injured cell models were constructed. Our study showed that myocardial H/R injury significantly increased the levels of TNF-α, RIP1, RIP3, and p-MLKL/MLKL by western blot analysis. Cell viability assay and 4,6-dianmidino-2-phenylindole (DAPI)-propidium iodide staining showed that the cell viability was decreased, and necroptosis was increased after myocardial H/R injury. The expressions of TNF-α, RIP1, RIP3, and p-MLKL/MLKL in H/R myocardial cells treated with different concentrations of RES were significantly downregulated. In addition, we also found that the cell viability was increased and necroptosis was decreased in dose-dependent manners when H/R-injured cells were treated with RES. In addition, the enhanced effect of TNF-α on necroptosis in myocardial H/R-injured cells was improved by RES, and the effect of RES was confirmed in vivo in I/R rats. This study also showed that RES suppresses necroptosis in H9c2 cells, which may occur through the inhibition of the TNF-α/RIP1/RIP3/MLKL signaling pathway. Our data suggest that necroptosis is a promising therapeutic target and may be a promising therapeutic target for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
- Department of Cardiology, Lixian People's Hospital, Changde 415500, China
| | - Hongwei Pan
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Jianqiang Peng
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Jin He
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Mingxiang Tang
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Sulan Yan
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Jingjing Rong
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Junshan Li
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Zhaofen Zheng
- Department of Cardiology, The People's Hospital of Hunan Province, Changsha 410061, China
| | - Haijun Wang
- Department of Cardiology, Lixian People's Hospital, Changde 415500, China
| | - Yanfu Liu
- Department of Cardiology, Lixian People's Hospital, Changde 415500, China
| | - Xin Zhong
- Department of Ultrasound, The People's Hospital of Hunan Province, Changsha 410061, China
| |
Collapse
|
33
|
do Carmo MAV, Granato D, Azevedo L. Antioxidant/pro-oxidant and antiproliferative activities of phenolic-rich foods and extracts: A cell-based point of view. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:253-280. [PMID: 34507644 DOI: 10.1016/bs.afnr.2021.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phenolic compounds have demonstrated several in vitro beneficial properties by acting as antioxidant and pro-oxidant agents. This chapter approaches the relationship among oxidative stress, cancer, phenolic compounds and antiproliferative activity. Moreover, it discusses in vitro techniques and their biological applications, regarding cell viability and intracellular measure of reactive oxygen assays. The in vitro methods are important tools for screening and understanding the pathways involved on antiproliferative and antioxidant/pro-oxidant effects of phenolic compounds. These findings open avenues for the development of innovative food, chemical structures, technological applications and future perspectives in this research field.
Collapse
Affiliation(s)
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Luciana Azevedo
- Federal University of Alfenas, Nutrition Faculty, Alfenas, MG, Brazil.
| |
Collapse
|
34
|
Liu Y, Hu Y, Xiong J, Zeng X. Overexpression of Activating Transcription Factor 3 Alleviates Cardiac Microvascular Ischemia/Reperfusion Injury in Rats. Front Pharmacol 2021; 12:598959. [PMID: 33679395 PMCID: PMC7934060 DOI: 10.3389/fphar.2021.598959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF3) has been confirmed to be responsive to oxidative stress and to negatively regulate the activity of Toll-like receptor 4 (TLR4). However, the effect of ATF3 on cardiac microvascular ischemia/reperfusion (I/R) injury remains unknown. The GEO2R online tool was employed to obtain differentially expressed genes GSE4105 and GSE122020, in two rat I/R injury microarray datasets. We established a rat myocardial I/R model in vivo, and also generated an in vitro hypoxia/reoxygenation (H/R) model of cardiomyoblast H9c2 cells. Overexpression of ATF3 was achieved by adenoviral-mediated gene transfer (Ad-ATF3). Rats were randomly divided into four groups: sham, I/R, I/R + Ad-Lacz (as a control), and I/R + Ad-ATF3. ELISA, CCK-8, DCFH-DA probe, qRT-PCR and Western blotting were used to determine the expression of ATF3, oxidative indices, cellular injury and TLR4/NF-κB pathway-associated proteins. Transmission electron microscopy, immunohistochemistry and immunofluorescence were used to detect the leukocyte infiltration and the alteration of microvascular morphology and function in vivo. Echocardiographic and hemodynamic data were also obtained. Bioinformatics analysis revealed that ATF3 was upregulated in I/R myocardia in two independent rat myocardial I/R models. Cardiac microvascular I/R injury included leukocyte infiltration, microvascular integrity disruption, and microvascular perfusion defect, which eventually resulted in the deterioration of hemodynamic parameters and heart function. Ad-ATF3 significantly restored microvascular function, increased cardiac microvascular perfusion, and improved hemodynamic parameters and heart function. Mechanistically, Ad-ATF3 ameliorated oxidative stress, inhibited TLR4/NF-κB pathway activation and down-regulated the expression of downstream proinflammatory cytokines in I/R myocardium in vivo and in H/R H9c2 cells in vitro. ATF3 overexpression protects against cardiac microvascular I/R injury in part by inhibiting the TLR4/NF-κB pathway and oxidative stress.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yisen Hu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Jingjie Xiong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xiaocong Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| |
Collapse
|