1
|
Hu Y, Zhou C, Zhong Q, Li X, Li J, Shi Y, Ma X, Jiang D, Wang Y, Zhuang S, Liu N. LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates epithelial-mesenchymal transition of peritoneal mesothelial cells and M2 macrophage polarization. Ren Fail 2024; 46:2392849. [PMID: 39165231 PMCID: PMC11340223 DOI: 10.1080/0886022x.2024.2392849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
AIMS To investigate the effects and mechanisms of LCZ696, an angiotensin receptor-neprilysin inhibitor (ARNI), on epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells and on macrophage M2 polarization. METHODS We examined the effects of LCZ696 in a 4.25% high glucose peritoneal dialysis fluid (PDF)-induced peritoneal fibrosis (PF) mouse model, and explored the mechanisms of LCZ696 on human peritoneal mesothelial cells (HPMCs) stimulated by TGF-β1 (5 ng/mL) and on Raw264.7 cells stimulated by IL-4 (10 ng/mL). To further elucidate the mechanism, we treated HPMCs with the conditioned medium of Raw264.7 cells. RESULTS LCZ696 effectively improved PF and inhibited the process of EMT in PDF mice. In vitro, LCZ696 also significantly alleviated the EMT of TGF-β1 induced HPMCs, although there was no statistically significant difference when compared to the Valsartan treatment group. Moreover, LCZ696 ameliorates the increased expression of Snail and Slug, two nuclear transcription factors that drive the EMT. Mechanistically, TGF-β1 increased the expression of TGFβRI, p-Smad3, p-PDGFRβ and p-EGFR, while treatment with LCZ696 abrogated the activation of TGF-β/Smad3, PDGFRβ and EGFR signaling pathways. Additionally, exposure of Raw264.7 to IL-4 results in increasing expression of Arginase-1, CD163 and p-STAT6. Treatment with LCZ696 inhibited IL-4-elicited M2 macrophage polarization by inactivating the STAT6 signaling pathway. Furthermore, we observed that LCZ696 inhibits EMT by blocking TGF-β1 secretion from M2 macrophages. CONCLUSION Our study demonstrated that LCZ696 improves PF and ameliorates TGF-β1-induced EMT of HPMCs by blocking TGF-β/Smad3, PDGFRβ and EGFR pathways. Meanwhile, LCZ696 also inhibits M2 macrophage polarization by regulating STAT6 pathway.
Collapse
Affiliation(s)
- Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Canxin Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Zhong
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xialin Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Daofang Jiang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Duysak T, Kim K, Yun M, Jeong JH, Choy HE. Enhanced anti-cancer efficacy of arginine deaminase expressed by tumor-seeking Salmonella Gallinarum. Oncogene 2024; 43:3378-3387. [PMID: 39322639 DOI: 10.1038/s41388-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Amino acid deprivation, particularly of nonessential amino acids that can be synthesized by normal cells but not by cancer cells with specific defects in the biosynthesis pathway, has emerged as a potential strategy in cancer therapeutics. In normal cells, arginine is synthesized from citrulline in two steps via two enzymes: argininosuccinate synthetase (ASS1) and argininosuccinate lyase. Several cancer cells exhibit arginine auxotrophy due to the loss or down-regulation of ASS1. These cells undergo starvation-induced cell death in the presence of arginine-degrading enzymes such as arginine deaminase (ADI). Thus, ADI has emerged as a potential therapeutic in cancer therapy. However, the use of ADI has two major disadvantages: ADI of bacterial origin is strongly antigenic in mammals, and ADI has a short circulation half-life (∼5 h). In this study, we engineered tumor-targeting Salmonella Gallinarum to express and secrete ADI and deployed this strain into mice implanted with ASS1-defective mouse colorectal cancer (CT26) through an intravenous route. A notable antitumor effect was observed, suggesting that the disadvantages were overcome as ADI was expressed constitutively by tumor-targeting bacteria. A combination with chloroquine, which inhibits the induction of autophagy, further enhanced the effect. Anti-cancer effect of Salmonella Gallinarum expressing an arginine deiminase (ADI) on arginine-dependent tumors in situ.
Collapse
Affiliation(s)
- Taner Duysak
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Korea
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Korea
| | - Kwangsoo Kim
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Korea
| | - Misun Yun
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Korea.
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Korea.
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Korea.
| |
Collapse
|
3
|
Roberts ER, Bhurke AV, Ganeshkumar S, Gunewardena S, Arora R, Chennthukuzhi VM. Loss of PRICKLE1 leads to abnormal endometrial epithelial architecture, decreased embryo implantation, and reduced fertility in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.605120. [PMID: 39211179 PMCID: PMC11360957 DOI: 10.1101/2024.08.06.605120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Successful embryo implantation requires coordinated changes in the uterine luminal epithelium, including structural adaptations, apical-basal polarity shifts, intrauterine fluid resorption, and cellular communication. Planar cell polarity (PCP) proteins, essential for cell organization, are understudied in the context of uterine physiology and implantation. PRICKLE proteins, components of PCP, are suggested to play critical roles in epithelial polarization and tissue morphogenesis. However, their function in the polarized unicellular layer of endometrial epithelium, which supports embryo implantation, is unknown. We developed an endometrial epithelial-specific knockout (cKO) of mouse Prickle1 using Lactoferrin-iCre to investigate its's role in uterine physiology. Prickle1 ablation in the endometrial epithelium of mice resulted in decreased embryo implantation by gestational day 4.5 leading to lower fertility. Three-dimensional imaging of the uterus revealed abnormal luminal folding, impaired luminal closure, and altered glandular length in mutant uteri. Additionally, we observed decreased aquaporin-2 expression, disrupted cellular architecture, and altered E-Cadherin expression and localization in the mutant uterine epithelium. Evidence of epithelial-mesenchymal transition (EMT) was found within luminal epithelial cells, further linking PRICKLE1 loss to uterine pathologies. Furthermore, altered polarity of cell division leading to incomplete cytokinesis and increase in binuclear or multinucleated cells suggests a crucial role for PRICKLE1 in the maintenance of epithelial architecture. Our findings highlight PRICKLE1's critical role in the PCP pathway within the uterus, revealing its importance in the molecular and cellular responses essential for successful pregnancy and fertility. Significance Statement Conservative cell division is essential to maintain apical-basal polarity and proper epithelial function in the uterus. Wnt/ Planar cell polarity signaling molecules are hypothesized to provide the spatial cues to organize unicellular, 2-dimensional sheet of epithelium in a plane orthogonal to the apical-basal polarity. Conditional ablation of Prickle1 , a crucial Wnt/ PCP gene, in mouse uterine epithelium results in aberrant expression of epithelial cadherin, altered plane of cell division, incomplete cytokinesis leading to binucleated/ multinucleated cells, epithelial - mesenchymal transition, and defective implantation. Role of Prickle1 in maintaining symmetric uterine epithelial cell division and tissue architecture is unique among Wnt/PCP genes, including previously described mouse models for Vangl2, Ror2, and Wnt5a . Classification: Biological Sciences (Major) Cell Biology (Minor), Physiology (Minor).
Collapse
|
4
|
Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis 2024; 15:553. [PMID: 39090116 PMCID: PMC11294586 DOI: 10.1038/s41419-024-06930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengdi Fu
- Department of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiyao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Ma X, Chang J, Sun X, Zhou C, Zhao P, Yang Y. (S)-10-Hydroxycamptothecin Inhibits EMT-evoked Osteosarcoma Cell Growth and Metastasis by Activating the HIPPO Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:2239-2248. [PMID: 38369725 DOI: 10.2174/0113862073263020231220043405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND Osteosarcoma is the most common primary bone cancer in children and adolescents with high metastatic ability. AIM This study aimed to explore the inhibitory effects of (S)-10-hydroxycamptothecin (HCPT) on osteosarcoma cell growth and metastasis as well as the underlying mechanism. METHODS The osteosarcoma cells of 143B and U-2 OS (U-2), treated with HCPT (20, 100, or 300 nM), underwent detections, such as CCK-8, flow cytometry, Transwell, wound healing, and immunoblotting. EMT-related key proteins, like N-cadherin, Snail, and Vimentin, were found to be down-regulated, while E-cadherin was up-regulated dose-dependently in HCPT-exposed 143B and U-2 cells. Additionally, incubation of 143B and U-2 cells with HCPT for 3 hours dosedependently reduced the expression ratios of p-LATS1/LATS1, p-MST1/MST1, p-YAP/YAP, and p-TAZ/TAZ. RESULTS Taken together, our study has demonstrated HCPT to inhibit osteosarcoma growth and metastasis potentially by activating the HIPPO signaling pathway and reversing EMT. CONCLUSION HCPT might be a candidate agent for the prevention and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xiaoping Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Xingyuan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Chujie Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Peng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| |
Collapse
|
6
|
Li C, Chen B, Zhang J, Yang J, Guo M, Ren Y, Zhou Z, Fung KM, Li M, Zhang L, Liu Z. SEM1 promotes tumor progression of glioblastoma via activating the akt signaling pathway. Cancer Lett 2023; 577:216368. [PMID: 37652287 DOI: 10.1016/j.canlet.2023.216368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION SEM1, a 26 S proteasome complex subunit, is an essential regulator of tumor growth. However, the underlying mechanism of SEM1 mediated glioma progression remains to be elucidated. METHODS Data from bulk-tumor, single-cell, and spatial sequencing were analyzed to reveal correlations between SEM1 and clinical traits, cell types, and functional enrichment in gliomas. Immunohistochemistry was used to assess SEM1 expression. MTT, flow cytometry, apoptosis signature, epithelial-mesenchymal transition signature, Transwell, and organoid assays were used to study SEM1's effect on the malignant behavior of glioma (U251 and LN229) cells. Weighted gene co-expression network analysis (WGCNA) was conducted to construct an SEM1-mediated malignant regulatory network. Accordingly, survival analysis, therapeutic response, drug prediction, and molecular docking analyses were performed. RESULTS High SEM1 expression was observed in gliomas and correlated with worse clinical features and prognosis. Moreover, SEM1 is mainly localized in malignant cells (glioma cells). SEM1 knockout inhibited the proliferation, invasion, and migration of glioma cells and promoted their apoptosis. We also constructed an SEM1 malignant regulatory network that was bridged by the PI3K-Akt pathway. The network had a high prognostic value. Finally, drugs potentially targeting SEM1 were screened and docked to SEM1. CONCLUSIONS SEM1 is critically involved in the proliferation, apoptosis, invasion, and migration of glioma cells. The SEM1 malignant regulatory network shows high significance for the prognosis and treatment of gliomas.
Collapse
Affiliation(s)
- Chuntao Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Junxia Zhang
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Jingxuan Yang
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Muzi Guo
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yu Ren
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zhijun Zhou
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Min Li
- Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Medicine, And Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
7
|
Wang P, Song Y, Li H, Zhuang J, Shen X, Yang W, Mi R, Lu Y, Yang B, Ma M, Shen H. SIRPA enhances osteosarcoma metastasis by stabilizing SP1 and promoting SLC7A3-mediated arginine uptake. Cancer Lett 2023; 576:216412. [PMID: 37769797 DOI: 10.1016/j.canlet.2023.216412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
The function of signal regulatory protein alpha (SIRPA) has been well studied in macrophages and dendritic cells, but relatively less in tumors. Notably, SIRPA is upregulated in osteosarcoma tissues, particularly in metastatic tissues, and is associated with unfavorable clinical outcomes. Knockdown of SIRPA impaired OS cell migration by decreasing specificity protein 1 (SP1) stability and arginine uptake. Importantly, SIRPA phosphorylated SP1 at threonine 278 (Thr278) through extracellular signal-regulated kinase (ERK) activation to protect SP1 from proteasomal degradation. In addition, SP1 increased solute carrier family 7 member 3 (SLC7A3) expression by binding to the SLC7A3 promoter and increased the capability of arginine uptake, thereby facilitating OS cell migration. More interestingly, arginine promoted the stability of SP1 in an ERK-independent manner and thus formed the "SP1 stabilization circle". Combined treatment with the anti-SIRPA antibody and arginase, which blocked the circle, impaired tumor metastasis in mice bearing xenografts formed from SIRPA-overexpressing cells. In summary, our study demonstrates that the upregulation of SIRPA promotes OS metastasis via the "SP1 stabilization circle" and SLC7A3-mediated arginine uptake, which might serve as a target for OS treatment.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedics, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Yihui Song
- Department of Orthopedics, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Hongyu Li
- Department of Orthopedics, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Jiahao Zhuang
- Department of Orthopedics, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Xin Shen
- Department of Orthopedics, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Yixuan Lu
- Center for Biotherapy, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Biao Yang
- Department of Orthopedics, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Mengjun Ma
- Department of Orthopedics, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China.
| |
Collapse
|
8
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Su WY, Tian LY, Guo LP, Huang LQ, Gao WY. PI3K signaling-regulated metabolic reprogramming: From mechanism to application. Biochim Biophys Acta Rev Cancer 2023; 1878:188952. [PMID: 37499988 DOI: 10.1016/j.bbcan.2023.188952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Oncogenic signaling involved in tumor metabolic reprogramming. Tumorigenesis was not only determined by the mutations or deletion of oncogenes but also accompanied by the reprogramming of cellular metabolism. Metabolic alterations play a crucial regulatory role in the development and progression of tumors. Oncogenic PI3K/AKT signaling mediates the metabolic switch in cancer cells and immune cells in the tumor microenvironment. PI3K/AKT and its downstream effector branch off and connect to multiple steps of metabolism, such as glucose, lipids, and amino acids. Thus, PI3K inhibitor could effectively regulate metabolic pathway and impede the oncogenic process and some key metabolic proteins or critical enzymes also constitute biomarkers for tumor diagnosis and treatment. In the current review, we summarize the significant effect of PI3K/AKT signaling toward tumor metabolism, it enables us to obtain the better understanding for this interaction and develop more effective therapeutic strategies targeting cancer cell metabolism.
Collapse
Affiliation(s)
- Wen Ya Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lan Pin Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Qi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wen Yuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
10
|
Rogers LC, Kremer JC, Brashears CB, Lin Z, Hu Z, Bastos AC, Baker A, Fettig N, Zhou D, Shoghi KI, Dehner CA, Chrisinger JS, Bomalaski JS, Garcia BA, Oyama T, White EP, Van Tine BA. Discovery and Targeting of a Noncanonical Mechanism of Sarcoma Resistance to ADI-PEG20 Mediated by the Microenvironment. Clin Cancer Res 2023; 29:3189-3202. [PMID: 37339179 PMCID: PMC10425734 DOI: 10.1158/1078-0432.ccr-22-2642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/11/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Many cancers lack argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of arginine biosynthesis. This deficiency causes arginine auxotrophy, targetable by extracellular arginine-degrading enzymes such as ADI-PEG20. Long-term tumor resistance has thus far been attributed solely to ASS1 reexpression. This study examines the role of ASS1 silencing on tumor growth and initiation and identifies a noncanonical mechanism of resistance, aiming to improve clinical responses to ADI-PEG20. EXPERIMENTAL DESIGN Tumor initiation and growth rates were measured for a spontaneous Ass1 knockout (KO) murine sarcoma model. Tumor cell lines were generated, and resistance to arginine deprivation therapy was studied in vitro and in vivo. RESULTS Conditional Ass1 KO affected neither tumor initiation nor growth rates in a sarcoma model, contradicting the prevalent idea that ASS1 silencing confers a proliferative advantage. Ass1 KO cells grew robustly through arginine starvation in vivo, while ADI-PEG20 remained completely lethal in vitro, evidence that pointed toward a novel mechanism of resistance mediated by the microenvironment. Coculture with Ass1-competent fibroblasts rescued growth through macropinocytosis of vesicles and/or cell fragments, followed by recycling of protein-bound arginine through autophagy/lysosomal degradation. Inhibition of either macropinocytosis or autophagy/lysosomal degradation abrogated this growth support effect in vitro and in vivo. CONCLUSIONS Noncanonical, ASS1-independent tumor resistance to ADI-PEG20 is driven by the microenvironment. This mechanism can be targeted by either the macropinocytosis inhibitor imipramine or the autophagy inhibitor chloroquine. These safe, widely available drugs should be added to current clinical trials to overcome microenvironmental arginine support of tumors and improve patient outcomes.
Collapse
Affiliation(s)
- Leonard C. Rogers
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeff C. Kremer
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Caitlyn B. Brashears
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri
| | - Zhixian Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Alliny C.S. Bastos
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Adriana Baker
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Nicole Fettig
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Dong Zhou
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Kooresh I. Shoghi
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Carina A. Dehner
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - John S.A. Chrisinger
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | | | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri
| | - Toshinao Oyama
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Eileen P. White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey
| | - Brian A. Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
- Division of Pediatric Hematology/Oncology, St. Louis Children's Hospital, St. Louis, Missouri
- Siteman Cancer Center, St. Louis, Missouri
| |
Collapse
|
11
|
Wang F, Yi J, Chen Y, Bai X, Lu C, Feng S, Zhou X. PRSS2 regulates EMT and metastasis via MMP-9 in gastric cancer. Acta Histochem 2023; 125:152071. [PMID: 37331089 DOI: 10.1016/j.acthis.2023.152071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Serine protease 2 (PRSS2) is upregulated in gastric cancer tissues, correlates with poor prognosis and promotes migration and invasion of gastric cancer cells. However, the exact mechanism by which PRSS2 promotes metastasis in gastric cancer is unclear. We examined serum PRSS2 levels in healthy controls and gastric cancer patients by enzyme linked immunosorbent assay (ELISA) and analyzed the correlation between PRSS2 serum level with the clinicopathological characteristics of gastric cancer patients and matrix metalloproteinase-9 (MMP-9) expression. A lentiviral MMP-9 overexpression vector was constructed and used to transfect gastric cancer cells with stable silencing of PRSS2, and migration, invasion and epithelial-mesenchymal transition (EMT) of gastric cancer cells were examined. High serum PRSS2 levels were detected in gastric cancer patients and associated with lymphatic metastasis and TNM stage. Serum PRSS2 was positively correlated with serum MMP-9 level. PRSS2 silencing inhibited EMT, and knock-down of PRSS2 partially abrogated cell metastasis and EMT caused by overexpression of MMP-9. These results suggest that PRSS2 promotes the migration and invasion of gastric cancer cells through EMT induction by MMP-9. Our findings suggest that PRSS2 may be a potential early diagnostic marker and therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Fei Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianfeng Yi
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiang Bai
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Chunfeng Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shichun Feng
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
12
|
Perazzoli G, García-Valdeavero OM, Peña M, Prados J, Melguizo C, Jiménez-Luna C. Evaluating Metabolite-Based Biomarkers for Early Diagnosis of Pancreatic Cancer: A Systematic Review. Metabolites 2023; 13:872. [PMID: 37512579 PMCID: PMC10384620 DOI: 10.3390/metabo13070872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with five-year survival rates around 10%. The only curative option remains complete surgical resection, but due to the delay in diagnosis, less than 20% of patients are eligible for surgery. Therefore, discovering diagnostic biomarkers for early detection is crucial for improving clinical outcomes. Metabolomics has become a powerful technology for biomarker discovery, and several metabolomic-based panels have been proposed for PDAC diagnosis, but these advances have not yet been translated into the clinic. Therefore, this review focused on summarizing metabolites identified for the early diagnosis of PDAC in the last five years. Bibliographic searches were performed in the PubMed, Scopus and WOS databases, using the terms "Biomarkers, Tumor", "Pancreatic Neoplasms", "Early Diagnosis", "Metabolomics" and "Lipidome" (January 2018-March 2023), and resulted in the selection of fourteen original studies that compared PDAC patients with subjects with other pancreatic diseases. These investigations showed amino acid and lipid metabolic pathways as the most commonly altered, reflecting their potential for biomarker research. Furthermore, other relevant metabolites such as glucose and lactate were detected in the pancreas tissue and body fluids from PDAC patients. Our results suggest that the use of metabolomics remains a robust approach to improve the early diagnosis of PDAC. However, these studies showed heterogeneity with respect to the metabolomics techniques used and further studies will be needed to validate the clinical utility of these biomarkers.
Collapse
Affiliation(s)
- Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Olga M García-Valdeavero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
13
|
Yang J, Ren B, Ren J, Yang G, Fang Y, Wang X, Zhou F, You L, Zhao Y. Epigenetic reprogramming-induced guanidinoacetic acid synthesis promotes pancreatic cancer metastasis and transcription-activating histone modifications. J Exp Clin Cancer Res 2023; 42:155. [PMID: 37370109 DOI: 10.1186/s13046-023-02698-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/03/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) tends to undergo distant metastasis, especially liver metastasis, leading to a poor prognosis. Metabolic remodelling and epigenetic reprogramming are two important hallmarks of malignant tumours and participate in regulating PDAC tumorigenesis and metastasis. However, the interaction between these two processes during PDAC metastasis has not been fully elucidated. METHODS We performed metabolomics analysis to identify the critical metabolites associated with PDAC liver metastasis and focused on guanidinoacetic acid (GAA). Intracellular GAA content was significantly increased in liver metastatic PDAC cells compared to primary cancer cells in mouse xenograft tumour models. The effects of GAA supplementation and glycine amidinotransferase (GATM) knockdown on PDAC metastasis were assessed by analysing cell migration, filopodia formation, epithelial-mesenchymal transition (EMT), and in vivo metastasis in different cell and animal models. Next, ChIP‒qPCR, 3C‒qPCR, and CRISPRi/dCas9-KRAB experiments were used to validate the "epigenome-metabolome" mechanism. Finally, the results of in vitro approaches, including RNA-seq, CUT&RUN, RT‒qPCR, and western blot analyses, as well as luciferase reporter gene assay and transwell assay, revealed the GAA-c-Myc-HMGA axis and transcription-activating histone modifications reprogramming. RESULTS A high level of intracellular GAA was associated with PDAC liver metastasis. GAA could promote the migration, EMT, and liver metastasis of pancreatic cancer cells in vitro and in vivo. Next, we explored the role of GATM-mediated de novo GAA synthesis in pancreatic cancer metastasis. High expression of GATM was positively correlated with advanced N stage in PDAC. Knockdown of GATM significantly reduced the intracellular level of GAA, suppressed EMT, and inhibited PDAC liver metastasis, and these effects were attenuated by GAA supplementation. Mechanistically, we identified the active enhancers looped to the Gatm gene locus that promoted GATM expression and PDAC liver metastasis. Furthermore, we found that GAA promoted cell migration and EMT by regulating c-Myc-mediated high mobility group AT-hook protein expression. Moreover, GAA increased the H3K4me3 modification level by upregulating histone methyltransferases, which induced the transcription of metastasis-related genes, including Myc. CONCLUSIONS These findings revealed the critical role of the epigenome-metabolome interaction in regulating PDAC liver metastasis and suggested potential therapeutic strategies targeting GAA metabolism and epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
14
|
Bandi DSR, Sarvesh S, Farran B, Nagaraju GP, El-Rayes BF. Targeting the metabolism and immune system in pancreatic ductal adenocarcinoma: Insights and future directions. Cytokine Growth Factor Rev 2023; 71-72:26-39. [PMID: 37407355 DOI: 10.1016/j.cytogfr.2023.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), presents a challenging landscape due to its complex nature and the highly immunosuppressive tumor microenvironment (TME). This immunosuppression severely limits the effectiveness of immune-based therapies. Studies have revealed the critical role of immunometabolism in shaping the TME and influencing PDAC progression. Genetic alterations, lysosomal dysfunction, gut microbiome dysbiosis, and altered metabolic pathways have been shown to modulate immunometabolism in PDAC. These metabolic alterations can significantly impact immune cell functions, including T-cells, myeloid-derived suppressor cells (MDSCs), and macrophages, evading anti-tumor immunity. Advances in immunotherapy offer promising avenues for overcoming immunosuppressive TME and enhancing patient outcomes. This review highlights the challenges and opportunities for future research in this evolving field. By exploring the connections between immunometabolism, genetic alterations, and the microbiome in PDAC, it is possible to tailor novel approaches capable of improving immunotherapy outcomes and addressing the limitations posed by immunosuppressive TME. Ultimately, these insights may pave the way for improved treatment options and better outcomes for PDAC patients.
Collapse
Affiliation(s)
- Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Sujith Sarvesh
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
15
|
Fu S, Xu S, Zhang S. The role of amino acid metabolism alterations in pancreatic cancer: From mechanism to application. Biochim Biophys Acta Rev Cancer 2023; 1878:188893. [PMID: 37015314 DOI: 10.1016/j.bbcan.2023.188893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
The incidence of pancreatic cancer is increasing in both developed and developing Nations. In recent years, various research evidence suggested that reprogrammed metabolism may play a key role in pancreatic cancer tumorigenesis and development. Therefore, it has great potential as a diagnostic, prognostic and therapeutic target. Amino acid metabolism is deregulated in pancreatic cancer, and changes in amino acid metabolism can affect cancer cell status, systemic metabolism in malignant tumor patients and mistakenly involved in different biological processes including stemness, proliferation and growth, invasion and migration, redox state maintenance, autophagy, apoptosis and even tumor microenvironment interaction. Generally, the above effects are achieved through two pathways, energy metabolism and signal transduction. This review aims to highlight the current research progress on the abnormal alterations of amino acids metabolism in pancreatic cancer, how they affect tumorigenesis and development of pancreatic cancer and the application prospects of them as diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Shenao Fu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shaokang Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
16
|
RIOK3 promotes mTORC1 activation by facilitating SLC7A2-mediated arginine uptake in pancreatic ductal adenocarcinoma. Aging (Albany NY) 2023; 15:1039-1051. [PMID: 36880835 PMCID: PMC10008507 DOI: 10.18632/aging.204528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis. Reprogramming of amino acid metabolism is one of the characteristics of PDAC, in which arginine metabolism is significantly altered in PDAC cells and is involved in important signaling pathways. Current studies have identified arginine deprivation as a potential strategy for PDAC treatment. In this study, we performed Liquid Chromatograph Mass Spectrometer (LC-MS)-based non-targeted metabolomic analysis on PDAC cell lines with stable Rio Kinase 3 (RIOK3) knockdown and PDAC tissues with different RIOK3 expressions and found that RIOK3 expression was significantly correlated with arginine metabolism in PDAC. Subsequent RNA sequencing (RNA-Seq) and Western blot analysis showed that RIOK3 knockdown significantly inhibited the expression of arginine transporter solute carrier family 7 member 2 (SLC7A2). Further studies revealed that RIOK3 promoted arginine uptake, mechanistic target of rapamycin complex 1 (mTORC1) activation, cell invasion, and metastasis in PDAC cells via SLC7A2. Finally, we found that patients with high expression of both RIOK3 and infiltrating Treg cells had a worse prognosis. Overall, our study found that RIOK3 in PDAC cells promotes arginine uptake and mTORC1 activation through upregulation of SLC7A2 expression, and also provides a new therapeutic target for therapeutic strategies targeting arginine metabolism.
Collapse
|
17
|
Zuzčák M, Trnka J. Cellular metabolism in pancreatic cancer as a tool for prognosis and treatment (Review). Int J Oncol 2022; 61:93. [PMID: 35730611 PMCID: PMC9256076 DOI: 10.3892/ijo.2022.5383] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Pancreatic cancer (PC) has one of the highest fatality rates and the currently available therapeutic options are not sufficient to improve its overall poor prognosis. In addition to insufficient effectiveness of anticancer treatments, the lack of clear early symptoms and early metastatic spread maintain the PC survival rates at a low level. Metabolic reprogramming is among the hallmarks of cancer and could be exploited for the diagnosis and treatment of PC. PC is characterized by its heterogeneity and, apart from molecular subtypes, the identification of metabolic subtypes in PC could aid in the development of more individualized therapeutic approaches and may lead to improved clinical outcomes. In addition to the deregulated utilization of glucose in aerobic glycolysis, PC cells can use a wide range of substrates, including branched‑chain amino acids, glutamine and lipids to fulfil their energy requirements, as well as biosynthetic needs. The tumor microenvironment in PC supports tumor growth, metastatic spread, treatment resistance and the suppression of the host immune response. Moreover, reciprocal interactions between cancer and stromal cells enhance their metabolic reprogramming. PC stem cells (PCSCs) with an increased resistance and distinct metabolic properties are associated with disease relapses and cancer spread, and represent another significant candidate for therapeutic targeting. The present review discusses the metabolic signatures observed in PC, a disease with a multifaceted and often transient metabolic landscape. In addition, the metabolic pathways utilized by PC cells, as well as stromal cells are discussed, providing examples of how they could present novel targets for therapeutic interventions and elaborating on how interactions between the various cell types affect their metabolism. Furthermore, the importance of PCSCs is discussed, focusing specifically on their metabolic adaptations.
Collapse
Affiliation(s)
- Michal Zuzčák
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
- Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
- Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| |
Collapse
|
18
|
Sun N, Zhao X. Argininosuccinate synthase 1, arginine deprivation therapy and cancer management. Front Pharmacol 2022; 13:935553. [PMID: 35910381 PMCID: PMC9335876 DOI: 10.3389/fphar.2022.935553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is an emerging hallmark of tumor cells. In order to survive in the nutrient-deprived environment, tumor cells rewire their metabolic phenotype to provide sufficient energy and build biomass to sustain their transformed state and promote malignant behaviors. Amino acids are the main compositions of protein, which provide key intermediate substrates for the activation of signaling pathways. Considering that cells can synthesize arginine via argininosuccinate synthase 1 (ASS1), arginine is regarded as a non-essential amino acid, making arginine depletion as a promising therapeutic strategy for ASS1-silencing tumors. In this review, we summarize the current knowledge of expression pattern of ASS1 and related signaling pathways in cancer and its potential role as a novel therapeutic target in cancer. Besides, we outline how ASS1 affects metabolic regulation and tumor progression and further discuss the role of ASS1 in arginine deprivation therapy. Finally, we review approaches to target ASS1 for cancer therapies.
Collapse
Affiliation(s)
- Naihui Sun
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Zhao
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xing Zhao,
| |
Collapse
|
19
|
Schniers BK, Wachtel MS, Sharma M, Korac K, Rajasekaran D, Yang S, Sniegowski T, Ganapathy V, Bhutia YD. Deletion of Slc6a14 reduces cancer growth and metastatic spread and improves survival in KPC mouse model of spontaneous pancreatic cancer. Biochem J 2022; 479:719-730. [PMID: 35212370 PMCID: PMC9022989 DOI: 10.1042/bcj20210855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is lethal. There is a dire need for better therapeutic targets. Cancer cells have increased demand for sugars, amino acids, and lipids and therefore up-regulate various nutrient transporters to meet this demand. In PDAC, SLC6A14 (an amino acid transporter (AAT)) is up-regulated, affecting overall patient survival. Previously we have shown using in vitro cell culture models and in vivo xenograft mouse models that pharmacological inhibition of SLC6A14 with α-methyl-l-tryptophan (α-MLT) attenuates PDAC growth. Mechanistically, blockade of SLC6A14-mediated amino acid transport with α-MLT leads to amino acid deprivation, eventually inhibiting mTORC1 signaling pathway, in tumor cells. Here, we report on the effect of Slc6a14 deletion on various parameters of PDAC in KPC mice, a model for spontaneous PDAC. Pancreatic tumors in KPC mice show evidence of Slc6a14 up-regulation. Deletion of Slc6a14 in this mouse attenuates PDAC growth, decreases the metastatic spread of the tumor, reduces ascites fluid accumulation, and improves overall survival. At the molecular level, we show lower proliferation index and reduced desmoplastic reaction following Slc6a14 deletion. Furthermore, we find that deletion of Slc6a14 does not lead to compensatory up-regulation in any of the other amino transporters. In fact, some of the AATs are actually down-regulated in response to Slc6a14 deletion, most likely related to altered mTORC1 signaling. Taken together, these results underscore the positive role SLC6A14 plays in PDAC growth and metastasis. Therefore, SLC6A14 is a viable drug target for the treatment of PDAC and also for any other cancer that overexpresses this transporter.
Collapse
Affiliation(s)
- Bradley K. Schniers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Mitchell S. Wachtel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Meenu Sharma
- Department of Surgical Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Ksenija Korac
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Devaraja Rajasekaran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Shengping Yang
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, U.S.A
| | - Tyler Sniegowski
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| |
Collapse
|
20
|
Zhang JY, Du Y, Gong LP, Shao YT, Wen JY, Sun LP, He D, Guo JR, Chen JN, Shao CK. EBV-Induced CXCL8 Upregulation Promotes Vasculogenic Mimicry in Gastric Carcinoma via NF-κB Signaling. Front Cell Infect Microbiol 2022; 12:780416. [PMID: 35321317 PMCID: PMC8936189 DOI: 10.3389/fcimb.2022.780416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 12/26/2022] Open
Abstract
Epstein–Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a distinct entity with a conspicuous tumor microenvironment compared with EBV-negative gastric carcinoma. However, the exact role of EBV in gastric carcinogenesis remains elusive. In the present study, we found that EBV upregulated CXCL8 expression, and CXCL8 significantly promoted vasculogenic mimicry (VM) formation of gastric carcinoma (GC) cells. In accordance with these observations, overexpression of CXCL8 increased cell proliferation and migration of AGS and BGC823 cells, while knockdown of CXCL8 with siRNA inhibited cell proliferation and migration of AGS-EBV cells. In addition, activation of NF-κB signaling was involved in VM formation induced by CXCL8, which was blocked by NF-κB inhibitors BAY 11-7082 and BMS345541. Furthermore, EBV-encoded lncRNA RPMS1 activated the NF-κB signaling cascade, which is responsible for EBV-induced VM formation. Both xenografts and clinical samples of EBVaGC exhibit VM histologically, which are correlated with CXCL8 overexpression. Finally, CXCL8 is positively correlated with overall survival in GC patients. In conclusion, EBV-upregulated CXCL8 expression promotes VM formation in GC via NF-κB signaling, and CXCL8 might serve as a novel anti-tumor target for EBVaGC.
Collapse
Affiliation(s)
- Jing-yue Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Du
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi-ting Shao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jing-yun Wen
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-ping Sun
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin-rui Guo
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jian-ning Chen, ; Chun-kui Shao,
| | - Chun-kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jian-ning Chen, ; Chun-kui Shao,
| |
Collapse
|
21
|
Chisari A, Golán I, Campisano S, Gélabert C, Moustakas A, Sancho P, Caja L. Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types. Front Pharmacol 2021; 12:723798. [PMID: 34588983 PMCID: PMC8473699 DOI: 10.3389/fphar.2021.723798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Malignant cells are commonly characterised by being capable of invading tissue, growing self-sufficiently and uncontrollably, being insensitive to apoptosis induction and controlling their environment, for example inducing angiogenesis. Amongst them, a subpopulation of cancer cells, called cancer stem cells (CSCs) shows sustained replicative potential, tumor-initiating properties and chemoresistance. These characteristics make CSCs responsible for therapy resistance, tumor relapse and growth in distant organs, causing metastatic dissemination. For these reasons, eliminating CSCs is necessary in order to achieve long-term survival of cancer patients. New insights in cancer metabolism have revealed that cellular metabolism in tumors is highly heterogeneous and that CSCs show specific metabolic traits supporting their unique functionality. Indeed, CSCs adapt differently to the deprivation of specific nutrients that represent potentially targetable vulnerabilities. This review focuses on three of the most aggressive tumor types: pancreatic ductal adenocarcinoma (PDAC), hepatocellular carcinoma (HCC) and glioblastoma (GBM). The aim is to prove whether CSCs from different tumour types share common metabolic requirements and responses to nutrient starvation, by outlining the diverse roles of glucose and amino acids within tumour cells and in the tumour microenvironment, as well as the consequences of their deprivation. Beyond their role in biosynthesis, they serve as energy sources and help maintain redox balance. In addition, glucose and amino acid derivatives contribute to immune responses linked to tumourigenesis and metastasis. Furthermore, potential metabolic liabilities are identified and discussed as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea Chisari
- Department of Chemistry, School of Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Irene Golán
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sabrina Campisano
- Department of Chemistry, School of Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Caroline Gélabert
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Patricia Sancho
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Shi Y, Tao M, Ni J, Tang L, Liu F, Chen H, Ma X, Hu Y, Zhou X, Qiu A, Zhuang S, Liu N. Requirement of Histone Deacetylase 6 for Interleukin-6 Induced Epithelial-Mesenchymal Transition, Proliferation, and Migration of Peritoneal Mesothelial Cells. Front Pharmacol 2021; 12:722638. [PMID: 34526901 PMCID: PMC8435636 DOI: 10.3389/fphar.2021.722638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: Influenced by microenvironment, human peritoneal mesothelial cells (HPMCs) acquired fibrotic phenotype, which was identified as the protagonist for peritoneal fibrosis. In this study, we examined the role of histone deacetylase 6 (HDAC6) for interleukin-6 (IL-6) induced epithelial-mesenchymal transition (EMT), proliferation, and migration of HPMCs. Methods: The role of HDAC6 in IL-6-elicited EMT of HPMCs was tested by morphological observation of light microscope, immunoblotting, and immune-fluorescence assay; and the function of HDAC6 in proliferation and migration of HPMCs was examined by CCK-8 assay, wound healing experiment, and immunoblotting. Results: IL-6 stimulation significantly increased the expression of HDAC6. Treatment with tubastatin A (TA), a highly selective HDAC6 inhibitor, or silencing of HDAC6 with siRNA decreased the expression of HDAC6. Moreover, TA or HDAC6 siRNA suppressed IL-6-induced EMT, as evidenced by decreased expressions of α-SMA, Fibronectin, and collagen I and the preserved expression of E-cadherin in cultured HPMCs. Mechanistically, HDAC6 inhibition suppressed the expression of transforming growth factor β (TGFβ) receptor I (TGFβRI), phosphorylation of Smad3, secretion of connective tissue growth factor (CTGF), and transcription factor Snail. On the other hand, the pharmacological inhibition or genetic target of HDAC6 suppressed HPMCs proliferation, as evidenced by the decreased optical density of CCK-8 and the expressions of PCNA and Cyclin E. The migratory rate of HPMCs also decreased. Mechanistically, HDAC6 inhibition blocked the activation of JAK2 and STAT3. Conclusion: Our study illustrated that IL-6-induced HDAC6 not only regulated IL-6 itself downstream JAK2/STAT3 signaling but also co-activated the TGF-β/Smad3 signaling, leading to the change of the phenotype and mobility of HPMCs. HDAC6 could be a potential therapeutic target for the prevention and treatment of peritoneal fibrosis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
El-Mais N, Fakhoury I, Al Haddad M, Nohra S, Abi-Habib R, El-Sibai M. Human Recombinant Arginase I [HuArgI(Co)-PEG5000]-Induced Arginine Depletion Inhibits Pancreatic Cancer Cell Migration and Invasion Through Autophagy. Pancreas 2021; 50:1187-1194. [PMID: 34714283 DOI: 10.1097/mpa.0000000000001891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Pancreatic cancer is one of the most aggressive solid cancers and the fourth leading cause of cancer death in men and women. We previously showed that arginine depletion, using arginase I [HuArgI(Co)-PEG5000], selectively triggers cell death by autophagy in PANC-1 pancreatic cancer cells. The mechanism of action of [HuArgI(Co)-PEG5000], however, has remained poorly understood. In this study, we investigated the effects of arginine depletion on PANC-1 cell migration, adhesion, and invasion and determined the main molecular targets, which mediate PANC-1 cell response to treatment with HuArgI(Co)-PEG5000. METHODS This was done through examining 2-dimensional (2D) cell motility assays (wound healing and time lapse), cell adhesion, and cell invasion assays, as well as immunostaining for focal adhesions and invadopodia in cells without or with the treatment with arginase. RESULTS We demonstrate that arginine depletion decreases PANC-1 2D cell migration, adhesion, and 3D invasion. Moreover, our data suggest that these effects are mediated by autophagy and subsequent decrease in the activation of members of Ras homolog gene family (Rho) GTPase family. CONCLUSIONS Altogether, these findings uncover the mechanism of action of [HuArgI(Co)-PEG5000] and highlight the promising and selective anticancer potential for arginine depletion in the treatment of pancreatic cancer cells.
Collapse
Affiliation(s)
- Nour El-Mais
- From the Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Isabelle Fakhoury
- From the Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Maria Al Haddad
- From the Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sarah Nohra
- Department of Biosciences, School of Science and Technology, Università degli Studi di Milano, Milan, Italy
| | - Ralph Abi-Habib
- From the Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Mirvat El-Sibai
- From the Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
24
|
Huang G, Wang Y, Shi Y, Ma X, Tao M, Zang X, Qi Y, Qiao C, Du L, Sheng L, Zhuang S, Liu N. The prognosis and risk factors of baseline high peritoneal transporters on patients with peritoneal dialysis. J Cell Mol Med 2021; 25:8628-8644. [PMID: 34309202 PMCID: PMC8435427 DOI: 10.1111/jcmm.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
The relationship between baseline high peritoneal solute transport rate (PSTR) and the prognosis of peritoneal dialysis (PD) patients remains unclear. The present study combined clinical data and basic experiments to investigate the impact of baseline PSTR and the underlying molecular mechanisms. A total of 204 incident CAPD patients from four PD centres in Shanghai between 1 January 2014 and 30 September 2020 were grouped based on a peritoneal equilibration test after the first month of dialysis. Analysed with multivariate Cox and logistic regression models, baseline high PSTR was a significant risk factor for technique failure (AHR 5.70; 95% CI 1.581 to 20.548 p = 0.008). Baseline hyperuricemia was an independent predictor of mortality (AHR 1.006 95%CI 1.003 to 1.008, p < 0.001) and baseline high PSTR (AOR 1.007; 95%CI 1.003 to 1.012; p = 0.020). Since uric acid was closely related to high PSTR and adverse prognosis, the in vitro experiments were performed to explore the underlying mechanisms of which uric acid affected peritoneum. We found hyperuricemia induced epithelial‐to‐mesenchymal transition (EMT) of cultured human peritoneal mesothelial cells by activating TGF‐β1/Smad3 signalling pathway and nuclear transcription factors. Conclusively, high baseline PSTR induced by hyperuricaemia through EMT was an important reason of poor outcomes in CAPD patients.
Collapse
Affiliation(s)
- Guansen Huang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yinghui Qi
- Department of Nephrology, Shanghai Punan Hospital, Shanghai, China
| | - Cheng Qiao
- Department of Nephrology, Shanghai Punan Hospital, Shanghai, China
| | - Lin Du
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lili Sheng
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine Signaling and Cancer Metabolism. Cancers (Basel) 2021; 13:3541. [PMID: 34298755 PMCID: PMC8306961 DOI: 10.3390/cancers13143541] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino acid, due to normal cells' intrinsic ability to synthesize arginine from citrulline and aspartate via ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase). As such, arginine can be used as a dietary supplement and its depletion as a therapeutic strategy. Strikingly, in over 70% of tumors, ASS1 transcription is suppressed, rendering the cells addicted to external arginine, forming the basis of arginine-deprivation therapy. In this review, we will discuss arginine as a signaling metabolite, arginine's role in cancer metabolism, arginine as an epigenetic regulator, arginine as an immunomodulator, and arginine as a therapeutic target. We will also provide a comprehensive summary of ADI (arginine deiminase)-based arginine-deprivation preclinical studies and an update of clinical trials for ADI and arginase. The different cell killing mechanisms associated with various cancer types will also be described.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
| | - Sheng-Chieh Hsu
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30035, Taiwan;
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan
| | - David K. Ann
- Department of Diabetes and Metabolic Diseases Research, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
26
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
27
|
Yin T, Wu J, Hu Y, Zhang M, He J. Long non-coding RNA HULC stimulates the epithelial-mesenchymal transition process and vasculogenic mimicry in human glioblastoma. Cancer Med 2021; 10:5270-5282. [PMID: 34213079 PMCID: PMC8335831 DOI: 10.1002/cam4.4083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Long non‐coding RNA (lncRNA) HULC (highly upregulated in liver cancer) is considered as an oncogenic factor for various malignant tumors. This study aimed to reveal the role of lncRNA HULC in the malignant behavior of glioblastoma (GBM) by exploring its effects on the epithelial–mesenchymal transition (EMT) and vasculogenic mimicry (VM) of human GBM. Materials and Methods The contents of VM in 27 GBM samples were assessed by immunohistochemistry‐histology and their association with progress‐free survival (PFS) was analyzed. Human GBM SHG44 and U87 cells were manipulated to establish stable lncRNA HULC overexpressing and silencing cells by lentivirus‐based technology. The effects of altered lncRNA HULC on vasculogenic tubular formation, invasion, and EMT process in GBM cells were tested in vitro and the growth of implanted GBM tumors and their EMT process were examined in vivo. Results The numbers of VM were positively associated with disease progression, but negatively with PFS periods of GBM patients. Compared with the control vec cells, lncRNA HULC overexpression significantly increased the tubular formation, invasion, and EMT process of both SHG44 and U87 cells, accompanied by promoting the growth of implanted GBM tumors and EMT process in mice. LncRNA HULC silencing had opposite effects on the tubular formation, invasion, and EMT process as well as tumor growth of GBM cells. Conclusion LncRNA HULC stimulates the EMT process and VM in human GBM, and may be a therapeutic target for intervention of GBM.
Collapse
Affiliation(s)
- Tiantian Yin
- Clinical Pathology Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jing Wu
- Clinical Pathology Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yuchen Hu
- Clinical Pathology Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Min Zhang
- Clinical Pathology Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jie He
- Clinical Pathology Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
28
|
Miao H, Lu J, Guo Y, Qiu H, Zhang Y, Yao X, Li X, Lu Y. LncRNA TP73-AS1 enhances the malignant properties of pancreatic ductal adenocarcinoma by increasing MMP14 expression through miRNA -200a sponging. J Cell Mol Med 2021; 25:3654-3664. [PMID: 33683827 PMCID: PMC8034458 DOI: 10.1111/jcmm.16425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an invasive and aggressive cancer that remains a major threat to human health across the globe. Despite advances in cancer treatments and diagnosis, the prognosis of PDAC patients remains poor. New and more effective PDAC therapies are therefore urgently required. In this study, we identified a novel host factor, namely the LncRNA TP73-AS1, as overexpressed in PDAC tissues compared to adjacent healthy tissue samples. The overexpression of TP-73-AS1 was found to correlate with both PDAC stage and lymph node metastasis. To reveal its role in PDCA, we targeted TP73-AS1 using LnRNA inhibitors in a range of pancreatic cancer (PC) cell lines. We found that the inhibition of TP73-AS1 led to a loss of MMP14 expression in PC cells and significantly inhibited their migratory and invasive capacity. No effects of TP73-AS1 on cell survival or proliferation were observed. Mechanistically, we found that TP73-AS1 suppressed the expression of the known oncogenic miR-200a. Taken together, these data highlight the prognostic potential of TP73-AS1 for PC patients and highlight it as a potential anti-PDAC therapeutic target.
Collapse
Affiliation(s)
- Haiyan Miao
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Department of General Surgery, The Sixth People's Hospital of Nantong, Nantong, China
| | - Jingjing Lu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yibing Guo
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongquan Qiu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Zhang
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xihao Yao
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaohong Li
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhua Lu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Visitor scholar of Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
29
|
The role of SOX family transcription factors in gastric cancer. Int J Biol Macromol 2021; 180:608-624. [PMID: 33662423 DOI: 10.1016/j.ijbiomac.2021.02.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
Gastric cancer (GC) is a leading cause of death worldwide. GC is the third-most common cause of cancer-related death after lung and colorectal cancer. It is also the fifth-most commonly diagnosed cancer. Accumulating evidence has revealed the role of signaling networks in GC progression. Identification of these molecular pathways can provide new insight into therapeutic approaches for GC. Several molecular factors involved in GC can play both onco-suppressor and oncogene roles. Sex-determining region Y (Sry)-box-containing (SOX) family members are transcription factors with a well-known role in cancer. SOX proteins can bind to DNA to regulate cellular pathways via a highly conserved domain known as high mobility group (HMG). In the present review, the roles of SOX proteins in the progression and/or inhibition of GC are discussed. The dual role of SOX proteins as tumor-promoting and tumor-suppressing factors is highlighted. SOX members can affect upstream mediators (microRNAs, long non-coding RNAs and NF-κB) and down-stream mediators (FAK, HIF-1α, CDX2 and PTEN) in GC. The possible role of anti-tumor compounds to target SOX pathway members in GC therapy is described. Moreover, SOX proteins may be used as diagnostic or prognostic biomarkers in GC.
Collapse
|
30
|
Cao J, Wu X, Qin X, Li Z. Uncovering the Effect of Passage Number on HT29 Cell Line Based on the Cell Metabolomic Approach. J Proteome Res 2021; 20:1582-1590. [PMID: 33555889 DOI: 10.1021/acs.jproteome.0c00806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The passage number is an important factor when designing the cell line-based experiment. Although HT29 cells were widely used in the laboratory for colorectal cancer studies, the impact of cell passage number on the HT29 cells was still unknown. In this study, phenotypic assay and metabolomic approach were applied to analyze the systemic effects of passage numbers (passage 4, 10, and 16) on the HT29 cells. The results showed that the increased cell passage number affected the cell cycle distribution and also decreased the proliferation and migration ability of HT29 cells. The metabolomic analysis coupled with heatmap and hierarchical cluster analysis showed obvious metabolome difference among the cells with different passage numbers, which was related with 61 differential metabolites. Three metabolic pathways were determined as the key pathways, and arginine participated in two of them. In addition, it was found that arginine supplementation could inhibit the proliferation ability of HT29 cells in vitro, and a synergistic effect existed between arginine and cisplatin. In conclusion, this study not only revealed the influence of passage numbers on the HT29 cell but also provided an important reference that arginine has the potential role to be developed as the cisplatin therapeutic adjuvant.
Collapse
Affiliation(s)
- Jianhua Cao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| |
Collapse
|
31
|
Chen X, Sun L, Wei X, Lu H, Tan Y, Sun Z, Jiang J. Antitumor effect and molecular mechanism of fucoidan in NSCLC. BMC Complement Med Ther 2021; 21:25. [PMID: 33430854 PMCID: PMC7802245 DOI: 10.1186/s12906-020-03191-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Fucoidan, a water-soluble polysaccharide, exerts anticoagulant and antiviral functions. It was recently reported that fucoidan also exerts an antitumor function. Lung cancer is one of the most common cancers in the world. The aim of this study was to investigate anti-tumor,apoptosis and anti-metastasis effects of fucoidan in both cell-based assays and mouse xenograft model, as well as to clarify possible role of m-TOR pathway in the protection. Methods In vitro: Different concentrations of fucoidan were given to act on non-small cell lung cancer (NSCLC) cell lines A549 and H1650. The effects of fucoidan on cell proliferation were observed by detecting cyclin expression levels, CCK8 and EDU experiments and cloning experiments. The apoptotic level was detected by flow cytometry and the apoptotic protein level was detected by Westernblot. By detecting the expression of adhesion molecules, the expression of matrix metalloproteinase (MMP) family, and Transwell cell invasion and migration experiment, the effect of fucoidan on cell adhesion, invasion and migration was observed. Meanwhile the effect of fucoidan on angiogenesis was observed by detecting the expression of vascular endothelial growth factor (VEGF). In vivo experiment: An animal model of NSCLC cell mouse subcutaneous xenograft tumor was established to analyze the correlation between the consumption of fucoidan and the size and volume of xenograft tumor through gross observation. Through immunohistochemical staining and immunofluorescence double staining, ki67 and cell adhesion molecules (E-cadherin, N-cadherin and CD31) and VEGF-A in the tumor were detected, and the correlation between the amount of fucoidan and the above indexes was analyzed. Results Fucoidan inhibited the proliferation and angiogenesis of NSCLC cells via the mTOR pathway and promoted their apoptosis by increasing the Bax/Bcl-2 ratio. Not only that, fucoidan inhibited NSCLC cell invasion via epithelial–mesenchymal transformation (EMT). The mice fed fucoidan exhibited significant reductions in tumor volumes and weights. These indicators (Ki67, VEGF-A,N-cadherin) were decreased and E-cadherin expression was up-regulated in A549 mice that treated with fucoidan. The results showed that fucoidan inhibited tumor proliferation in vivo by affecting the expression of related proteins. Conclusion Fucoidan conveys antitumor effects and our results represent an ideal therapeutic agent for NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-020-03191-0.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Oncology, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, 266003, China
| | - Li Sun
- Department of Oncology, Heze Municipal Hospital, Heze, 274000, Shandong Province, China
| | - Xiaojuan Wei
- Department of Oncology, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, 266003, China
| | - Haijun Lu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, 266003, China.
| | - Ye Tan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, 266003, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao, 266400, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao, 266400, China
| |
Collapse
|
32
|
El-Mais N, Fakhoury I, Abdellatef S, Abi-Habib R, El-Sibai M. Human recombinant arginase I [HuArgI (Co)-PEG5000]-induced arginine depletion inhibits ovarian cancer cell adhesion and migration through autophagy-mediated inhibition of RhoA. J Ovarian Res 2021; 14:13. [PMID: 33423701 PMCID: PMC7798344 DOI: 10.1186/s13048-021-00767-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
Ovarian carcinoma is the second most common malignancy of the female reproductive system and the leading cause of death from female reproductive system malignancies. Cancer cells have increased proliferation rate and thus require high amounts of amino acids, including arginine. L-arginine is a non-essential amino acid synthesized from L-citrulline by the Arginosuccinate synthetase (ASS1) enzyme. We have previously shown that the ovarian cancer cells, SKOV3, are auxotrophic to arginine, and that arginine deprivation by treatment with the genetically engineered human arginase I (HuArgI (Co)-PEG5000) triggers the death of SKOV3 cells by autophagy. In this study we examine the effect of HuArgI (Co)-PEG5000 on ovarian cancer cell migration and we dissect the mechanism involved. Wound healing assays, 2D random cell migration assays and cell adhesion analysis indicate that arginine deprivation decreases SKOV3 cell migration and adhesion. This effect was mimicked when autophagy was induced through rapamycin and reversed with the autophagy inhibitor chloroquine when autophagy was inhibited. This proved that arginine deprivation leads to the inhibition of cancer cell migration through autophagy, in addition to cell death. In addition, we were able to establish through pull-down assays and reversal experiments, that arginine deprivation-mediated autophagy inhibits cell migration through a direct inhibition of RhoA, member of the Rho family of GTPases. In conclusion, here we identify, for the first time, an autophagy-mediated inhibition of RhoA that plays an important role in regulating ovarian cancer cells motility and adhesion in response to arginine depletion.
Collapse
Affiliation(s)
- Nour El-Mais
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut, 1102 2801, Lebanon
| | - Isabelle Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut, 1102 2801, Lebanon
| | - Sandra Abdellatef
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut, 1102 2801, Lebanon
| | - Ralph Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut, 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut, 1102 2801, Lebanon.
| |
Collapse
|
33
|
Archibugi L, Ruta V, Panzeri V, Redegalli M, Testoni SGG, Petrone MC, Rossi G, Falconi M, Reni M, Doglioni C, Sette C, Arcidiacono PG, Capurso G. RNA Extraction from Endoscopic Ultrasound-Acquired Tissue of Pancreatic Cancer Is Feasible and Allows Investigation of Molecular Features. Cells 2020; 9:E2561. [PMID: 33266052 PMCID: PMC7761443 DOI: 10.3390/cells9122561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Transcriptome analyses allow the distinguishing of pancreatic ductal adenocarcinoma (PDAC) subtypes, exhibiting different prognoses and chemotherapy responses. However, RNA extraction from pancreatic tissue is cumbersome and has been performed mainly from surgical samples, which are representative of < 20% of cases. The majority of PDAC patients undergo endoscopic ultrasound (EUS)-guided tissue acquisition (EUS-TA), but RNA has been rarely extracted from EUS-TA with scanty results. Herein, we aimed to determine the best conditions for RNA extraction and analysis from PDAC EUS-TA samples in order to carry out molecular analyses. PDAC cases underwent diagnostic EUS-TA, with needles being a 25G fine needle aspiration (FNA) in all patients and then either a 20G lateral core-trap fine needle biopsy (FNB) or a 25G Franseen FNB; the conservation methods were either snap freezing, RNALater or Trizol. RNA concentration and quality (RNA integrity index; RIN) were analyzed and a panel of genes was investigated for tissue contamination and markers of molecular subtype and aggressivity through qRT-PCR. Seventy-four samples from 37 patients were collected. The median RNA concentration was significantly higher in Trizol samples (10.33 ng/uL) compared with snap frozen (0.64 ng/uL; p < 0.0001) and RNALater (0.19 ng/uL; p < 0.0001). The RIN was similar between Trizol (5.15) and snap frozen samples (5.85), while for both methods it was higher compared with RNALater (2.7). Among the needles, no substantial difference was seen in terms of RNA concentration and quality. qRT-PCR analyses revealed that samples from all needles were suitable for the detection of PDAC subtype markers (GATA6 and ZEB1) and splice variants associated with mutational status (GAP17) as well as for the detection of contaminating tissue around PDAC cells. This is the first study that specifically investigates the best methodology for RNA extraction from EUS-TA. A higher amount of good quality RNA is obtainable with conservation in Trizol with a clear superiority of neither FNA nor FNB needles. RNA samples from EUS-TA are suitable for transcriptome analysis including the investigation of molecular subtype and splice variants expression.
Collapse
Affiliation(s)
- Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.A.); (S.G.G.T.); (M.C.P.); (G.R.); (G.C.)
- Department of Pathology, San Raffaele Scientific Institute IRCCS-Vita Salute San Raffaele University, 20132 Milan, Italy; (M.R.); (M.F.); (C.D.)
| | - Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.); (C.S.)
- Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.); (C.S.)
- Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Miriam Redegalli
- Department of Pathology, San Raffaele Scientific Institute IRCCS-Vita Salute San Raffaele University, 20132 Milan, Italy; (M.R.); (M.F.); (C.D.)
- Pathology Department, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sabrina Gloria Giulia Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.A.); (S.G.G.T.); (M.C.P.); (G.R.); (G.C.)
- Department of Pathology, San Raffaele Scientific Institute IRCCS-Vita Salute San Raffaele University, 20132 Milan, Italy; (M.R.); (M.F.); (C.D.)
| | - Maria Chiara Petrone
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.A.); (S.G.G.T.); (M.C.P.); (G.R.); (G.C.)
- Department of Pathology, San Raffaele Scientific Institute IRCCS-Vita Salute San Raffaele University, 20132 Milan, Italy; (M.R.); (M.F.); (C.D.)
| | - Gemma Rossi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.A.); (S.G.G.T.); (M.C.P.); (G.R.); (G.C.)
| | - Massimo Falconi
- Department of Pathology, San Raffaele Scientific Institute IRCCS-Vita Salute San Raffaele University, 20132 Milan, Italy; (M.R.); (M.F.); (C.D.)
- Pancreatic Surgery Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy;
| | - Claudio Doglioni
- Department of Pathology, San Raffaele Scientific Institute IRCCS-Vita Salute San Raffaele University, 20132 Milan, Italy; (M.R.); (M.F.); (C.D.)
- Pathology Department, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.); (C.S.)
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.A.); (S.G.G.T.); (M.C.P.); (G.R.); (G.C.)
- Department of Pathology, San Raffaele Scientific Institute IRCCS-Vita Salute San Raffaele University, 20132 Milan, Italy; (M.R.); (M.F.); (C.D.)
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.A.); (S.G.G.T.); (M.C.P.); (G.R.); (G.C.)
- Department of Pathology, San Raffaele Scientific Institute IRCCS-Vita Salute San Raffaele University, 20132 Milan, Italy; (M.R.); (M.F.); (C.D.)
| |
Collapse
|
34
|
Yang JS, Wang CC, Qiu JD, Ren B, You L. Arginine metabolism: a potential target in pancreatic cancer therapy. Chin Med J (Engl) 2020; 134:28-37. [PMID: 33395072 PMCID: PMC7862822 DOI: 10.1097/cm9.0000000000001216] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is an extremely malignant disease, which has an extremely low survival rate of <9% in the United States. As a new hallmark of cancer, metabolism reprogramming exerts crucial impacts on PDAC development and progression. Notably, arginine metabolism is altered in PDAC cells and participates in vital signaling pathways. In addition, arginine and its metabolites including polyamine, creatine, agmatine, and nitric oxide regulate the proliferation, growth, autophagy, apoptosis, and metastasis of cancer cells. Due to the loss of argininosuccinate synthetase 1 (ASS1) expression, the key enzyme in arginine biosynthesis, arginine deprivation is regarded as a potential strategy for PDAC therapy. However, drug resistance develops during arginine depletion treatment, along with the re-expression of ASS1, metabolic dysfunction, and the appearance of anti-drug antibody. Additionally, arginase 1 exerts crucial roles in myeloid-derived suppressor cells, indicating its potential targeting by cancer immunotherapy. In this review, we introduce arginine metabolism and its impacts on PDAC cells. Also, we discuss the role of arginine metabolism in arginine deprivation therapy and immunotherapy for cancer.
Collapse
Affiliation(s)
- Jin-Shou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | | | | | | | | |
Collapse
|
35
|
Xu R, Yang J, Ren B, Wang H, Yang G, Chen Y, You L, Zhao Y. Reprogramming of Amino Acid Metabolism in Pancreatic Cancer: Recent Advances and Therapeutic Strategies. Front Oncol 2020; 10:572722. [PMID: 33117704 PMCID: PMC7550743 DOI: 10.3389/fonc.2020.572722] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies with an extremely poor prognosis. Energy metabolism reprogramming, an emerging hallmark of cancer, has been implicated in the tumorigenesis and development of pancreatic cancer. In addition to well-elaborated enhanced glycolysis, investigating the role of reprogramming of amino acid metabolism has sparked great interests in recent years. The rewiring amino acid metabolism orchestrated by genetic alterations contributes to pancreatic cancer malignant characteristics including cell proliferation, invasion, metastasis, angiogenesis and redox balance. In the unique hypoperfused and nutrient-deficient tumor microenvironment (TME), the interactions between cancer cells and stromal components and salvaging processes including autophagy and macropinocytosis play critical roles in fulfilling the metabolic requirements and supporting growth of PDAC. In this review, we elucidate the recent advances in the amino acid metabolism reprogramming in pancreatic cancer and the mechanisms of amino acid metabolism regulating PDAC progression, which will provide opportunities to develop promising therapeutic strategies.
Collapse
Affiliation(s)
- Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Saka D, Gökalp M, Piyade B, Cevik NC, Arik Sever E, Unutmaz D, Ceyhan GO, Demir IE, Asimgil H. Mechanisms of T-Cell Exhaustion in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12082274. [PMID: 32823814 PMCID: PMC7464444 DOI: 10.3390/cancers12082274] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
T-cell exhaustion is a phenomenon that represents the dysfunctional state of T cells in chronic infections and cancer and is closely associated with poor prognosis in many cancers. The endogenous T-cell immunity and genetically edited cell therapies (CAR-T) failed to prevent tumor immune evasion. The effector T-cell activity is perturbed by an imbalance between inhibitory and stimulatory signals causing a reprogramming in metabolism and the high levels of multiple inhibitory receptors like programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and Lymphocyte-activation gene 3 (Lag-3). Despite the efforts to neutralize inhibitory receptors by a single agent or combinatorial immune checkpoint inhibitors to boost effector function, PDAC remains unresponsive to these therapies, suggesting that multiple molecular mechanisms play a role in stimulating the exhaustion state of tumor-infiltrating T cells. Recent studies utilizing transcriptomics, mass cytometry, and epigenomics revealed a critical role of Thymocyte selection-associated high mobility group box protein (TOX) genes and TOX-associated pathways, driving T-cell exhaustion in chronic infection and cancer. Here, we will review recently defined molecular, genetic, and cellular factors that drive T-cell exhaustion in PDAC. We will also discuss the effects of available immune checkpoint inhibitors and the latest clinical trials targeting various molecular factors mediating T-cell exhaustion in PDAC.
Collapse
Affiliation(s)
- Didem Saka
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Muazzez Gökalp
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Betül Piyade
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Nedim Can Cevik
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Elif Arik Sever
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Derya Unutmaz
- Jackson Laboratory of Genomic Medicine, Farmington, CT 06032, USA;
| | - Güralp O. Ceyhan
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Ihsan Ekin Demir
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Hande Asimgil
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
37
|
Shi Y, Tao M, Ma X, Hu Y, Huang G, Qiu A, Zhuang S, Liu N. Delayed treatment with an autophagy inhibitor 3-MA alleviates the progression of hyperuricemic nephropathy. Cell Death Dis 2020; 11:467. [PMID: 32555189 PMCID: PMC7298642 DOI: 10.1038/s41419-020-2673-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a cell self-renewal process that relies on the degradation of the cytoplasmic proteins or organelles of lysosomes and is associated with development of numerous diseases. However, the therapeutic effect of autophagy inhibition on hyperuricemic nephropathy (HN) and the underlying mechanisms are still unknown. Here, we investigated the effect of delayed treatment with 3-methyladenine (3-MA), a specific autophagy inhibitor, on the development of HN in a rat model. Administration of 3-MA at 21 days following after uric acid injury protected kidney from hyperuricemic-related injuries, as demonstrated by improving renal dysfunction and architecture damage, blocking Beclin-1 and LC3II/I and decreasing the number of autophagic vacuoles. Late treatment with 3-MA was also effective in attenuating renal fibrosis as evidenced by reducing ECM protein deposition, blocking epithelial-to-mesenchymal transition (EMT) and decreasing the number of renal epithelial cells arrested at the G2/M phase of cell cycle. Injury to the kidney resulted in increased expression of TGFβ receptor I, and phosphorylation of Smad3, 3-MA significantly abrogated all these responses. Moreover, inhibition of autophagy suppressed mitochondrial fission, downregulated the expression of Dynamin-related protein 1 (Drp-1), Cofilin and F-actin, and alleviated cell apoptosis. Finally, 3-MA effectively blocked STAT3 and NF-κB phosphorylation and suppressed infiltration of macrophages and lymphocytes as well as release of multiple profibrogenic cytokines/chemokines in the injured kidney. Taken together, these findings indicate that hyperuricemia-induced autophagy is critically involved in the activation of renal fibroblasts, EMT, mitochondrial fission and apoptosis of tubular epithelial cells and development of renal fibrosis. Thus, this study provides evidence for autophagy inhibitors as the treatment of HN patients.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guansen Huang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|