1
|
Eshraghi R, Rafiei M, Hadian Jazi Z, Shafie D, Raisi A, Mirzaei H. MicroRNA-155 and exosomal microRNA-155: Small pieces in the cardiovascular diseases puzzle. Pathol Res Pract 2024; 257:155274. [PMID: 38626659 DOI: 10.1016/j.prp.2024.155274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
MicroRNAs (miRs, miRNAs) are known to have a part in various human illnesses, such as those related to the heart. One particular miRNA, miR-155, has been extensively studied and has been found to be involved in hematopoietic lineage differentiation, immunity, viral infections, inflammation, as well as vascular remodeling. These processes have all been connected to cardiovascular diseases, including heart failure, diabetic heart disease, coronary artery disease, and abdominal aortic aneurysm. The impacts of miR-155 depend on the type of cell it is acting on and the specific target genes involved, resulting in different mechanisms of disease. Although, the exact part of miR-155 in cardiovascular illnesses is yet not fully comprehended, as some studies have shown it to promote the development of atherosclerosis while others have shown it to prevent it. As a result, to comprehend the underlying processes of miR-155 in cardiovascular disorders, further thorough study is required. It has been discovered that exosomes that could be absorbed by adjacent or distant cells, control post-transcriptional regulation of gene expression by focusing on mRNA. Exosomal miRNAs have been found to have a range of functions, including participating in inflammatory reactions, cell movement, growth, death, autophagy, as well as epithelial-mesenchymal transition. An increasing amount of research indicates that exosomal miRNAs are important for cardiovascular health and have a major role in the development of a number of cardiovascular disorders, including pulmonary hypertension, atherosclerosis, acute coronary syndrome, heart failure, and myocardial ischemia-reperfusion injury. Herein the role of miR-155 and its exosomal form in heart diseases are summarized.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Hadian Jazi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Cardiology/Heart Failure and Transplantation, Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Yu F, Duan Y, Liu C, Huang H, Xiao X, He Z. Extracellular vesicles in atherosclerosis and vascular calcification: the versatile non-coding RNAs from endothelial cells and vascular smooth muscle cells. Front Med (Lausanne) 2023; 10:1193660. [PMID: 37469665 PMCID: PMC10352799 DOI: 10.3389/fmed.2023.1193660] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. Vascular calcification (VC), the deposition of calcium and phosphate within the arterial wall, is an important characteristic of AS natural history. However, medial arterial calcification (MAC) differs from intimal calcification and cannot simply be explained as the consequence of AS. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are directly involved in AS and VC processes. Understanding the communication between ECs and VSMCs is critical in revealing mechanisms underlying AS and VC. Extracellular vesicles (EVs) are found as intercellular messengers in kinds of physiological processes and pathological progression. Non-coding RNAs (ncRNAs) encapsulated in EVs are involved in AS and VC, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The effects of ncRNAs have not been comprehensively understood, especially encapsulated in EVs. Some ncRNAs have demonstrated significant roles in AS and VC, but it remains unclear the functions of the majority ncRNAs detected in EVs. In this review, we summarize ncRNAs encapsulated in EC-EVs and VSMC-EVs, and the signaling pathways that are involved in AS and VC.
Collapse
Affiliation(s)
- Fengyi Yu
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yingjie Duan
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chongmei Liu
- Department of Pathology, Yueyang People's Hospital, Yueyang, Hunan, China
| | - Hong Huang
- Hengyang Medical School, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangxiu He
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Role of miR-155 in inflammatory autoimmune diseases: a comprehensive review. Inflamm Res 2022; 71:1501-1517. [DOI: 10.1007/s00011-022-01643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022] Open
|
4
|
miRNAs from Plasma Extracellular Vesicles Are Signatory Noninvasive Prognostic Biomarkers against Atherosclerosis in LDLr-/-Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6887192. [PMID: 36035214 PMCID: PMC9403256 DOI: 10.1155/2022/6887192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Circular microRNAs (miRNAs) have become central in pathophysiological conditions of atherosclerosis (AS). However, the biomarkers for diagnosis and therapeutics against AS are still unclear. The atherosclerosis models in low-density lipoprotein receptor deficiency (LDLr−/−) mice were established with a high-fat diet (HFD). The extraction kit isolated extracellular vesicles from plasma. Total RNAs were extracted from LDLr−/− mice in plasma extracellular vesicles. Significantly varying miRNAs were detected by employing Illumina HiSeq 2000 deep sequencing technology. Target gene predictions of miRNAs were employed by related software that include RNAhybrid, TargetScan, miRanda, and PITA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) further analyzed the intersection points of predicted results. The results showed that the HFD group gradually formed atherosclerotic plaques in thoracic aorta compared with the control group. Out of 17, 8 upregulated and 9 downregulated miRNAs with a significant difference were found in the plasma extracellular vesicles that were further cross-examined by sequencing and bioinformatics analysis. Focal adhesion and Ras signaling pathway were found to be the most closely related pathways through GO and KEGG pathway analyses. The 8 most differentially expressed up- and downregulated miRNAs were further ascertained by TaqMan-based qRT-PCR. TaqMan-based qRT-PCR and in situ hybridization further validated the most differentially expressed miRNAs (miR-378d, miR-181b-5p, miR-146a-5p, miR-421-3p, miR-350-3p, and miR-184-3p) that were consistent with deep sequencing analysis suggesting a promising potential of utility to serve as diagnostic biomarkers against AS. The study gives a comprehensive profile of circular miRNAs in atherosclerosis and may pave the way for identifying biomarkers and novel targets for atherosclerosis.
Collapse
|
5
|
Jiang H, Gong R, Wu Y. miR‑129‑5p inhibits oxidized low‑density lipoprotein‑induced A7r5 cell viability and migration by targeting HMGB1 and the PI3k/Akt signaling pathway. Exp Ther Med 2022; 23:243. [PMID: 35222720 PMCID: PMC8815026 DOI: 10.3892/etm.2022.11168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
The mechanisms underlying gene therapy for the treatment of cardiovascular diseases remain to be elucidated. microRNAs (miRs) have been recognized as key regulators in vascular smooth muscle cells, which are involved in the formation of atherosclerosis. The present study aimed to explore the role of miR-129-5p in the regulation of high-mobility group box 1 protein (HMGB1) and the PI3k/Akt signaling pathway, and further explore the role of miR-129-5p in the viability and migration of A7r5 cells induced by oxidized low-density lipoprotein (ox-LDL). Cell viability, viability and migration were determined using Cell Counting Kit-8, colony formation, wound healing and Transwell assays. The expression levels of miR-129-5p and HMGB1 were detected using reverse transcription-quantitative PCR and western blotting. A dual-luciferase assay was used to confirm the association between miR-129-5p and HMGB1. RT-qPCR results in the present study demonstrated that the expression levels of miR-129-5p in A7r5 cells induced by ox-LDL were significantly decreased, compared with the control cells. Moreover, the viability and migration of A7r5 cells induced by ox-LDL were increased compared with control group. Western blot and RT-qPCR results showed that miR-129-5p decreased the expression of HMGB1 in A7r5 cells compared with control group. The present results demonstrated that miR-129-5p inhibited the viability, viability and migration of A7r5 cells induced by ox-LDL, and directly targeted HMGB1 to regulate the PI3k/Akt signaling pathway. In conclusion, miR-129-5p inhibited the PI3k/Akt signaling pathway by directly targeting HMGB1, and reduced the viability, viability and migration of A7r5 cells induced by ox-LDL.
Collapse
Affiliation(s)
- Hongfei Jiang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ren Gong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
AKT Isoforms in Macrophage Activation, Polarization, and Survival. Curr Top Microbiol Immunol 2022; 436:165-196. [DOI: 10.1007/978-3-031-06566-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Rachmawati E, Sargowo D, Rohman MS, Widodo N, Kalsum U. miR-155-5p predictive role to decelerate foam cell atherosclerosis through CD36, VAV3, and SOCS1 pathway. Noncoding RNA Res 2021; 6:59-69. [PMID: 33869908 PMCID: PMC8027696 DOI: 10.1016/j.ncrna.2021.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules that play a significant role in atherosclerosis pathogenesis through post-transcriptional regulation. In the present work, a bioinformatic analysis using TargetScan and miRdB databases was performed to identify the miRNAs targeting three genes involved in foam cell atherosclerosis (CD36, Vav3, and SOCS1). A total number of three hundred and sixty-seven miRNAs were recognized and only miR-155-5p was selected for further evaluation based on Venn analysis. Another objective of this study was to evaluate the biological process and regulatory network of miR-155-5p associated with foam cell atherosclerosis using DIANA, DAVID, Cytoscape, and STRING tools. Additionally, the comprehensive literature review was performed to prove the miR-155-5p function in foam cell atherosclerosis. miR-155-5p might be related with ox-LDL uptake and endocytosis in macrophage cell by targeting CD36 and Vav3 genes which was showed from the KEGG pathways hsa04979, hsa04666, hsa04145 H, hsa04810, and GO:0099632, GO:0060100, GO:0010743, GO:001745. Furthermore, miR-155-5p was also predicted to increase the cholesterol efflux from macrophage by inhibit SOCS1 expression based on KEGG pathway hsa04120. Eleven original studies were included in the review and strongly suggest the role of miR-155-5p in foam cell atherosclerosis inhibition.
Collapse
Affiliation(s)
- Ermin Rachmawati
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Faculty of Medicine and Health Sciences UIN Maulana Malik Ibrahim Malang
| | - Djanggan Sargowo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - M. Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Brawijaya Cardiovascular Research Center
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia
| | - Umi Kalsum
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
8
|
Zareba L, Fitas A, Wolska M, Junger E, Eyileten C, Wicik Z, De Rosa S, Siller-Matula JM, Postula M. MicroRNAs and Long Noncoding RNAs in Coronary Artery Disease: New and Potential Therapeutic Targets. Cardiol Clin 2020; 38:601-617. [PMID: 33036721 DOI: 10.1016/j.ccl.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs), including long noncoding RNAs and microRNAs, play an important role in coronary artery disease onset and progression. The ability of ncRNAs to simultaneously regulate many target genes allows them to modulate various key processes involved in atherosclerosis, including lipid metabolism, smooth muscle cell proliferation, autophagy, and foam cell formation. This review focuses on the therapeutic potential of the most important ncRNAs in coronary artery disease. Moreover, various other promising microRNAs and long noncoding RNAs that attract substantial scientific interest as potential therapeutic targets in coronary artery disease and merit further investigation are presented.
Collapse
Affiliation(s)
- Lukasz Zareba
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Eva Junger
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n-Anchieta, São Paulo 09606-045, Brazil
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Longevity Center, Warsaw, Poland.
| |
Collapse
|
9
|
Zhang C, Zhang X, Gong Y, Li T, Yang L, Xu W, Dong L. Role of the lncRNA-mRNA network in atherosclerosis using ox-low-density lipoprotein-induced macrophage-derived foam cells. Mol Omics 2020; 16:543-553. [PMID: 32915179 DOI: 10.1039/d0mo00077a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atherosclerosis (AS) is the leading cause of coronary heart disease, cerebral infarction, peripheral vascular disease, and other cardiovascular diseases, making it a major risk factor for high morbidity and mortality. Although long non-coding RNAs (lncRNAs) have been reported to play a role in AS, the specific effects of lncRNAs on AS remain largely unknown. Thus the purpose of this study was to explore the roles of mRNAs and lncRNAs in atherosclerosis via an ox-low-density lipoprotein induced macrophage-derived foam cell model. Microarray analysis identified a total of 50 688 mRNAs and 1514 lncRNAs, including 51 lncRNAs and 1730 mRNAs that were significantly dysregulated in the model group (p-adjust < 0.05 and |log 2FC| > 2). The results of gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that the dysregulated genes were associated with cell proliferation, cell apoptosis, and inflammatory responses. An lncRNA-mRNA co-expression network was created to further analyze the key regulatory genes. The lncRNAs Brip1os, Gm16586, AU020206, 9430034N14Rik, 2510016D11Rik, LNC_000709, Gm15472, Gm20703, and Dubr were identified as potential biomarkers in macrophage-derived foam cells. Based on 9 lncRNAs and 13 mRNAs, key genes influencing the degree of cell proliferation and cell apoptosis and the subsequent development of AS were identified. Q-PCR verified the key dysregulated genes. Thus, our results suggest potential therapeutic targets for AS and provide avenues for further research on AS pathogenesis.
Collapse
Affiliation(s)
- Caijuan Zhang
- School of Life Science, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | | | | | | | | | | | | |
Collapse
|