1
|
Xu Y, Lu F, Wang M, Wang L, Ye C, Yang S, Wang C. Shen Shuai II recipe improves renal hypoxia to attenuate renal injury in 5/6 renal ablation/infarction rats and effect evaluation using blood oxygenation level-dependent functional magnetic resonance imaging. Ren Fail 2024; 46:2338565. [PMID: 38622926 PMCID: PMC11022919 DOI: 10.1080/0886022x.2024.2338565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
Background: Renal hypoxia plays a key role in the progression of chronic kidney disease (CKD). Shen Shuai II Recipe (SSR) has shown good results in the treatment of CKD as a common herbal formula. This study aimed to explore the effect of SSR on renal hypoxia and injury in CKD rats. Methods: Twenty-five Wistar rats underwent 5/6 renal ablation/infarction (A/I) surgery were randomly divided into three groups: 5/6 (A/I), 5/6 (A/I) + losartan (LOS), and 5/6 (A/I) + SSR groups. Another eight normal rats were used as the Sham group. After 8-week corresponding interventions, blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) was performed to evaluate renal oxygenation in all rats, and biochemical indicators were used to measure kidney and liver function, hemoglobin, and proteinuria. The expression of fibrosis and hypoxia-related proteins was analyzed using immunoblotting examination. Results: Renal oxygenation, evaluated by BOLD-fMRI as cortical and medullary T2* values (COT2* and MET2*), was decreased in 5/6 (A/I) rats, but increased after SSR treatment. SSR also downregulated the expression of hypoxia-inducible factor-1α (HIF-1α) in 5/6 (A/I) kidneys. With the improvement of renal hypoxia, renal function and fibrosis were improved in 5/6 (A/I) rats, accompanied by reduced proteinuria. Furthermore, the COT2* and MET2* were significantly positively correlated with the levels of creatinine clearance rate (Ccr) and hemoglobin, but negatively associated with the levels of serum creatinine (SCr), blood urea nitrogen (BUN), serum cystatin C (CysC), serum uric acid (UA), 24-h urinary protein (24-h Upr), and urinary albumin:creatinine ratio (UACR). Conclusion: The degree of renal oxygenation reduction is correlated with the severity of renal injury in CKD. SSR can improve renal hypoxia to attenuate renal injury in 5/6 (A/I) rats of CKD.
Collapse
Affiliation(s)
- Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuohui Yang
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Han W, Zheng Q, Zhang Z, Wang X, Gao L, Niu D, Wang X, Li R, Wang C. Association of the podocyte phenotype with extracapillary hypercellularity in patients with diabetic kidney disease. J Nephrol 2024; 37:2209-2222. [PMID: 39066994 DOI: 10.1007/s40620-024-01981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/29/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Extracapillary hypercellularity was recently identified as a poor prognostic factor for diabetic kidney disease (DKD), but its nature, pathogenesis, and relationship with glomerular sclerosis are still unclear. METHODS We retrospectively studied 107 patients with biopsy-proven DKD, recruited from January 2018 through December 2020. We compared the clinicopathologic characteristics of 25 patients with extracapillary hypercellularity lesions (the extracapillary hypercellularity group) to those of 82 patients without extracapillary hypercellularity (the control group). Multiple cell-specific markers were used for immunohistochemical staining to analyse the types of cells that exhibited extracapillary hypercellularity. Podocyte phenotype changes were evaluated via immunohistochemical staining for Synaptopodin and Nephrin, and foot process width was measured via transmission electron microscopy. RESULTS Patients with extracapillary hypercellularity lesions had more severe clinical features than patients without extracapillary hypercellularity in DKD, as indicated by elevated proteinuria and serum creatinine levels, and decreased serum albumin. Pathologically, extracapillary hypercellularity was accompanied by increased mesangial hyperplasia and interstitial fibrosis. Severe obliterative microvascular disease was observed more frequently in the extracapillary hypercellularity group than in the control group. At cell type analysis, 25 patients in the DKD-extracapillary hypercellularity group showed that a mixture of cells expressed either Wilm's tumor-1 or paired box protein 2. Furthermore, DKD-extracapillary hypercellularity patients had significant loss of podocyte phenotype and severe foot process effacement. Cells in extracapillary hypercellularity had increased hypoxia-induced factor-1 alpha expression. CONCLUSIONS Extracapillary hypercellularity is associated with severe renal dysfunction and renal sclerosis. Vascular damage is closely related to severe podocyte hypoxia injury and requires additional attention in future research.
Collapse
Affiliation(s)
- Weixia Han
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030001, Shanxi, China
- Department of Nephrology, Postdoctoral Workstation of Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, No. 29 Shuang Ta East Street, Taiyuan, 030012, Shanxi, China
| | - Quanhui Zheng
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030001, Shanxi, China
| | - Zhirong Zhang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030001, Shanxi, China
| | - Xiangyang Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030001, Shanxi, China
| | - Lifang Gao
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030001, Shanxi, China
| | - Dan Niu
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030001, Shanxi, China
| | - Xinyu Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030001, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Postdoctoral Workstation of Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, No. 29 Shuang Ta East Street, Taiyuan, 030012, Shanxi, China.
| | - Chen Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030001, Shanxi, China.
| |
Collapse
|
3
|
Yin R, Hu Z. U-shaped association between hemoglobin levels and albuminuria in US adults: a cross-sectional study. Int Urol Nephrol 2024:10.1007/s11255-024-04200-8. [PMID: 39244708 DOI: 10.1007/s11255-024-04200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE This study aimed to explore the correlation between hemoglobin levels and albuminuria in US adults. METHODS This cross-sectional investigation analyzed the National Health and Nutrition Examination Survey (NHANES) information from 2011 to 2020. Data on hemoglobin, albuminuria, and other variables were collected from all participants. The logistic-regression analyses and smoothed curves were used to substantiate the research objectives. RESULTS The average age of the 8,868 participants was 49.5 ± 17.3 years, and 49.3% were men. The prevalence of albuminuria was 12.1%. After adjusting for potential variables in the logistic-regression analysis models, hemoglobin (per 1 g/dL increase) was inversely associated with the presence of albuminuria (odds ratio [OR], 0.92; 95% confidence interval [95%CI], 0.87-0.97). Compared with participants in quartile 3 (Q3, 14.1-15.0 g/dL) for hemoglobin levels, those in the lowest quartile 1 (Q1, 6.1-13.0 g/dL) and highest quartile 4 (Q4, 15.1-19.6 g/dL) had adjusted ORs for albuminuria of 1.48 (95% CI, 1.19-1.85) and 1.11 (95% CI, 0.9-1.38), respectively. Our observations indicated a U-shaped association between hemoglobin levels and albuminuria, with a point of inflection at approximately 15.5 g/dL. The effect sizes and CIs below and above this point were 0.853 (95% CI, 0.798-0.912) and 1.377 (95% CI, 1.055-1.797), respectively. CONCLUSION This study indicates that the presence of albuminuria is linked to both low and high hemoglobin levels in US adults. The management of hemoglobin may benefit kidney health.
Collapse
Affiliation(s)
- Rong Yin
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
- Department of Nephrology, Hospital of Chengdu Office of People's Government of Tibet Autonomous Region, Chengdu, Sichuan, China
| | - Zhangxue Hu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Randle RK, Amara VR, Popik W. IFI16 Is Indispensable for Promoting HIF-1α-Mediated APOL1 Expression in Human Podocytes under Hypoxic Conditions. Int J Mol Sci 2024; 25:3324. [PMID: 38542298 PMCID: PMC10970439 DOI: 10.3390/ijms25063324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Genetic variants in the protein-coding regions of APOL1 are associated with an increased risk and progression of chronic kidney disease (CKD) in African Americans. Hypoxia exacerbates CKD progression by stabilizing HIF-1α, which induces APOL1 transcription in kidney podocytes. However, the contribution of additional mediators to regulating APOL1 expression under hypoxia in podocytes is unknown. Here, we report that a transient accumulation of HIF-1α in hypoxia is sufficient to upregulate APOL1 expression in podocytes through a cGAS/STING/IRF3-independent pathway. Notably, IFI16 ablation impedes hypoxia-driven APOL1 expression despite the nuclear accumulation of HIF-1α. Co-immunoprecipitation assays indicate no direct interaction between IFI16 and HIF-1α. Our studies identify hypoxia response elements (HREs) in the APOL1 gene enhancer/promoter region, showing increased HIF-1α binding to HREs located in the APOL1 gene enhancer. Luciferase reporter assays confirm the role of these HREs in transcriptional activation. Chromatin immunoprecipitation (ChIP)-qPCR assays demonstrate that IFI16 is not recruited to HREs, and IFI16 deletion reduces HIF-1α binding to APOL1 HREs. RT-qPCR analysis indicates that IFI16 selectively affects APOL1 expression, with a negligible impact on other hypoxia-responsive genes in podocytes. These findings highlight the unique contribution of IFI16 to hypoxia-driven APOL1 gene expression and suggest alternative IFI16-dependent mechanisms regulating APOL1 gene expression under hypoxic conditions.
Collapse
Affiliation(s)
- Richaundra K. Randle
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA;
| | - Venkateswara Rao Amara
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA;
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Waldemar Popik
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA;
- Department of Internal Medicine, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
5
|
Liao C, Liu Y, Lin Y, Wang J, Zhou T, Weng W. Mesenchymal Stem Cell-conditioned Medium Protecting Renal Tubular Epithelial Cells by Inhibiting Hypoxia-inducible Factor-1α and Nuclear Receptor Coactivator-1. Curr Stem Cell Res Ther 2024; 19:1369-1381. [PMID: 37817516 DOI: 10.2174/011574888x247652230928064627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is characterized by inflammatory infiltration and damage and death of renal tubular epithelial cells (RTECs), in which hypoxia plays an important role. Deferoxamine (DFO) is a well-accepted chemical hypoxia-mimetic agent. Mesenchymal stem cell-conditioned medium (MSC-CM) can reduce local inflammation and repair tissue. In this study, we explored the effect and molecular mechanism of MSC-CM-mediated protection of RTECs under DFO-induced hypoxia. METHODS Rat renal proximal tubule NRK-52E cells were treated with different concentrations of DFO for 24 hours, followed by evaluation of RTEC injury, using a Cell Counting Kit-8 (CCK-8) to detect cell viability and western blotting to evaluate the expression of transforming growth factor- beta 1 (TGF-β1), α-smooth muscle actin (α-SMA), and hypoxia-inducible factor-1 alpha (HIF-1α) in NRK-52E cells. Then, three groups of NRK-52E cells were used in experiments, including normal control (NC), 25 μM DFO, and 25 μM DFO + MSC-CM. MSC-CM was obtained from the human umbilical cord. MSC-CM was used to culture cells for 12 hours before DFO treatment, then fresh MSC-CM and 25 μM DFO were added, and cells were cultured for another 24 hours before analysis. RESULTS Western blotting and cellular immunofluorescence staining showed culture of NRK-52E cells in 25 μM DFO for 24 hours induced HIF-1α and nuclear receptor coactivator-1 (NCoA-1), simulating hypoxia. MSC-CM could inhibit the DFO-induced up-regulation of α-SMA, TGF-β1, HIF-1α and NCoA-1. CONCLUSION Our results suggest that MSC-CM has a protective effect on RTECs by down-regulating HIF-1α and NCoA-1, which may be the harmful factors in renal injury.
Collapse
Affiliation(s)
- Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yiping Liu
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yongda Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jiali Wang
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wenjuan Weng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
6
|
Schult L, Halbgebauer R, Karasu E, Huber-Lang M. Glomerular injury after trauma, burn, and sepsis. J Nephrol 2023; 36:2417-2429. [PMID: 37542608 PMCID: PMC10703988 DOI: 10.1007/s40620-023-01718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 08/07/2023]
Abstract
Acute kidney injury development after trauma, burn, or sepsis occurs frequently but remains a scientific and clinical challenge. Whereas the pathophysiological focus has mainly been on hemodynamics and the downstream renal tubular system, little is known about alterations upstream within the glomerulus post trauma or during sepsis. Particularly for the glomerular endothelial cells, mesangial cells, basal membrane, and podocytes, all of which form the glomerular filter, there are numerous in vitro studies on the molecular and functional consequences upon exposure of single cell types to specific damage- or microbial-associated molecular patterns. By contrast, a lack of knowledge exists in the real world regarding the orchestrated inflammatory response of the glomerulus post trauma or burn or during sepsis. Therefore, we aim to provide an overview on the glomerulus as an immune target but also as a perpetrator of the danger response to traumatic and septic conditions, and present major players involved in the context of critical illness. Finally, we highlight research gaps of this rather neglected but worthwhile area to define future molecular targets and therapeutic strategies to prevent or improve the course of AKI after trauma, burn, or sepsis.
Collapse
Affiliation(s)
- Lorena Schult
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
7
|
Xie L, He J, Mao J, Zhang Q, Bo H, Li L. The interplay between H19 and HIF-1α in mitochondrial dysfunction in myocardial infarction. Cell Signal 2023; 112:110919. [PMID: 37848100 DOI: 10.1016/j.cellsig.2023.110919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Myocardial infarction(MI) causes prolonged ischemia of infarcted myocardial tissue, which triggers a wide range of hypoxia cellular responses in cardiomyocytes. Emerging evidence has indicated the critical roles of long non-coding RNAs(lncRNAs) in cardiovascular diseases, including MI. The purpose of this study was to investigate the roles of lncRNA H19 and H19/HIF-1α pathway during MI. Results showed that cell injury and mitochondrial dysfunction were induced in hypoxia-treated H9c2 cells, accompanied by an increase in the expression of H19. H19 silencing remarkably diminishes cell injury, inhibits the dysfunctional degree of mitochondria, and decreases the injury of MI rats. Bioinformatics analysis and dual-luciferase assays revealed that H19 was the hypoxia-responsive lncRNA, and HIF-1α induced H19 transcription through direct binding to the H19 promoter. Moreover, H19 participates in the HIF-1α pathway by stabilizing the HIF-1α protein. These results indicated that H19 might be a potential biomarker and therapeutic target for myocardial infarction.
Collapse
Affiliation(s)
- Luhan Xie
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiabei He
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jun Mao
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hongchen Bo
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
8
|
Samaan E, Ramadan NM, Abdulaziz HMM, Ibrahim D, El-Sherbiny M, ElBayar R, Ghattas Y, Abdlmalek J, Bayali O, Elhusseini Y, Maghrabia A, El-Gamal R. DPP-4i versus SGLT2i as modulators of PHD3/HIF-2α pathway in the diabetic kidney. Biomed Pharmacother 2023; 167:115629. [PMID: 37804810 DOI: 10.1016/j.biopha.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
RATIONALE Renal hypoxia is one of the currently highlighted pathophysiologic mechanisms of diabetic nephropathy (DN). Both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α are major regulators of renal adaptive responses to hypoxia. OBJECTIVES This study aims to compare the effects of vildagliptin (a dipeptidyl peptidase-IV inhibitor, DPP-4i) and empagliflozin (a sodium-glucose cotransporter 2 inhibitor, SGLT2i) on the differential expression of renal HIF-1α/2α. Tissue expression of prolylhydroxylase 3 (PHD3), a key regulator of HIF-2α stability, was also highlighted in a diabetic nephropathy rat model. Type 1 diabetes mellitus was induced and diabetic rats were treated with either Vildagliptin or Empagliflozin (10 mg/kg/d each) for 12 weeks. Improvements in the kidney functional and histopathological parameters were addressed and correlated to changes in the renal expression of HIF-1α/2α, and PHD3. Urinary KIM-1 concentration was tested as a correlate to HIF pathway changes. FINDINGS Both vildagliptin- and empagliflozin-treated groups exhibited significant improvement in the functional, pathological, and ultra-structural renal changes induced by chronic diabetes. Compared to the untreated group, renal gene expression of HIF-1α was decreased while that of HIF-2α was increased in both treated groups, with significantly greater effects observed with SGLT2i. Renal PHD3 immune-reactivity was also decreased by both drugs, again with better efficacy for the SGLT2i. Importantly, improvements in the diabetic kidney biochemical and structural biomarkers were significantly correlated to PHD3 reductions and HIF-2α increments. CONCLUSIONS Both DPP-4i and SGLT2i could delay the progression of DN through their differential modulating effects on the PHD3/ HIF-2α pathway with significantly better efficacy for SGLT2i.
Collapse
Affiliation(s)
- Emad Samaan
- Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, 35516, Egypt; Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Clinical Pharmacology, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt.
| | - Hoda M M Abdulaziz
- Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Dina Ibrahim
- Pathology Department, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Rana ElBayar
- Undergraduate Medical student, Faculty of Medicine, Mansoura University, Egypt
| | - Yasmin Ghattas
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Joly Abdlmalek
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Omnia Bayali
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | | | - Aya Maghrabia
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Randa El-Gamal
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Medical Biochemistry, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt
| |
Collapse
|
9
|
Barth J, Loeffler I, Bondeva T, Liebisch M, Wolf G. The Role of Hypoxia on the Trimethylation of H3K27 in Podocytes. Biomedicines 2023; 11:2475. [PMID: 37760919 PMCID: PMC10525388 DOI: 10.3390/biomedicines11092475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic alterations contribute to the pathogenesis of chronic diseases such as diabetes mellitus. Previous studies of our group showed that diabetic conditions reduce the trimethylation of H3K27 in podocytes in a NIPP1- (nuclear inhibitor of protein phosphatase 1) and EZH2- (enhancer of zeste homolog 2) dependent manner. It has been previously reported that in differentiated podocytes, hypoxia decreases the expression of slit diaphragm proteins and promotes foot process effacement, thereby contributing to the progression of renal disease. The exact mechanisms are, however, not completely understood. The aim of this study was to analyze the role of hypoxia and HIFs (hypoxia-inducible factor) on epigenetic changes in podocytes affecting NIPP1, EZH2 and H3K27me3, in vitro and in vivo. In vivo studies were performed with mice exposed to 10% systemic hypoxia for 3 days or injected with 3,4-DHB (dihydroxybenzoate), a PHD (prolyl hydroxylase) inhibitor, 24 h prior analyses. Immunodetection of H3K27me3, NIPP1 and EZH2 in glomerular podocytes revealed, to the best of our knowledge for the first time, that hypoxic conditions and pharmacological HIFs activation significantly reduce the expression of NIPP1 and EZH2 and diminish H3K27 trimethylation. These findings are also supported by in vitro studies using murine-differentiated podocytes.
Collapse
|
10
|
Xu Y, Yang J, Lu F, Ye C, Wang C. Correlation of Renal Oxygenation with Renal Function in Chronic Kidney Disease: A Preliminary Prospective Study. Kidney Blood Press Res 2023; 48:175-185. [PMID: 36791684 DOI: 10.1159/000529165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION Chronic hypoxia is prevalent in chronic kidney disease (CKD), and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) provides noninvasive evaluation of renal oxygenation. This study aimed to explore the correlation of renal oxygenation evaluated by BOLD-MRI with renal function. METHODS 97 non-dialysis patients with CKD stages 1-5 and healthy volunteers (HVs) were recruited in the study, all participants without diabetes. Based on their estimated glomerular filtration rate (eGFR), the patients were divided into two groups: CKD stages 1-3 (CKD 1-3) and CKD stages 4-5 (CKD 4-5). We measured cortical and medullary T2* (COT2* and MET2*) values in all participants by BOLD-MRI. Physiological indices were also recorded and compared among three groups. Correlation of T2* values with clinical characteristics was determined. RESULTS The COT2* values were significantly higher than MET2* values in all participants. The COT2* and MET2* values of three groups were ranked as HV > CKD 1-3> CKD 4-5 (p < 0.0001). There were positive correlations between the COT2* values, MET2* values and eGFR, hemoglobin (r > 0.4, p < 0.01). The 24-h urinary protein (24-h Upr) showed weak correlation with the COT2* value (rs = -0.2301, p = 0.0265) and no correlation with the MET2* value (p > 0.05). Urinary microprotein, including urinary alpha1-microglobulin, urinary beta2-microglobulin (β2-MG), and urinary retinol-binding protein (RBP), showed strong correlation with COT2* and MET2* values. According to the analysis of receiver operating characteristic curve, the optimal cut-points between HV and CKD 1-3 were "<61.17 ms" (sensitivity: 91.23%, specificity: 100%) for COT2* values and "<35.00 ms" (sensitivity: 77.19%, specificity: 100%) for MET2* values, whereas COT2* values ("<47.34 ms"; sensitivity: 90.00%, specificity: 92.98%) and MET2* values ("<25.09 ms"; sensitivity: 97.50%, specificity: 80.70%) between CKD 1-3 and CKD 4-5. CONCLUSION The decline of renal oxygenation reflected on T2* values, especially in cortex, may be an effective diagnostic marker for early detection of CKD.
Collapse
Affiliation(s)
- Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
| | - Jing Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Ma Y, Potenza DM, Ajalbert G, Brenna A, Zhu C, Ming XF, Yang Z. Paracrine Effects of Renal Proximal Tubular Epithelial Cells on Podocyte Injury under Hypoxic Conditions Are Mediated by Arginase-II and TGF-β1. Int J Mol Sci 2023; 24:ijms24043587. [PMID: 36835007 PMCID: PMC9966309 DOI: 10.3390/ijms24043587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Hypoxia is an important risk for renal disease. The mitochondrial enzyme arginase-II (Arg-II) is expressed and/or induced by hypoxia in proximal tubular epithelial cells (PTECs) and in podocytes, leading to cellular damage. Because PTECs are vulnerable to hypoxia and located in proximity to podocytes, we examined the role of Arg-II in the crosstalk of PTECs under hypoxic conditions with podocytes. A human PTEC cell line (HK2) and a human podocyte cell line (AB8/13) were cultured. Arg-ii gene was ablated by CRISPR/Case9 in both cell types. HK2 cells were exposed to normoxia (21% O2) or hypoxia (1% O2) for 48 h. Conditioned medium (CM) was collected and transferred to the podocytes. Podocyte injuries were then analyzed. Hypoxic (not normoxic) HK2-CM caused cytoskeletal derangement, cell apoptosis, and increased Arg-II levels in differentiated podocytes. These effects were absent when arg-ii in HK2 was ablated. The detrimental effects of the hypoxic HK2-CM were prevented by TGF-β1 type-I receptor blocker SB431542. Indeed, TGF-β1 levels in hypoxic HK2-CM (but not arg-ii-/--HK2-CM) were increased. Furthermore, the detrimental effects of TGF-β1 on podocytes were prevented in arg-ii-/--podocytes. This study demonstrates crosstalk between PTECs and podocytes through the Arg-II-TGF-β1 cascade, which may contribute to hypoxia-induced podocyte damage.
Collapse
|
12
|
Hypoxia-Inducible Factors and Diabetic Kidney Disease—How Deep Can We Go? Int J Mol Sci 2022; 23:ijms231810413. [PMID: 36142323 PMCID: PMC9499602 DOI: 10.3390/ijms231810413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes is one of the leading causes of chronic kidney disease (CKD), and multiple underlying mechanisms involved in pathogenesis of diabetic nephropathy (DN) have been described. Although various treatments and diagnosis applications are available, DN remains a clinical and economic burden, considering that about 40% of type 2 diabetes patients will develop nephropathy. In the past years, some research found that hypoxia response and hypoxia-inducible factors (HIFs) play critical roles in the pathogenesis of DN. Hypoxia-inducible factors (HIFs) HIF-1, HIF-2, and HIF-3 are the main mediators of metabolic responses to the state of hypoxia, which seems to be the one of the earliest events in the occurrence and progression of diabetic kidney disease (DKD). The abnormal activity of HIFs seems to be of crucial importance in the pathogenesis of diseases, including nephropathies. Studies using transcriptome analysis confirmed by metabolome analysis revealed that HIF stabilizers (HIF-prolyl hydroxylase inhibitors) are novel therapeutic agents used to treat anemia in CKD patients that not only increase endogenous erythropoietin production, but also could act by counteracting the metabolic alterations in incipient diabetic kidney disease and relieve oxidative stress in the renal tissue. In this review, we present the newest data regarding hypoxia response and HIF involvement in the pathogenesis of diabetic nephropathy and new therapeutic insights, starting from improving kidney oxygen homeostasis.
Collapse
|
13
|
Ren Z, Potenza DM, Ma Y, Ajalbert G, Hoogewijs D, Ming XF, Yang Z. Role of Arginase-II in Podocyte Injury under Hypoxic Conditions. Biomolecules 2022; 12:biom12091213. [PMID: 36139052 PMCID: PMC9496188 DOI: 10.3390/biom12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia plays a crucial role in acute and chronic renal injury, which is attributable to renal tubular and glomerular cell damage. Some studies provide evidence that hypoxia-dependent upregulation of the mitochondrial enzyme arginase type-II (Arg-II) in tubular cells promotes renal tubular injury. It is, however, not known whether Arg-II is also expressed in glomerular cells, particularly podocytes under hypoxic conditions, contributing to hypoxia-induced podocyte injury. The effects of hypoxia on human podocyte cells (AB8/13) in cultures and on isolated kidneys from wild-type (wt) and arg-ii gene-deficient (arg-ii−/−) mice ex vivo, as well as on mice of the two genotypes in vivo, were investigated, respectively. We found that the Arg-II levels were enhanced in cultured podocytes in a time-dependent manner over 48 h, which was dependent on the stabilization of hypoxia-inducible factor 1α (HIF1α). Moreover, a hypoxia-induced derangement of cellular actin cytoskeletal fibers, a decrease in podocin, and an increase in mitochondrial ROS (mtROS) generation—as measured by MitoSOX—were inhibited by adenoviral-mediated arg-ii gene silencing. These effects of hypoxia on podocyte injury were mimicked by the HIFα stabilizing drug DMOG, which inhibits prolyl hydroxylases (PHD), the enzymes involved in HIFα degradation. The silencing of arg-ii prevented the detrimental effects of DMOG on podocytes. Furthermore, the inhibition of mtROS generation by rotenone—the inhibitor of respiration chain complex-I—recapitulated the protective effects of arg-ii silencing on podocytes under hypoxic conditions. Moreover, the ex vivo experiments with isolated kidney tissues and the in vivo experiments with mice exposed to hypoxic conditions showed increased Arg-II levels in podocytes and decreased podocyte markers regarding synaptopodin in wt mice but not in arg-ii−/− mice. While age-associated albuminuria was reduced in the arg-ii−/− mice, the hypoxia-induced increase in albuminuria was, however, not significantly affected in the arg-ii−/−. Our study demonstrates that Arg-II in podocytes promotes cell injury. Arg-ii ablation seems insufficient to protect mice in vivo against a hypoxia-induced increase in albuminuria, but it does reduce albuminuria in aging.
Collapse
Affiliation(s)
- Zhilong Ren
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Duilio Michele Potenza
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Yiqiong Ma
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guillaume Ajalbert
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - David Hoogewijs
- Integrative Oxygen Physiology, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| | - Zhihong Yang
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| |
Collapse
|
14
|
Wang H, Tang C, Dang ZH, Yong A, Liu L, Wang S, Zhao M. Clinicopathological characteristics of high-altitude polycythemia-related kidney disease in Tibetan inhabitants. Kidney Int 2022; 102:196-206. [PMID: 35513124 DOI: 10.1016/j.kint.2022.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
Abstract
High-altitude polycythemia (HAPC) is a clinical syndrome that occurs in native inhabitants or long-term residents living at altitude. The kidney is one of the most affected organs. However, the clinical and kidney histopathological profiles of HAPC-related kidney disease have rarely been reported. Here, we report kidney biopsy-based clinicopathological study on this disease. HAPC was defined as excessive erythrocytosis [females, hemoglobin 190 g/L or more; males, 210 g/L or more] in patients living above an altitude of 2500 m for more than ten years. A total of 416 Tibetan patients underwent kidney biopsy between January 1, 2016, and November 31, 2020. Of these patients 17 met the diagnostic criteria for HAPC-related kidney disease. Clinically, these patients had a median urinary protein level of 2.5 g/24-hour (range 1.81-6.85). Twelve patients had hyperuricemia, nine had hypertension, and three had kidney insufficiency. On histopathology, glomerular hypertrophy, glomerular basement membrane thickening, podocyte foot process effacement, segmental glomerulosclerosis and global glomerulosclerosis were the main features. Extraglomerular arterial/arteriolar lesions were common, presenting as intimal fibrosis, hyalinosis and endothelial cell swelling/subintimal edema. Expansion of the arterial/arteriolar medial wall area characterized by smooth muscle cell proliferation was clearly observed, potentially indicating vascular remodeling. Hypoxia-inducible factor 2α was expressed in the kidney tissues of these patients. Thus, the pathological changes of HAPC-related kidney disease encompassed both glomerular and extraglomerular vascular lesions, suggesting a key role of both chronic hypoxia itself and secondary hemodynamic changes in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Hui Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Renal Pathological Center, Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing 100034, P.R. China; Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing 100034, P.R. China
| | - Chen Tang
- Renal Division, Department of Medicine, Peking University First Hospital; Renal Pathological Center, Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing 100034, P.R. China
| | - Zong-Hui Dang
- The People's Hospital of Tibet Autonomous region, Lhasa, Tibet, P.R. China
| | - A Yong
- The People's Hospital of Tibet Autonomous region, Lhasa, Tibet, P.R. China
| | - Lijun Liu
- Renal Division, Department of Medicine, Peking University First Hospital; Renal Pathological Center, Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing 100034, P.R. China.
| | - Suxia Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Renal Pathological Center, Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing 100034, P.R. China; Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing 100034, P.R. China.
| | - Minghui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Renal Pathological Center, Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Beijing 100034, P.R. China
| |
Collapse
|
15
|
Chang J, Zheng J, Gao X, Dong H, Yu H, Huang M, Sun Z, Feng X. TangShenWeiNing Formula Prevents Diabetic Nephropathy by Protecting Podocytes Through the SIRT1/HIF-1α Pathway. Front Endocrinol (Lausanne) 2022; 13:888611. [PMID: 35721758 PMCID: PMC9204479 DOI: 10.3389/fendo.2022.888611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) represents a major complication of diabetes, and podocyte injury has a critical function in DN development. TangShenWeiNing formula (TSWN) has been demonstrated to efficiently decrease proteinuria and protect podocytes in DN. This work aimed to explore the mechanism by which TSWN alleviates DN and protects podocytes. METHODS The major bioactive components of TSWN were detected by mass spectrometry (MS) and pharmacological databases. Eight-week-old male C57BLKS/J db/m and db/db mice were provided pure water, valsartan, low dose TSWN, middle dose TSWN and high dose TSWN by gavage for 12 weeks, respectively. RESULTS MS and network pharmacology analyses suggested that TSWN might prevent DN through the sirtuin (SIRT)1/hypoxia-inducible factor (HIF)-1α pathway. Diabetic mice showed elevated urinary albumin in comparison with non-diabetic mice, and TSWN decreased urinary albumin in diabetic mice. Histological injury increased in the kidney in diabetic mice, which could be improved by TSWN. Fibrosis and collagen I expression were induced in the diabetic mouse kidney in comparison with the non-diabetic mouse kidney; TSWN alleviated these effects. Apoptosis and cleaved caspase-3 were induced in the diabetic mouse kidney in comparison with the non-diabetic mouse kidney, and TSWN blunted these effects. Podocytes were damaged in the diabetic mouse kidney, which was improved by TSWN. Podocin and nephrin amounts were decreased in the diabetic mouse kidney in comparison with the non-diabetic mouse kidney, and podocalyxin was increased in urine of diabetic animals in comparison with non-diabetic counterparts. After TSWN treatment, podocin and nephrin were raised in the diabetic mouse kidney, and urinary podocalyxin was depressed in diabetic animals. Diabetic mice had lower SIRT1 and higher HIF-1α amounts in kidney specimens in comparison with non-diabetic mice, and TSWN promoted SIRT1 and inhibited HIF-1α in the diabetic mouse kidney. Moreover, co-staining of SIRT1 and podocin revealed that SIRT1 decreased in podocytes from diabetic mice in comparison with those from non-diabetic mice, and TSWN elevated SIRT1 in podocytes. CONCLUSIONS This study indicated that TSWN alleviates DN by improving podocyte injury through the SIRT1/HIF-1α pathway in diabetic mouse kidneys.
Collapse
Affiliation(s)
- Jing Chang
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jinsu Zheng
- Department of Traditional Chinese Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xia Gao
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hengbei Dong
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Haitian Yu
- Education Division, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Mengxiu Huang
- Department of Hepatobiliary, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhencheng Sun
- Department of Osteology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaomeng Feng
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiaomeng Feng,
| |
Collapse
|
16
|
Dong L, Tan J, Li F, Wang S, Jiang Z, Qin A, Zhong Z, Zhou X, Tang Y, Qin W. Arterial-Arteriolar Sclerosis Is Independently Associated With Poor Renal Outcome in IgA Nephropathy Patients. Front Med (Lausanne) 2021; 8:761897. [PMID: 34869465 PMCID: PMC8637863 DOI: 10.3389/fmed.2021.761897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/07/2021] [Indexed: 02/05/2023] Open
Abstract
Aim: This study aimed to investigate the clinicopathological features and prognosis of immunoglobulin A nephropathy (IgAN) with arterial-arteriolar sclerosis (AS). Methods: Patients with biopsy-proven IgAN from the West China Hospital of Sichuan University were retrospectively enrolled. Clinicopathological features were collected. Patients were categorized based on the presence and the severity of the AS. All the patients were regularly followed-up until a composite end point. The correlation between AS and prognosis of IgAN was assessed. Results: A total of 1,424 patients were recruited and followed for 60.0 ± 28.7 months. Patients with AS tended to have older age, higher blood pressure, heavier proteinuria, higher serum creatinine, uric acid, and total triglyceride (TG). Meanwhile, they were more likely to have a lower estimated glomerular filtration rate (eGFR), hemoglobin, and albumin. At the end of follow-up, 126 patients in the AS group and 47 patients in the non-AS group had reached the composite end point (p < 0.001). AS was associated with the renal outcome (log-rank p < 0.001) and was an independent risk factor for the progression of IgAN (p = 0.049). The severity of AS was associated with renal outcomes (log-rank p < 0.001) and there was a trend that it might serve as an independent risk marker for progression of IgAN. In the subgroup analysis, patients presenting with AS and lower eGFR, albumin, and hemoglobin or higher proteinuria, uric acid, and TG had a significant trend for a shorter time to reach the end point (log-rank p < 0.001). Conclusion: AS was commonly seen in patients with IgAN and was independently associated with the poor prognosis.
Collapse
Affiliation(s)
- Lingqiu Dong
- West China School of Medicine, Sichuan University, Chengdu, China.,Division of Nephrology, Department of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jiaxing Tan
- West China School of Medicine, Sichuan University, Chengdu, China.,Division of Nephrology, Department of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Fangming Li
- West China School of Medicine, Sichuan University, Chengdu, China.,Division of Nephrology, Department of Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Siqing Wang
- West China School of Medicine, Sichuan University, Chengdu, China.,Division of Nephrology, Department of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Jiang
- West China School of Medicine, Sichuan University, Chengdu, China.,Division of Nephrology, Department of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Aiya Qin
- West China School of Medicine, Sichuan University, Chengdu, China.,Division of Nephrology, Department of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhengxia Zhong
- Division of Nephrology, Department of Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Xiaoyuan Zhou
- West China School of Public Health, West China Forth Hospital of Sichuan University, Chengdu, China
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|