1
|
Liu SY, Chen H, Zhou F, Zheng JP, Zhang JT. Development of an innovative eugenol and borax-based orodispersible film for enhanced treatment of mouth ulcers. Eur J Pharm Biopharm 2024; 200:114337. [PMID: 38789062 DOI: 10.1016/j.ejpb.2024.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Orodispersible films (ODFs) have emerged as an advanced and patient-friendly delivery system due to ease of administration, improved patient compliance, quick release and taste-masking of active pharmaceutical ingredients. This research reports the preparation of the ODF containing eugenol and borax (EB-ODF) by a solvent casting technique for treating mouth ulcers. The EB-ODF consisted of vinyl pyrrolidone/vinyl acetate copolymer (Kollidon® VA64, VA64) and hydroxypropyl methylcellulose (HPMC-K250) as the film formers where eugenol and borax were loaded. The thickness of the EB-ODF obtained was 0.119 ± 0.001 mm and the tensile strength was 13.1 ± 1.1 N/mm2 (p > 0.05). The prepared films disintegrated in the oral cavity within 30 s and over 90% of the eugenol was released from the film in the first 5 min. Furthermore, the combined application of eugenol and borax, loaded in EB-ODF, displayed notable synergetic antibacterial property against both gram-negative and gram-positive bacteria. In an in-vivo study on a rat model with chemical burn-induced oral ulcers, the EB-ODF treatment group had a 100% reduction in ulcer area (p > 0.05) after 10 days of treatment and demonstrated a 38.7% higher reduction in oral ulcer area compared to the Dingpeng Cream treatment group (p < 0.0001). The EB-ODF treatment group showed minimal oral irritation, scoring only 1 point and a 65% preference in the taste tests (p < 0.0001). In summary, EB-ODF had successfully overcome the poor palatability of commercially available formulation and provided notable potential for further ulcer treatment product development.
Collapse
Affiliation(s)
- Shu-Yin Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315302, PR China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Hui Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Jian-Ping Zheng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315302, PR China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China.
| | - Jian-Tao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China.
| |
Collapse
|
2
|
Ghasemi S, Jaldani S, Sanaei F, Ghiafehshirzadi A, Alidoost A, Hashemi M, Hossaeini Marashi SM, Khodaiyan F, Noori SMA. Application of alginate polymer films and coatings incorporated with essential oils in foods: a review of recent literature with emphasis on nanotechnology. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Abstract
Food waste is one of the major challenges in food safety and finding a solution for this issue is critically important. Herein, edible films and coatings became attractive for scientists as they can keep food from spoilage. Edible films and coatings can effectively preserve the original quality of food and extend its shelf life. Polysaccharides, including starch and cellulose derivatives, chitosan, alginate and pectin, have been extensively studied as biopackaging materials. One of the most interesting polysaccharides is alginate, which has been used to make edible films and coatings. Incorporating essential oils (EO) in alginate matrices results in an improvement in some properties of the edible packages, such as antioxidant and antimicrobial properties. Additionally, the use of nanotechnology can improve the desirable properties of edible films and coatings. In this article we reviewed the antimicrobial and antioxidant properties of alginate coatings and films and their use in various food products.
Collapse
Affiliation(s)
- Sajjad Ghasemi
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Shima Jaldani
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Farideh Sanaei
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Asiyeh Ghiafehshirzadi
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Ahmadreza Alidoost
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
- Department of Nutrition, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Sayed Mahdi Hossaeini Marashi
- College of Engineering, Design and Physical Sciences Michael Sterling Building (MCST 055) , Brunel University London , Uxbridge , UB8 3PH , UK
- School of Physics, Engineering and Computer Science, Centre for Engineering Research , University of Hertfordshire , Mosquito Way , Hatfield AL10 9EU , UK
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering , University of Tehran , Karaj , Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center , Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
- Department of Nutrition, School of Allied Medical Sciences , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
3
|
Silva BN, Bonilla-Luque OM, Possas A, Ezzaky Y, Elmoslih A, Teixeira JA, Achemchem F, Valero A, Cadavez V, Gonzales-Barron U. Meta-Analysis of In Vitro Antimicrobial Capacity of Extracts and Essential Oils of Syzygium aromaticum, Citrus L. and Origanum L.: Contrasting the Results of Different Antimicrobial Susceptibility Methods. Foods 2023; 12:foods12061265. [PMID: 36981191 PMCID: PMC10048651 DOI: 10.3390/foods12061265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Diffusion methods, including agar disk-diffusion and agar well-diffusion, as well as dilution methods such as broth and agar dilution, are frequently employed to evaluate the antimicrobial capacity of extracts and essential oils (EOs) derived from Origanum L., Syzygium aromaticum, and Citrus L. The results are reported as inhibition diameters (IDs) and minimum inhibitory concentrations (MICs), respectively. In order to investigate potential sources of variability in antimicrobial susceptibility testing results and to assess whether a correlation exists between ID and MIC measurements, meta-analytical regression models were built using in vitro data obtained through a systematic literature search. The pooled ID models revealed varied bacterial susceptibilities to the extracts and in some cases, the plant species and methodology utilised impacted the measurements obtained (p < 0.05). Lemon and orange extracts were found to be most effective against E. coli (24.4 ± 1.21 and 16.5 ± 0.84 mm, respectively), while oregano extracts exhibited the highest level of effectiveness against B. cereus (22.3 ± 1.73 mm). Clove extracts were observed to be most effective against B. cereus and demonstrated the general trend that the well-diffusion method tends to produce higher ID (20.5 ± 1.36 mm) than the disk-diffusion method (16.3 ± 1.40 mm). Although the plant species had an impact on MIC, there is no evidence to suggest that the methodology employed had an effect on MIC (p > 0.05). The ID–MIC model revealed an inverse correlation (R2 = 47.7%) and highlighted the fact that the extract dose highly modulated the relationship (p < 0.0001). The findings of this study encourage the use of extracts and EOs derived from Origanum, Syzygium aromaticum, and Citrus to prevent bacterial growth. Additionally, this study underscores several variables that can impact ID and MIC measurements and expose the correlation between the two types of results.
Collapse
Affiliation(s)
- Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.N.S.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga María Bonilla-Luque
- Departamento de Bromatología y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Arícia Possas
- Departamento de Bromatología y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Youssef Ezzaky
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, Agadir 80150, Morocco
| | - Abdelkhaleq Elmoslih
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, Agadir 80150, Morocco
| | - José António Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, Agadir 80150, Morocco
| | - Antonio Valero
- Departamento de Bromatología y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.N.S.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.N.S.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: ; Tel.: +351-273-303-325
| |
Collapse
|
4
|
Puscaselu RG, Lobiuc A, Gutt G. The Future Packaging of the Food Industry: The Development and Characterization of Innovative Biobased Materials with Essential Oils Added. Gels 2022; 8:gels8080505. [PMID: 36005106 PMCID: PMC9407569 DOI: 10.3390/gels8080505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The need to replace conventional, usually single-use, packaging materials, so important for the future of resources and of the environment, has propelled research towards the development of packaging-based on biopolymers, fully biodegradable and even edible. The current study furthers the research on development of such films and tests the modification of the properties of the previously developed biopolymeric material, by adding 10, respectively 20% w/v essential oils of lemon, grapefruit, orange, cinnamon, clove, mint, ginger, eucalypt, and chamomile. Films with a thickness between 53 and 102 µm were obtained, with a roughness ranging between 147 and 366 nm. Most films had a water activity index significantly below what is required for microorganism growth, as low as 0.27, while all essential oils induced microbial growth reduction or 100% inhibition. Tested for the evaluation of physical, optical, microbiological or solubility properties, all the films with the addition of essential oil in the composition showed improved properties compared to the control sample.
Collapse
Affiliation(s)
| | - Andrei Lobiuc
- Faculty of Medicine and Biological Sciences, Stefan Cel Mare University of Suceava, 720229 Suceava, Romania
- Correspondence:
| | - Gheorghe Gutt
- Faculty of Food Engineering, Stefan Cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
5
|
Edible Xanthan/Propolis Coating and Its Effect on Physicochemical, Microbial, and Sensory Quality Indices in Mackerel Tuna ( Euthynnus affinis) Fillets during Chilled Storage. Gels 2022; 8:gels8070405. [PMID: 35877490 PMCID: PMC9315731 DOI: 10.3390/gels8070405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide aquaculture production is increasing, but with this increase comes quality and safety related problems. Hence, there is an urgent need to develop potent technologies to extend the shelf life of fish. Xanthan gum is commonly used in the food industry because of its high-water solubility, stability of its aqueous solutions in a wide pH range, and high viscosity. One of its modern food applications is its use as a gelling agent in edible coatings building. Therefore, in this study, the effect of xanthan coating containing various concentrations (0, 1, 2%; w/v) of ethanolic extract of propolis (EEP) on physicochemical, microbial, and sensory quality indices in mackerel fillets stored at 2 °C for 20 days was evaluated. The pH, peroxide value, K-value, TVB-N, TBARS, microbiological and sensory characteristics were determined every 5 days over the storage period (20 days). Samples treated with xanthan (XAN) coatings containing 1 and 2% of EEP were shown to have the highest level of physicochemical protection and maximum level of microbial inhibition (p < 0.05) compared to uncoated samples (control) over the storage period. Furthermore, the addition of EEP to XAN was more effective in notably preserving (p < 0.05) the taste and odor of coated samples compared to control.
Collapse
|
6
|
Zarandi M, Hasani M, Shotorbani PM, Basti AA, Hamedi H. Assessing edible composite coating of sodium alginate–galbanum gum impregnated with nettle extract on improving the shelf life of rainbow trout fillet. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01357-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Eslamian Amiri M, Ahmady M, Ariaii P, Golestan L, Ghorbani‐HasanSaraei A. Use composite coating of chitosan-chia seed gum enriched with microliposomes of Bay laurel essential oil to increase the shelf life of quail fillets. Food Sci Nutr 2021; 9:6524-6537. [PMID: 34925782 PMCID: PMC8645717 DOI: 10.1002/fsn3.2578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022] Open
Abstract
In this study, the effect of composite chitosan-chia seed coating (CH-CG) with Bay laurel (Laurus nobilis) essential oil (BE) in two forms including free and nanocapsulated on the shelf life of quail fillets during the 16-day refrigeration (4 ± 1℃) period was investigated. For this purpose, first, BE was extracted by Clevenger apparatus. Then, nanoliposomes BE were produced, and the properties of BE and nanoliposomes BE were investigated. In order to investigate the shelf life of quail, 6 treatments were produced including 1: control (C), 2: CH-CG, CH-CG+BE at 800 ppm, 3: CH-CG+BE at 1600 ppm, 4: CH-CG+nano BE at 800 ppm, 5: CH-CG+nano BE at 1600 ppm, and periodically chemical parameters (peroxide value, free fatty acid, total volatile basic nitrogen, texture firmness, and chewing ability) and microbial (total viable bacteria (TVC) and psychrotrophic bacteria), and the effect of different treatments on control in Escherichia coli and Staphylococcus aureus inoculated populations in quail was also investigated. The BE had high antioxidant and antimicrobial properties. The particle size and microencapsulation efficiency of BE nanoliposome were 98.3 nm and 75.95%, respectively. The results of chemical and microbial analysis showed that in general, the coating with essential oil slowed down the increasing trend of oxidation and microbial indices compared to the control treatment and nanocapsulation of essential oil has increased its antimicrobial and antioxidant properties (p < .05). At the end of storage period, in all tests, treatments of 3, 4, and 5 had the allowed microbial and chemical range and they also inhibited the growth of these bacteria (p < .05). Overall, considering the higher sensory score of treatment 4 and economic efficiency, it seems that this treatment can be used as a natural preservative in the meat industry.
Collapse
Affiliation(s)
| | - Mohammad Ahmady
- Department of Food Science and TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | - Peiman Ariaii
- Department of Food Science and TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | - Leila Golestan
- Department of Food Science and TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | | |
Collapse
|
8
|
Tosun ŞY. Investigating the effect of organic acids on the survival of
Listeria monocytogenes
and
Escherichia coli
O157:H7 in Atlantic salmon stored at 4 ± 1°C. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Şehnaz Yasemin Tosun
- Department of Fisheries and Seafood Processing Technology Faculty of Aquatic Sciences Istanbul University Istanbul Turkey
| |
Collapse
|
9
|
Antimicrobial activity of green synthesized biodegradable alginate–silver (Alg-Ag) nanocomposite films against selected foodborne pathogens. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01882-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Recent Developments in Seafood Packaging Technologies. Foods 2021; 10:foods10050940. [PMID: 33923022 PMCID: PMC8145365 DOI: 10.3390/foods10050940] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.
Collapse
|
11
|
KAVAKEBI E, ANVAR AA, AHARI H, MOTALEBI AA. Green biosynthesized Satureja rechingeri Jamzad-Ag/poly vinyl alcohol film: quality improvement of Oncorhynchus mykiss fillet during refrigerated storage. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.62720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Kontominas MG. Use of Alginates as Food Packaging Materials. Foods 2020; 9:E1440. [PMID: 33053627 PMCID: PMC7599891 DOI: 10.3390/foods9101440] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Packaging mainly functions by protecting and preserving its contents. In the case of food packaging, the package protects the contained food product from (i) physical/mechanical damage; (ii) physico-chemical changes due to the effect of light, oxygen, moisture and odors; and (iii) biological changes due to the presence of microorganisms and pests; all the above parameters result in the reduction in product quality and safety. Due to the negative impact of synthetic packaging materials on the environment, research organizations as well as the food industry are currently exploring the possibility of using biodegradable and renewable materials deriving from natural sources. Such biopolymers include: proteins (whey proteins, wheat, corn and soy proteins, gelatin), lipid derivatives (waxes, acetylated triglycerides) and carbohydrates (starch, cellulose and its derivatives, carrageenan, pectin, chitosan, alginates) used in food packaging applications. Alginates are natural hydrophilic polysaccharide biopolymers mainly extracted from marine brown algae. In the form of films or coatings, they exhibit: good film-forming properties, low permeability to O2 and vapors, flexibility, water solubility and gloss while being tasteless and odorless. When combined with additives such as organic acids, essential oils, plant extracts, bacteriocins and nanomaterials, they contribute to the retention of moisture, reduction in shrinkage, retardation of oxidation, inhibition of color and texture degradation, reduction in microbial load, enhancement of sensory acceptability and minimization of cooking losses. Alginates were initially used as a coating for perishable fresh fruits and vegetables to control respiration rate, but can be applied to a wide range of foods, such as meat, poultry, seafood and cheese products, resulting in the extension of product shelf life. When used as part of the principle of active, intelligent and green packaging technologies, alginates can work synergistically to yield a multi-function food packaging system comprising the ultimate goal of food packaging technology.
Collapse
Affiliation(s)
- Michael G Kontominas
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
13
|
Bagheri R, Ariaii P, Motamedzadegan A. Effects of chitosan incorporated with basil seed gum and nettle (Urtica dioica L.) essential oil on the quality of beef burger during refrigerated storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00628-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Dini H, Fallah AA, Bonyadian M, Abbasvali M, Soleimani M. Effect of edible composite film based on chitosan and cumin essential oil-loaded nanoemulsion combined with low-dose gamma irradiation on microbiological safety and quality of beef loins during refrigerated storage. Int J Biol Macromol 2020; 164:1501-1509. [PMID: 32750471 DOI: 10.1016/j.ijbiomac.2020.07.215] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 11/15/2022]
Abstract
This research was conducted to assess the combined effect of chitosan (Ch) film containing cumin essential oil nanoemulsion (CNE) and low-dose gamma irradiation (GI) at 2.5 kGy on microbiological safety and quality of beef loins during 21 days of chilled storage. The growth of mesophilic and psychrophilic bacteria, Enterobacteriaceae, and lactic acid bacteria were retarded in all treated groups (Ch, GI, Ch + CNE, Ch + GI, and Ch + CNE + GI groups) compared to control group during storage time. The treatments also slowed down the increasing level of total volatile basic nitrogen and pH during storage, while irradiation increased the levels of thiobarbituric acid reactive substances and protein carbonyls in beef loins. All treatments except Ch were effective to control the growth of inoculated pathogenic bacteria, including Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella typhimurium, in loin samples. The combination of Ch + CNE + GI was the most effective treatment to control the population of microbial flora and inoculated pathogens, slow down some physicochemical changes, and enhance the storage life of beef loins. As a result, the combination of active chitosan film and low-dose gamma irradiation can ensure microbiological safety and is suggested for long time preservation of beef during chilled storage.
Collapse
Affiliation(s)
- Hossein Dini
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran.
| | - Mojtaba Bonyadian
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Maryam Abbasvali
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Mohammad Soleimani
- Department of Microbiology, Faculty of Medicine and Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Tometri SS, Ahmady M, Ariaii P, Soltani MS. Extraction and encapsulation of Laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00578-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Munekata PE, Pateiro M, Rodríguez-Lázaro D, Domínguez R, Zhong J, Lorenzo JM. The Role of Essential Oils against Pathogenic Escherichia coli in Food Products. Microorganisms 2020; 8:microorganisms8060924. [PMID: 32570954 PMCID: PMC7356374 DOI: 10.3390/microorganisms8060924] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022] Open
Abstract
Outbreaks related to foodborne diseases are a major concern among health authorities, food industries, and the general public. Escherichia coli (E. coli) is a pathogen associated with causing multiple outbreaks in the last decades linked to several ready to eat products such as meat, fish, dairy products, and vegetables. The ingestion of contaminated food with pathogenic E. coli can cause watery diarrhea, vomiting, and persistent diarrhea as well as more severe effects such as hemorrhagic colitis, end-stage renal disease, and, in some circumstances, hemolytic uremic syndrome. Essential oils (EOs) are natural compounds with broad-spectrum activity against spoilage and pathogenic microorganisms and are also generally recognized as safe (GRAS). Particularly for E. coli, several recent studies have been conducted to study and characterize the effect to inhibit the synthesis of toxins and the proliferation in food systems. Moreover, the strategy used to apply the EO in food plays a crucial role to prevent the development of E. coli. This review encompasses recent studies regarding the protection against pathogenic E. coli by the use of EO with a major focus on inhibition of toxins and proliferation in food systems.
Collapse
Affiliation(s)
- Paulo E.S. Munekata
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - David Rodríguez-Lázaro
- Microbiology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Rubén Domínguez
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Jian Zhong
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100125, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Jose M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: ; Tel.: +988-548-277
| |
Collapse
|
17
|
Tavakkoli E, Bazargani‐Gilani B, Pajohi‐Alamoti M. The impacts of tomato residuum extract with Arabic gum and dill essential oil on the shelf life improvement of trout fillets stored at chilly condition. J Food Saf 2020. [DOI: 10.1111/jfs.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Elahe Tavakkoli
- Department of Food Hygiene and Quality Control, Faculty of Veterinary ScienceBu‐Ali Sina University Hamedan Iran
| | - Behnaz Bazargani‐Gilani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary ScienceBu‐Ali Sina University Hamedan Iran
| | - Mohammadreza Pajohi‐Alamoti
- Department of Food Hygiene and Quality Control, Faculty of Veterinary ScienceBu‐Ali Sina University Hamedan Iran
| |
Collapse
|
18
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Arason S, Bekaert K, García MR, Georgiadis M, Messens W, Mosbach‐Schulz O, Bover‐Cid S. The use of the so-called 'tubs' for transporting and storing fresh fishery products. EFSA J 2020; 18:e06091. [PMID: 32874299 PMCID: PMC7448070 DOI: 10.2903/j.efsa.2020.6091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
On-land transport/storage of fresh fishery products (FFP) for up to 3 days in 'tubs' of three-layered poly-ethylene filled with freshwater and ice was compared to the currently authorised practice (fish boxes of high-density poly-ethylene filled with ice). The impact on the survival and growth of biological hazards in fish and the histamine production in fish species associated with a high amount of histidine was assessed. In different modelling scenarios, the FFP are stored on-board in freshwater or seawater/ice (in tubs) and once on-land they are 'handled' (i.e. sorted or gutted and/or filleted) and transferred to either tubs or boxes. The temperature of the FFP was assumed to be the most influential factor affecting relevant hazards. Under reasonably foreseeable 'abusive' scenarios and using a conservative modelling approach, the growth of the relevant hazards (i.e. Listeria monocytogenes, Aeromonas spp. and non-proteolytic Clostridium botulinum), is expected to be < 0.2 log10 units higher in tubs than in boxes after 3 days when the initial temperature of the fish is 0°C ('keeping' process). Starting at 7°C ('cooling-keeping' process), the expected difference in the growth potential is higher (< 1 log10 for A. hydrophila and < 0.5 log10 for the other two hazards) due to the poorer cooling capacity of water and ice (tub) compared with ice (box). The survival of relevant hazards is not or is negligibly impacted. Histamine formation due to growth of Morganella psychrotolerans under the 'keeping' or 'cooling-keeping' process can be up to 0.4 ppm and 1.5 ppm higher, respectively, in tubs as compared to boxes after 3 days, without reaching the legal limit of 100 ppm. The water uptake associated with the storage of the FFP in tubs (which may be up to 6%) does not make a relevant contribution to the differences in microbial growth potential compared to boxes.
Collapse
|
19
|
Bio-preservative effect of blends of essential oils: natural anti-oxidant and anti-microbial agents for the shelf life enhancement of emulsion based chicken sausages. Journal of Food Science and Technology 2020; 57:3040-3050. [PMID: 32624606 DOI: 10.1007/s13197-020-04337-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/16/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
This work explores the efficacy and potential of four different blends of essential oils as bio-preservative for enhancement of shelf life of emulsion based ready-to-eat chicken sausages. Pre-optimized levels of four different blends of essential oils: 0.25% each of B-1, B-2, B-3 and 0.125% of B-4, were tried in the chicken sausages. Four different treatments along with control were then aerobically packaged and stored under refrigerated (4 ± 1 °C) conditions. An increase in pH and TBARS value was found to be significantly lower in the case of B-2 products. Significantly higher values for DPPH activity (% inhibition) and total phenolic content (µg/g) were also observed for B-2 products which indicated that B-2 products had better oxidative stability. Further, B-1 and B-2 products were observed with significantly lower microbial count; however, B-4 products received slightly higher sensory scores than B-2. It was found that B-1, 2 and 3 (each at 0.25%) and B-4 (0.125%) enhanced the shelf life of chicken sausages by 13-14 days, 16-17 days, 10-11 days and 6-7 days, respectively under refrigerated (4 ± 1 °C) storage.
Collapse
|
20
|
The Use of Edible Films Based on Sodium Alginate in Meat Product Packaging: An Eco-Friendly Alternative to Conventional Plastic Materials. COATINGS 2020. [DOI: 10.3390/coatings10020166] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amount of plastics used globally today exceeds a million tonnes annually, with an alarming annual growth. The final result is that plastic packaging is thrown into the environment, and the problem of waste is increasing every year. A real alternative is the use bio-based polymer packaging materials. Research carried out in the laboratory context and products tested at the industrial level have confirmed the success of replacing plastic-based packaging with new, edible or completely biodegradable foils. Of the polysaccharides used to obtain edible materials, sodium alginate has the ability to form films with certain specific properties: resistance, gloss, flexibility, water solubility, low permeability to O2 and vapors, and tasteless or odorless. Initially used as coatings for perishable or cut fresh fruits and vegetables, these sodium alginate materials can be applied to a wide range of foods, especially in the meat industry. Used to cover meat products, sodium alginate films prevent mass loss and degradation of color and texture. The addition of essential oils prevents microbial contamination with Escherichia coli, Salmonella enterica, Listeria monocytogenes, or Botrytis cinerea. The obtained results promote the substitution of plastic packaging with natural materials based on biopolymers and, implicitly, of sodium alginate, with or without other natural additions. These natural materials have become the packaging of the future.
Collapse
|
21
|
Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019; 25:E135. [PMID: 31905753 PMCID: PMC6983128 DOI: 10.3390/molecules25010135] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product's carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.
Collapse
Affiliation(s)
- Aleksandra Nešić
- Vinca Institute for Nuclear Sciences, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | | | - Sladjana Davidović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Neda Radovanović
- Inovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Institute Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
22
|
Alak G, Guler K, Ucar A, Parlak V, Kocaman EM, Yanık T, Atamanalp M. Quinoa as polymer in edible films with essential oil: Effects on rainbow trout fillets shelf life. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Gonca Alak
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| | - Kubra Guler
- Graduate School of Natural and Applied Sciences Erzurum Turkey
| | - Arzu Ucar
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| | - Veysel Parlak
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| | - Telat Yanık
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture Faculty of Fisheries Atatürk University Erzurum Turkey
| |
Collapse
|
23
|
The effects of incorporated resveratrol in edible coating based on sodium alginate on the refrigerated trout ( Oncorhynchus mykiss) fillets' sensorial and physicochemical features. Food Sci Biotechnol 2019; 29:207-216. [PMID: 32064129 DOI: 10.1007/s10068-019-00661-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/15/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022] Open
Abstract
The goal of this study was examining the effects of sodium alginate coating (SA) containing resveratrol (R) on enhancement rainbow trout fillets' shelf-life. Treatments of the study were as follows: control, SA, SA-R 0.001% and SA-R 0.003%. Storage of the samples was done for 15 days at 4 °C. To analyze samples, 3-day intervals were used. Compared to the uncoated trout, the values of pH, peroxide and K were significantly lower in the coated samples (p < 0.05). R enhanced the impacts of alginate on extending the samples' shelf life. Sensory analyses showed that R improved the sensory scores significantly (p < 0.05); besides, it did not show more changes on the sensory features and was invisible in the surface of samples. In the conclusion, R was suggested to be a strong alternative to synthetic antioxidants in refrigerated trout fillet in very low concentrations with many health benefits.
Collapse
|
24
|
Osanloo M, Sedaghat MM, Esmaeili F, Amani A. Larvicidal Activity of Essential Oil of Syzygium aromaticum (Clove) in Comparison with Its Major Constituent, Eugenol, against Anopheles stephensi. J Arthropod Borne Dis 2018; 12:361-369. [PMID: 30918905 PMCID: PMC6423450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/30/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In this study, larvicidal activity of clove essential oil (EO), as a green and relatively potent larvicide, was compared with its main constituent, Eugenol, against Anopheles stephensi. METHODS High-performance liquid chromatography (HPLC) was used to determine the amount of eugenol, major constituent of clove EO. In addition, larvicidal activity of clove EO and eugenol was evaluated against An. stephensi. RESULTS The amount of eugenol in clove EO was determined as 67% using HPLC analysis. LC50 and LC90 of clove EO (57.49 and 93.14ppm, respectively) were significantly lower than those of eugenol (86.96 and 128.18 ppm, respectively). CONCLUSION EO showed more effective than its major component. Considering the lower cost of the essential oil and lower risk in occurrence of resistance in larvae, use of clove EO is preferred as larvicide in comparison with eugenol, against An. stephensi.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran,Corresponding author: Dr Amir Amani, E-mail:
| |
Collapse
|
25
|
Senturk Parreidt T, Müller K, Schmid M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018; 7:E170. [PMID: 30336642 PMCID: PMC6211027 DOI: 10.3390/foods7100170] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/14/2018] [Indexed: 01/08/2023] Open
Abstract
Alginate is a naturally occurring polysaccharide used in the bio industry. It is mainly derived from brown algae species. Alginate-based edible coatings and films attract interest for improving/maintaining quality and extending the shelf-life of fruit, vegetable, meat, poultry, seafood, and cheese by reducing dehydration (as sacrificial moisture agent), controlling respiration, enhancing product appearance, improving mechanical properties, etc. This paper reviews the most recent essential information about alginate-based edible coatings. The categorization of alginate-based coatings/film in food packaging concept is formed gradually with the explanation of the most important titles. Emphasis will be placed on active ingredients incorporated into alginate-based formulations, edible coating/film application methods, research and development studies of coated food products and mass transfer and barrier characteristics of the alginate-based coatings/films. Future trends are also reviewed to identify research gaps and recommend new research areas. The summarized information presented in this article will enable researchers to thoroughly understand the fundamentals of the coating process and to develop alginate-based edible films and coatings more readily.
Collapse
Affiliation(s)
- Tugce Senturk Parreidt
- Chair of Food Packaging Technology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 22, 85354 Freising, Germany.
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany.
| | - Kajetan Müller
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany.
- Faculty of Mechanical Engineering, University of Applied Science Kempten, Bahnhofstraße 61, 87435 Kempten, Germany.
| | - Markus Schmid
- Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany.
| |
Collapse
|
26
|
Yu D, Regenstein JM, Xia W. Bio-based edible coatings for the preservation of fishery products: A Review. Crit Rev Food Sci Nutr 2018; 59:2481-2493. [DOI: 10.1080/10408398.2018.1457623] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | | | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
27
|
Mahdavi V, Hosseini SE, Sharifan A. Effect of edible chitosan film enriched with anise ( Pimpinella anisum L.) essential oil on shelf life and quality of the chicken burger. Food Sci Nutr 2017; 6:269-279. [PMID: 29564092 PMCID: PMC5849928 DOI: 10.1002/fsn3.544] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022] Open
Abstract
In this study, the effect of chitosan film (CF) with different concentrations of anise essential oil AEO (0, 0.5, 1, 1.5 and 2%) on the quality of chicken burger during chilled storage (4 + 1°C) were examined over a period of 12 days. For this purpose, at the first, the physical and mechanical properties of the produced films were studied. Then, the chicken burger was covered with the produced films. Different treatment were analyzed by biochemical properties such as moisture and thiobarbituric acid, bacteriological properties such as total viable counts and total psychrotrophic counts, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. The results of this study showed that adding AEO improved the properties of CF, the moisture, solubility, and water vapor permeability decreased in these films. By increasing the concentration of AEO the tensile strength and elasticity of film were increased. CF with AEO, delayed lipid oxidation in chicken burger and improved the chemical properties of chicken burger. Also, microbial spoilage in these samples decreased significantly (p < .05) compared to the control sample. AEO at 2% in all experiments had better results than other treatments (p < .05), and the AEO (1.5% and 2%) had acceptable biochemical, bacteriological attributes up to end of storage, and these treatments could reduce the population of pathogen bacteria below the acceptable level from day 3 until the end of the storage period. Sensory score of the treatment containing AEO at 1.5% was higher than the sensory score of AEO at 2%. Overall, the results of this study showed that the use of CF with AEO as a natural preservative increased the shelf life of meat products. Considering the relatively similar anti‐oxidation and antimicrobial effect of AEO at 1.5 and 2% and also economic aspects, optimum dose for AEO could be 1.5% in the film.
Collapse
Affiliation(s)
- Vahid Mahdavi
- Department of Food Science and Technology Science and Research Branch Islamic Azad University Tehran Iran
| | - Seyed Ebrahim Hosseini
- Department of Food Science and Technology Science and Research Branch Islamic Azad University Tehran Iran
| | - Anousheh Sharifan
- Department of Food Science and Technology Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
28
|
Bazargani‐Gilani B. Activating sodium alginate‐based edible coating using a dietary supplement for increasing the shelf life of rainbow trout fillet during refrigerated storage (4 ± 1 °C). J Food Saf 2017. [DOI: 10.1111/jfs.12395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Behnaz Bazargani‐Gilani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary ScienceBu‐Ali Sina UniversityHamedan Iran
| |
Collapse
|
29
|
Singh S, ho Lee M, Park L, Shin Y, Lee YS. Antimicrobial seafood packaging: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:2505-18. [PMID: 27478206 PMCID: PMC4951407 DOI: 10.1007/s13197-016-2216-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/13/2016] [Accepted: 03/18/2016] [Indexed: 12/21/2022]
Abstract
Microorganisms are the major cause of spoilage in most seafood products; however, only few microbes, called the specific spoilage organisms (SSOs), contribute to the offensive off-flavors associated with seafood spoilage. In food, microbial degradation manifests itself as spoilage, or changes in the sensory properties of a food product, rendering it unsuitable for human consumption. The use of antimicrobial substances can control the general microflora as well as specific microorganisms related to spoilage to provide products with higher safety and better quality. Many antimicrobial compounds have been evaluated in film structures for use in seafood, especially organic acids and their salts, enzymes, bacteriocins; some studies have considered inorganic compounds such as AgSiO2, zinc oxide, silver zeolite, and titanium oxide. The characteristics of some organic antimicrobial packaging systems for seafood and their antimicrobial efficiency in film structures are reviewed in this article.
Collapse
Affiliation(s)
- Suman Singh
- />Department of Packaging, Yonsei University, Wonju, 220-710 South Korea
| | - Myung ho Lee
- />Department of Packaging, Yonsei University, Wonju, 220-710 South Korea
| | - lnsik Park
- />Department of Packaging, Yonsei University, Wonju, 220-710 South Korea
| | - Yangjai Shin
- />LogisAll R and D Institute KCP Co, Seoul, South Korea
| | - Youn Suk Lee
- />Department of Packaging, Yonsei University, Wonju, 220-710 South Korea
| |
Collapse
|