1
|
Lian Y, Fu G, Liang X, He X, Xu J, Fan H, Wan Y. Combination of Artemisia selengensis Turcz leaves polysaccharides and dicaffeoylquinic acids could be a potential inhibitor for hyperuricemia. Int J Biol Macromol 2024; 271:132687. [PMID: 38806079 DOI: 10.1016/j.ijbiomac.2024.132687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Caffeioyl quinic acids and polysaccharides from Artemisia selengensis Turcz are considered potential bioactive substances for hyperuricemia (HUA) treatment. While the mechanism of multi-component combined intervention of polysaccharides and dicaffeoylquinic acids (diCQAs) is not yet clear. In this study, we investigated the effect of A. selengensis Turcz leaves polysaccharides (APS) on the HUA treatment with diCQAs in vitro by direct inhibition of XOD activities and in vivo by using animal model. The results showed that APS had almost no inhibitory effect on XOD activities in vitro, but the inhibitory activity of diCQAs on XOD was affected by changes in inhibition type and inhibition constant. Compared to APS and diCQAs alone, high-dose APS and diCQAs in combination (ADPSh) could significantly reduce the production of uric acid (16.38 % reduction compared to diCQAs group) and oxidative stress damage. Additionally, this combined therapy showed promise in restoring the gut microbiota balance and increasing the short-chain fatty acids levels. The results suggested that APS and diCQAs in combination could be a potential inhibitor for HUA treatment.
Collapse
Affiliation(s)
- Yingzhu Lian
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xinmei Liang
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xinchao He
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jin Xu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Haowei Fan
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
2
|
Xue H, Nima L, Wang S, Tan J. Ultrasound assisted hot water extraction of polysaccharides from Taraxacum mongolicum: Optimization, purification, structure characterization, and antioxidant activity. J Food Sci 2024; 89:2827-2842. [PMID: 38578114 DOI: 10.1111/1750-3841.17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Ultrasound assisted hot water extraction (UAHWE) was applied to extraction of polysaccharides from Taraxacum mongolicum with hot water as extract solvent. Experimental factors in UAHWE process were optimized by response surface methodology. The optimal extraction parameters to achieve the highest Taraxacum mongolicum polysaccharides (TMPs) yield (12.08 ± 0.14)% by UAHWE were obtained under the ultrasound power of 200 W, extraction temperature of 62°C, solid-to-liquid ratio of 1:20 g/mL, and extraction time of 40 min, and then the crude TMPs were further purified by DEAE-52 and Sephadex G-100 chromatography to obtain a homogenous polysaccharide fraction (TMPs-1-SG). Subsequently, the structure of TMPs-1-SG was characterized by UV-vis, Fourier transform infrared spectroscopy (FT-IR), high performance gel permeation chromatography (HPGPC), high performance liquid chromatography (HPLC), scanning electron microscope (SEM), transmission electron microscopy (TEM), and Congo red test. The results display that TMPs-1-SG with an average molecular weight of 5.49 × 104 Da was comprised of mannose (Man), galactose (Gal), xylose (Xyl), and arabinose (Ara) with a molar ratio of 39.85:52.61:27.14:6.30. Moreover, TMPs-1-SG did not contain a triple helix structure. Furthermore, TMPs-1-SG and TEM presented a sheet-like, rod-shaped, and irregular structure. Finally, the antioxidant activity of TMPs-1-SG was evaluated by in vitro experiment. The IC50 values of scavenging DPPH and OH radicals for TMPs-1-SG achieved 0.71 mg/mL and 0.75 mg/mL, respectively. The findings can provide an effective method for extracting polysaccharides from natural resources.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Lamu Nima
- Physical Education Institute, Jimei University, Xiamen, China
| | - Shuhe Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| |
Collapse
|
3
|
Nuerxiati R, Wei L, Mutailifu P, Abuduwaili A, Paierhati P, Lei C, Zhiyan Y, Yufan W, Yili A. The structural characteristic of acidic-degraded polysaccharides from seeds of Plantago ovata Forssk and its biological activity. Int J Biol Macromol 2024; 262:129494. [PMID: 38242396 DOI: 10.1016/j.ijbiomac.2024.129494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
In this study, a response surface methodology (RSM) was used to determine the best combination for acid degradation parameters to reduce the viscosity of Plantago ovata Forssk seed polysaccharide (POFP). Then, the two major homogeneous polysaccharides (AH-POFP1 and AH-POFP3) were obtained by DEAE-650 M and Sephadex G-100 column chromatography. The apparent structure of the main fraction AH-POFP1 was characterized by SEM, TG and XRD, and the linkage of AH-POFP1 was determined by a combination of partial acidolysis, Smith's degradation, methylation analysis and 2D NMR analysis. Structural analysis showed that AH-POFP1 was mainly composed of xylose, with a molecular weight of 618.1 kDa, and had a backbone of 1 → 4-linked Xylp, as well as branches of T-linked Xylp, 1 → 4-linked Xylp attached to the O-2 position. The antioxidant activity assays showed that the both AH-POFP1 and AH-POFP3 possess strong scavenging radical ability. Moreover, AH-POFP1 inhibits the secretion of pro-inflammatory factors, and promotes the secretion of anti-inflammatory factors, thereby exerting anti-inflammatory effects. These findings may help to guide future applications of Plantago ovata Forssk in the fields of food, health care, and pharmacy.
Collapse
Affiliation(s)
- Rehebati Nuerxiati
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Liu Wei
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Paiheerding Mutailifu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; Xinjiang Key Laboratory of Hotan Characteristic Traditional Chinese Medicine Research, College of Xinjiang Uyghur Medicine
| | - Aytursun Abuduwaili
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Paiziliya Paierhati
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Cao Lei
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Yang Zhiyan
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Wang Yufan
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Abulimiti Yili
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
4
|
Du H, Xing Y, Jin X, Yan S, Shi B. Effects of Artemisia ordosica polysaccharide on growth performance and antioxidant capacity in broilers. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2158093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Haidong Du
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
5
|
Liu X, Chen S, Liu H, Xie J, Hasan KMF, Zeng Q, Wei S, Luo P. Structural properties and anti-inflammatory activity of purified polysaccharides from Hen-of-the-woods mushrooms ( Grifola frondosa). Front Nutr 2023; 10:1078868. [PMID: 36824172 PMCID: PMC9941675 DOI: 10.3389/fnut.2023.1078868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Grifola frondosa is an edible medicinal mushroom that has been proven to have a variety of health benefits. The main active ingredients of this mushroom are polysaccharides. In this study, ultrasonic-assisted extraction was used to obtain crude Grifola frondosa polysaccharides (GFPs). Then, purified GFP was obtained after purification. The optimum extraction conditions were an extraction time of 71 min, an extraction temperature of 90°C in a solid-to-liquid ratio of 1:37 g/mL, and an ultrasonic power of 500 W. GFP was purified using DEAE-52 and Sephadex G-100. The structural characterization of GFP was performed using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ion chromatography (IC), and ultraviolet (UV) visible photometry. The morphology of GFP was analyzed by scanning electron microscopy (SEM), thermogravimetric differential scanning calorimetry (TG-DSC), and Congo red testing. In addition, the administration of GFP in oxazolone (OXZ)-induced ulcerative colitis (UC) in mice was found to prevent weight loss. Different doses of GFP (80, 160, and 320 mg/kg body weight) were used, and sulfapyridine (SASP) was used as a positive control (370 mg/kg body weight) for the treatment of OXZ-induced UC. After treatment, the mice were killed, and blood and colon tissue samples were collected. GFP was found to prevent decreases in colon length and the levels of leukocytes, platelets, and neutrophils in UC mice. Moreover, GFP also decreased the expression of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL)-1 β], increased IL-10, and reduced colon injury in UC mice. The results showed that Under these conditions, the predicted polysaccharide yield was 21.72%, and the actual extraction rate was 21.13%. The polysaccharide composition (molar ratio) was composed of fucose (0.025), glucosamine hydrochloride (0.004), galactose (0.063), glucose (0.869), and mannose (0.038). GFP was also found to have a typical absorption peak, and the GFP extracted using the ultrasound-assisted extraction protocol was mainly β-glucan. These results indicate that ultrasound-assisted extraction of GFP could reduce OXZ-induced intestinal inflammation as a promising candidate for the treatment of UC, with the potential for development as a food supplement to improve intestinal diseases.
Collapse
Affiliation(s)
- Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Shuai Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Huijuan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jiao Xie
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China
| | - K. M. Faridul Hasan
- Simonyi Károly Faculty of Engineering, University of Sopron, Sopron, Hungary
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China,*Correspondence: Shaofeng Wei,
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China,Peng Luo,
| |
Collapse
|
6
|
Yang X, Yang J, Liu H, Ma Z, Guo P, Chen H, Gao D. Extraction, structure analysis and antioxidant activity of Sibiraea laevigata (L.) Maxim polysaccharide. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2125013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xuhua Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Honghai Liu
- Technology Research and Development Center, Gansu Tobacco Industry Co.Ltd, Lanzhou, China
| | - Zhongren Ma
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Penghui Guo
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dandan Gao
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
7
|
Tang T, Kang W, Shen M, Chen L, Zhao X, Wang Y, Xu S, Ming A, Feng T, Deng H, Zheng S. Accumulation Mechanism and Risk Assessment of Artemisia selengensis Seedling In Vitro with the Hydroponic Culture under Cadmium Pressure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031183. [PMID: 35162204 PMCID: PMC8834386 DOI: 10.3390/ijerph19031183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Artemisia selengensis is a perennial herb of the Compositae with therapeutic and economic value in China. The cadmium (Cd) accumulation mechanism and healthy risk evaluation of A. selengensis were investigated in this study. Tissue culture seedlings were obtained by plant tissue culture in vitro, and the effect of Cd stress (Cd concentration of 0.5, 1, 5, 10, 25, 50 and 100 μM) on A. selengensis was studied under hydroponic conditions. The results showed that low-Cd (0.5–1 μM) stress caused a rare effect on the growth of A. selengensis seedlings, which regularly grew below the 10 μM Cd treatment concentration. The biomass growth rate of the 0.5, 1, and 5 μM treatment groups reached 105.8%, 96.6%, and 84.8% after 40 days of cultivation, respectively. In addition, when the concentration of Cd was greater than 10 μM, the plant growth was obviously inhibited, i.e., chlorosis of leaves, blackening roots, destroyed cell ultrastructure, and increased malondialdehyde (MDA) content. The root could be the main location of metal uptake, 57.8–70.8% of the Cd was concentrated in the root after 40 days of cultivation. Furthermore, the root cell wall was involved in the fixation of 49–71% Cd by subcellular extraction, and the involvement of the participating functional groups of the cell wall, such as -COOH, -OH, and -NH2, in metal uptake was assessed by FTIR analysis. Target hazard quotient (THQ) was used to assess the health risk of A. selengensis, and it was found that the edible part had no health risk only under low-Cd stress (0.5 to 1 μM) and short-term treatment (less than 20 days).
Collapse
Affiliation(s)
- Tao Tang
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Wei Kang
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
- College of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
- Correspondence: ; Tel.: +86-15072077233
| | - Mi Shen
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Lin Chen
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Xude Zhao
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Yongkui Wang
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Shunwen Xu
- Huangshi Vegetable Industry Development Center, Huangshi 435003, China; (S.X.); (A.M.)
| | - Anhuai Ming
- Huangshi Vegetable Industry Development Center, Huangshi 435003, China; (S.X.); (A.M.)
| | - Tao Feng
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
| | - Haiyan Deng
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Shuqi Zheng
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| |
Collapse
|
8
|
Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods. Int J Biol Macromol 2022; 202:494-507. [PMID: 35045346 DOI: 10.1016/j.ijbiomac.2022.01.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 01/13/2023]
Abstract
This overview highlighted the in vitro and in vivo antitumor effects of polysaccharides extracted by ultrasound- and microwave-assisted solvent extraction methods. The polysaccharide fragments with stronger antiproliferation, antitumoral, and anticarcinoma effects can be identified through purification, fractionation, and bio-analytical assessments. Most of the extracted glucan-based polysaccharides in a dose-dependent manner inhibited the growth of human cancer cell types with cell death-associated morphological changes. Glucans, glucogalactans, and pectins without any cytotoxicity on normal cells showed the antitumor potential by the apoptosis induction and the inhibition of their tumorigenesis, metastasis, and transformation. There is a significantly high association among antiproliferative activities, structural features (e.g., molecular weight, monosaccharide compositions, and contents of sulfate, selenium, and uronic acid), and other bio-functionalities (e.g., antiradical and antioxidant) of isolated polysaccharides. The evaluation of structure-activity relationships of antitumor polysaccharides is an intriguing step forward to develop highly potent anticancer pharmaceuticals and foods without any side effects.
Collapse
|
9
|
Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Madia VN, De Vita D, Messore A, Toniolo C, Tudino V, De Leo A, Pindinello I, Ialongo D, Saccoliti F, D’Ursi AM, Grimaldi M, Ceccobelli P, Scipione L, Di Santo R, Costi R. Analytical Characterization of an Inulin-Type Fructooligosaccharide from Root-Tubers of Asphodelusramosus L. Pharmaceuticals (Basel) 2021; 14:ph14030278. [PMID: 33808608 PMCID: PMC8003451 DOI: 10.3390/ph14030278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Plant-based systems continue to play a pivotal role in healthcare, and their use has been extensively documented. Asphodelus L. is a genus comprising various herbaceous species, known by the trivial name Asphodelus. These plants have been known since antiquity for both food and therapeutic uses, especially for treating several diseases associated with inflammatory and infectious skin disorders. Phytochemical studies revealed the presence of different constituents, mainly anthraquinones, triterpenoids, phenolic acids, and flavonoids. Although extensive literature has been published on these constituents, a paucity of information has been reported regarding the carbohydrate composition, such as fructans and fructan-like derivatives. The extraction of water-soluble neutral polysaccharides is commonly performed using water extraction, at times assisted by microwaves and ultrasounds. Herein, we reported the investigation of the alkaline extraction of root-tubers of Asphodelus ramosus L., analyzing the water-soluble polysaccharides obtained by precipitation from the alkaline extract and its subsequent purification by chromatography. A polysaccharide was isolated by alkaline extraction; the HPTLC study to determine its composition showed fructose as the main monosaccharide. FT-IR analysis showed the presence of an inulin-type structure, and NMR analyses allowed us to conclude that A. ramosus roots contain polysaccharide with an inulin-type fructooligosaccharide with a degree of polymerization of 7–8.
Collapse
Affiliation(s)
- Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Daniela De Vita
- Department of Environmental Biology, “Sapienza” University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (C.T.)
| | - Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
- Correspondence: ; Tel.: +39-06-4991-3965
| | - Chiara Toniolo
- Department of Environmental Biology, “Sapienza” University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (C.T.)
| | - Valeria Tudino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Alessandro De Leo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Ivano Pindinello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Davide Ialongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Francesco Saccoliti
- D3 PharmaChemistry, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy;
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; (A.M.D.); (M.G.)
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; (A.M.D.); (M.G.)
| | | | - Luigi Scipione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| |
Collapse
|
11
|
Wang T, Zhao H, Bi Y, Fan X. Preparation and antioxidant activity of selenium nanoparticles decorated by polysaccharides from Sargassum fusiforme. J Food Sci 2021; 86:977-986. [PMID: 33559173 DOI: 10.1111/1750-3841.15605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/01/2020] [Accepted: 12/27/2020] [Indexed: 01/22/2023]
Abstract
In this study, the response surface method was employed to optimize the extraction conditions of the ultrasonic-assisted extraction of Sargassum fusiforme polysaccharides (SFPS). The effects of four independent variables (hot water extraction time, ultrasonic time, ultrasonic power, and material-to-liquid ratio) on the extraction rate of SFPS were tested. In addition, the SFPS functionalized nanoselenium (SFPS-SeNPs) was prepared by chemical reduction method, whose characterization and in vitro antioxidant activity were investigated. The results showed that the yield of the crude SFPS was 25.8% at the optimal conditions of material-to-liquid ratio 1:50 (w/v), ultrasonic power 200 W, ultrasonic time 15 min, and water bath time 130 min. A series of characterization experiments showed that the SFPS-SeNPs performed higher dispersion and stability than naked SeNPs. Furthermore, the in vitro antioxidant activity assay indicated that SFPS functioned as a modifier improved the free radical scavenging activity of SeNPs significantly. In conclusion, this study provided a method to extract SFPS as a carrier for SeNPs, and SFPS-SeNPs could not only improve the stability of SeNPs, but also exerted the biological activities of SFPS. PRACTICAL APPLICATION: This research provided new ideas for the application of SFPS and the development of nanoselenium preparation carriers.
Collapse
Affiliation(s)
- Tian Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Hongying Zhao
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Yongguang Bi
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Xiaodan Fan
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
12
|
Mzoughi Z, Majdoub H. Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials. Int J Biol Macromol 2021; 173:554-579. [PMID: 33508358 DOI: 10.1016/j.ijbiomac.2021.01.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The preparation, chemical properties and bio-activities of polysaccharides derived from halophytes have gained an increasing interest in the past few years. Phytochemical and pharmacological reports have shown that carbohydrates are important biologically active compounds of halophytes with numerous biological potentials. It is believed that the mechanisms involved in these bio-activities are due to the modulation of immune system. The main objective of this summary is to appraise available literature of a comparative study on the extraction, structural characterizations and biological potentials, particularly immunomodulatory effects, of carbohydrates isolated from halophytes (10 families). This review also attempts to discuss on bioactivities of polysaccharides related with their structure-activity relationship. Data indicated that the highest polysaccharides yield of around 35% was obtained under microwave irradiation. Structurally, results revealed that the most of extracted carbohydrates are pectic polysaccharides which mainly composed of arabinose (from 0.9 to 72%), accompanied by other monosaccharides (galactose, glucose, rhamnose, mannose and xylose), significant amounts of uronic acids (from 18.9 to 90.1%) and some proportions of fucose (from 0.2 to 8.3%). The molecular mass of these pectic polysaccharides was varied from 10 to 2650 kDa. Hence, the evaluation of these polysaccharides offers a great opportunity to discover novel therapeutic agents that presented especially beneficial immunomodulatory properties. Moreover, reports indicated that uronic acids, molecular weights, as well as the presence of sulfate and unmethylated acidic groups may play a significant role in biological activities of carbohydrates from halophyte species.
Collapse
Affiliation(s)
- Zeineb Mzoughi
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia.
| | - Hatem Majdoub
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
13
|
Zhang H, Li H, Zhang Z, Hou T. Optimization of ultrasound-assisted extraction of polysaccharides from perilla seed meal by response surface methodology: Characterization and in vitro antioxidant activities. J Food Sci 2021; 86:306-318. [PMID: 33462808 DOI: 10.1111/1750-3841.15597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022]
Abstract
In this study, response surface methodology was employed to optimize the ultrasound-assisted extraction (UAE) process of perilla seed meal polysaccharides (PSMP). The optimal conditions for UAE of PSMP were: liquid-solid ratio of 26.00 mL/g, ultrasonic temperature of 43.00 °C, ultrasonic time of 52.00 min, and ultrasonic power of 229.00 W, the optimal conditions lead to an yield of 6.137 ± 0.062%. The structural characteristics of molecular weight, compositional monosaccharides, and glycosidic linkages were determined by size exclusion chromatography with multiangle light scattering, gas chromatography-mass spectrometry, Fourier-transfer infrared spectroscopy, and nuclear magnetic resonance detections. Scanning electron microscopy analysis showed that many holes were formed on the surface of PSM after UAE. The antioxidant activities of PSMP were investigated using various assays in vitro. The results suggested that PSMP is potential natural resource of antioxidants for medicine and functional foods. PRACTICAL APPLICATION: The selection of raw material perilla seed meal is conducive to the comprehensive utilization of edible resources. With consumer demands for newly developed foods with natural, wholesome ingredients are increasing nowadays. This study provides effective reference for in-depth research on other medicine-food dual-use resources. Ultrasound-assisted extraction (UAE) is a promising alternative method for hot water reflux extraction (HWRE) of polysaccharides for advantages of high efficiency and energy saving. In this work, the UAE process optimized by response surface methodology is more suitable for industrial application that can effectively decrease total cost of production by reducing the extraction temperature, shortening extraction time, and increasing raw material utilization.
Collapse
Affiliation(s)
- Hongjiao Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| |
Collapse
|
14
|
Martinez-Solano KC, Garcia-Carrera NA, Tejada-Ortigoza V, García-Cayuela T, Garcia-Amezquita LE. Ultrasound Application for the Extraction and Modification of Fiber-Rich By-Products. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09269-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Ding J, Guo Y, Jiang X, Li Q, Li K, Liu M, Fu W, Cao Y. Polysaccharides Derived from Saposhnikovia divaricata May Suppress Breast Cancer Through Activating Macrophages. Onco Targets Ther 2020; 13:10749-10757. [PMID: 33132702 PMCID: PMC7592155 DOI: 10.2147/ott.s267984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
Background Saposhnikovia divaricata (SD) has been used in traditional Chinese medicine to treat pain, inflammation, and arthritis. Recently, it has been reported that SD extract may inhibit tumor growth, but the mechanism involved is elusive. The aim of this study was to investigate the anti-tumor activity of polysaccharides derived from SD in breast cancer and the underlying mechanisms. Materials and Methods Polysaccharides isolated from SD were analyzed using Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Their effects on cell growth of U937, MCF-7, and MDA-MB-231, and tumor growth in a mouse MDA-MB 231 xenograft model were examined. Their role in U937 activation, MCF-7, and MDA-MB 231 cytokine release profiles were also tested. Results In vitro studies showed that SD polysaccharides (SDPs) promoted U937 cell growth dose-dependently, with no obvious effect on growth of breast cancer cell lines MCF-7 and MDA-MB-231. SDP also showed an antagonistic effect against the growth inhibition of U937 by the culture supernatants of MCF-7 and MDA-MB-231, and reversed the polarization status of U937. Treatment of SCID mice bearing MDA-MB-231-derived xenograft tumors with SDP significantly reduced tumor growth. At all tested concentrations, no obvious toxic side-effects were recorded. Discussion We tentatively concluded that SDPs potently promote the growth of U937 and activate it to inhibit the tumor growth of SCID mice bearing MDA-MB-231-derived xenograft tumors indirectly, with no obvious growth inhibition effects on MCF-7 and MDA-MB-231 in vitro. Our finding indicated that SDP could be a potential anticancer agent for breast cancer.
Collapse
Affiliation(s)
- Jingxian Ding
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Yonghong Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330003, China
| | - Xiaoliu Jiang
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Qingge Li
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Kai Li
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Min Liu
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Wenbing Fu
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Yali Cao
- Department of Breast Surgery, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| |
Collapse
|
16
|
Xu S, Jiang M, Lu Q, Gao S, Feng J, Wang X, He X, Chen K, Li Y, Ouyang P. Properties of Polyvinyl Alcohol Films Composited With Hemicellulose and Nanocellulose Extracted From Artemisia selengensis Straw. Front Bioeng Biotechnol 2020; 8:980. [PMID: 32984277 PMCID: PMC7477040 DOI: 10.3389/fbioe.2020.00980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/27/2020] [Indexed: 11/17/2022] Open
Abstract
Artemisia selengensis straw is an agricultural residue with great potential as a renewable resource because it is rich in lignocellulose. In this study, A. selengensis straw was used as a source of hemicelluloses (ASH) and cellulose nanocrystals (ASCNC) to produce biodegradable films. Different content levels of ASCNC were used as additives to improve composite films with ASH and polyvinyl alcohol (PVA). Various mechanical and hydrophobic properties of the films were analyzed. The composite films enhanced by ASCNC exhibited greater strength and were more effective as a barrier to water vapor when compared to that of the control ASH/PVA film. The tensile strength of the composite film was increased 80.1% to 36.21 MPa with ASCNC loading exceeding 9%, and the water vapor transmission rate decreased 15.45% when 12% ASCNC was added. Furthermore, the ASCNC-enhanced ASH/PVA composite film reduced a greater amount of light transmission than the control film.
Collapse
Affiliation(s)
- Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Mingjun Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qiuhao Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Siyuan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jiao Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xun He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
17
|
Ahmad A, Rehman MU, Wali AF, El-Serehy HA, Al-Misned FA, Maodaa SN, Aljawdah HM, Mir TM, Ahmad P. Box-Behnken Response Surface Design of Polysaccharide Extraction from Rhododendron arboreum and the Evaluation of Its Antioxidant Potential. Molecules 2020; 25:molecules25173835. [PMID: 32846866 PMCID: PMC7504118 DOI: 10.3390/molecules25173835] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
In the present investigation, the ultrasound-assisted extraction (UAE) conditions and optimization of Rhododendron arboreum polysaccharide (RAP) yield were studied by a Box–Behnken response surface design and the evaluation of its antioxidant potential. Three parameters that affect the productivity of UAE, such as extraction temperature (50–90 °C), extraction time (10–30 min), and solid–liquid ratio (1–2 g/mL), were examined to optimize the yield of the polysaccharide percentage. The chromatographic analysis revealed that the composition of monosaccharides was found to be glucose, galactose, mannose, arabinose, and fucose. The data were fitted to polynomial response models, applying multiple regression analysis with a high coefficient of determination value (R2 = 0.999). The data exhibited that the extraction parameters have significant effects on the extraction yield of polysaccharide percentage. Derringer’s desirability prediction tool was attained under the optimal extraction conditions (extraction temperature 66.75 °C, extraction time 19.72 min, and liquid–solid ratio 1.66 mL/g) with a desirability value of 1 yielded the highest polysaccharide percentage (11.56%), which was confirmed through validation experiments. An average of 11.09 ± 1.65% of polysaccharide yield was obtained in optimized extraction conditions with a 95.43% validity. The in vitro antioxidant effect of polysaccharides of R. arboreum was studied. The results showed that the RAP extract exhibited a strong potential against free radical damage.
Collapse
Affiliation(s)
- Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (A.A.); (P.A.)
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Science University, Ras Al Khaimah 11172, UAE;
| | - Hamed A. El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia; (H.A.E.-S.); (F.A.A.-M.); (S.N.M.); (H.M.A.)
| | - Fahad A. Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia; (H.A.E.-S.); (F.A.A.-M.); (S.N.M.); (H.M.A.)
| | - Saleh N. Maodaa
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia; (H.A.E.-S.); (F.A.A.-M.); (S.N.M.); (H.M.A.)
| | - Hossam M. Aljawdah
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia; (H.A.E.-S.); (F.A.A.-M.); (S.N.M.); (H.M.A.)
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.); (P.A.)
| |
Collapse
|
18
|
Surin S, You S, Seesuriyachan P, Muangrat R, Wangtueai S, Jambrak AR, Phongthai S, Jantanasakulwong K, Chaiyaso T, Phimolsiripol Y. Optimization of ultrasonic-assisted extraction of polysaccharides from purple glutinous rice bran (Oryza sativa L.) and their antioxidant activities. Sci Rep 2020; 10:10410. [PMID: 32591579 PMCID: PMC7319984 DOI: 10.1038/s41598-020-67266-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
Purple glutinous rice bran (Kum Doi Saket rice (KUM)) contains high content of edible polysaccharides and anthocyanins and has an excellent antioxidant activity. This research aimed to optimize the extraction of crude polysaccharides from defatted purple glutinous rice bran using an ultrasonic-assisted extraction (UAE) and compared with a hot water extraction (HWE). Results showed that optimal extraction condition was as follows: a defatted rice bran to water ratio of 1:20 w/v, extraction temperature and time of 70 °C for 20 min. Under the optimal extraction condition, the yield of polysaccharide of UAE (4%) was significantly higher than that obtained from the HWE (0.8%). Additionally, antioxidant activities of extracted polysaccharide including IC50 value DPPH, IC50 value ABTS, and FRAP value were 1.09 mg/mL, 2.80 mg/mL and 197 µM Fe2+/g, respectively. It is suggested that the UAE process is promising method to decrease the processing time and to enhance extracted polysaccharide yields by 4 times.
Collapse
Affiliation(s)
- Siriluck Surin
- Division of Food and Nutrition, Faculty of Science, Chandrakasem Rajabhat University, Bangkok, 10900, Thailand
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, 210-702, Republic of Korea
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Rattana Muangrat
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samuth Sakorn, 74000, Thailand
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Suphat Phongthai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Thanongsak Chaiyaso
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
19
|
Optimization of Ultrasound-Assisted Extraction of Flavonoids from Celastrus hindsii Leaves Using Response Surface Methodology and Evaluation of Their Antioxidant and Antitumor Activities. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3497107. [PMID: 32337241 PMCID: PMC7155760 DOI: 10.1155/2020/3497107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Celastrus hindsii is a potential source of flavonoids with biological activities. This study aimed to develop an ultrasound-assisted technique for extracting flavonoids from leaves of C. hindsii. Response surface methodology was employed to optimize the extraction conditions for maximizing the total flavonoid content (TFC). A maximum TFC of 23.6 mg QE/g was obtained under the extraction conditions of ultrasonic power of 130 W, extraction temperature of 40°C, extraction time of 29 min, and ethanol concentration of 65%. The flavonoid-rich extracts were then studied for their antioxidant and anticancer activities. The results showed that the C. hindsii leaf extract exhibited potent radical scavenging activities against DPPH (IC50 of 164.85 μg/mL) and ABTS (IC50 of 89.05 μg/mL). The extract also significantly inhibited the growth of 3 cancer cell lines MCF7, A549, and HeLa with the IC50 values of 88.1 μg/mL, 120.4 μg/mL, and 118.4 μg/mL, respectively. Notably, the extract had no cytotoxicity effect on HK2 normal kidney cell line. This study suggests that flavonoid-rich extract is a promising antioxidant and anticancer agent and that ultrasound-assisted extraction is an efficient method for extracting flavonoids from C. hindsii leaves.
Collapse
|
20
|
Extraction Optimization, Structural Characterization, and Anticoagulant Activity of Acidic Polysaccharides from Auricularia auricula- judae. Molecules 2020; 25:molecules25030710. [PMID: 32041370 PMCID: PMC7036816 DOI: 10.3390/molecules25030710] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
To explore Auricularia auricula-judae polysaccharides (AAP) as natural anticoagulants for application in the functional food industry, ultrasound assisted extraction (UAE) was optimized for the extraction of AAP by using a response surface methodology (RSM). The maximum extraction yield of crude AAP (14.74 mg/g) was obtained at the optimized extraction parameters as follows: Extraction temperature (74 °C), extraction time (27 min), the ratio of liquid to raw material (103 mL/g), and ultrasound power (198 W). Furthermore, the acidic AAP (aAAP) was precipitated with cetyltrimethylammonium bromide (CTAB) from crude AAP (cAAP). aAAP was further purified using ion exchange chromatography with a DEAE Purose 6 Fast Flow column to obtain aAAP-1. Additionally, according to the HPLC analysis, the aAAP-1 was mainly composed of mannose, glucuronic acid, glucose, galactose, and xylose, with a molar ratio of 80.63:9.88:2.25:1:31.13. Moreover, the results of the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) indicated aAAP-1 had anticoagulant activity, which was a synergic anticoagulant activity by the endogenous and exogenous pathway.
Collapse
|
21
|
Wang J, Han J, Lu Z, Lu F. Preliminary structure, antioxidant and immunostimulatory activities of a polysaccharide fraction from Artemisia selengensis Turcz. Int J Biol Macromol 2020; 143:842-849. [DOI: 10.1016/j.ijbiomac.2019.09.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 01/22/2023]
|
22
|
Hou M, Hu W, Xiu Z, Shi Y, Hao K, Cao D, Guan Y, Yin H. Efficient enrichment of total flavonoids from Pteris ensiformis Burm. extracts by macroporous adsorption resins and in vitro evaluation of antioxidant and antiproliferative activities. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1138:121960. [PMID: 31918307 DOI: 10.1016/j.jchromb.2019.121960] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/19/2019] [Accepted: 12/26/2019] [Indexed: 01/13/2023]
Abstract
The aim of this work is to develop an efficient and economical method for the enrichment of total flavonoids from Pteris ensiformis Burm. extracts. Resin screening, adsorption kinetics, adsorption isotherms and thermodynamics were successively researched prior to the dynamic adsorption and desorption tests. NKA-II resin was chosen as the best adsorbent, and the adsorption data were best described by the pseudo-second-order kinetics model and Langmuir isotherm model. The optimum enrichment conditions were as follows: for adsorption the total flavonoids concentration, flow rate and volume of sample were 1.84 mg/mL, 2 BV/h and 5 BV, respectively, and for desorption the flavonoids-loaded NKA-II resin column was desorbed by 7 BV of 50% ethanol at a rate of 2 BV/h. The product had a 6.63-fold higher total flavonoids content than crude extracts, and the recovery yield of total flavonoids was 80.65%. Furthermore, flavonoids-enriched extracts exhibited higher in vitro scavenging activity against superoxide anion radical and hydroxyl radical than crude extracts. In addition, higher antiproliferative activity of flavonoids-enriched extracts against MCF-7 and HepG-2 cell lines was also found as compared to the crude extracts. The developed method is appropriate for large-scale enrichment of total flavonoids from Pteris ensiformis Burm. extracts in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Mengyang Hou
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Wenzhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Zhilong Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Yusheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Kexin Hao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Duo Cao
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Yuge Guan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Hanlin Yin
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
23
|
Nuerxiati R, Abuduwaili A, Mutailifu P, Wubulikasimu A, Rustamova N, Jingxue C, Aisa HA, Yili A. Optimization of ultrasonic-assisted extraction, characterization and biological activities of polysaccharides from Orchis chusua D. Don (Salep). Int J Biol Macromol 2019; 141:431-443. [DOI: 10.1016/j.ijbiomac.2019.08.112] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 01/24/2023]
|
24
|
Li F, Chen L, Yu X. Compared extraction methods on the physicochemical properties, antioxidant activity, and optimization of enzyme‐assisted extraction of polysaccharides from
Gynura medica. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fengwei Li
- School of Marine and Bioengineering Yan Cheng Institute of Technology Yancheng China
| | - Ligen Chen
- School of Marine and Bioengineering Yan Cheng Institute of Technology Yancheng China
| | - Xiaohong Yu
- School of Marine and Bioengineering Yan Cheng Institute of Technology Yancheng China
| |
Collapse
|
25
|
MUATASIM R, MA H, YANG X. Effect of multimode ultrasound assisted extraction on the yield of crude polysaccharides from Lycium Barbarum (Goji). FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/1678-457x.14417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
da Silva DT, Herrera R, Heinzmann BM, Calvo J, Labidi J. Nectandra grandiflora By-Products Obtained by Alternative Extraction Methods as a Source of Phytochemicals with Antioxidant and Antifungal Properties. Molecules 2018; 23:molecules23020372. [PMID: 29425157 PMCID: PMC6017794 DOI: 10.3390/molecules23020372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/16/2022] Open
Abstract
Nectandra grandiflora Nees (Lauraceae) is a Brazilian native tree recognized by its durable wood and the antioxidant compounds of its leaves. Taking into account that the forest industry offers the opportunity to recover active compounds from its residues and by-products, this study identifies and underlines the potential of natural products from Nectandra grandiflora that can add value to the forest exploitation. This study shows the effect of three different extraction methods: conventional (CE), ultrasound-assisted (UAE) and microwave-assisted (MAE) on Nectandra grandiflora leaf extracts (NGLE) chemical yields, phenolic and flavonoid composition, physical characteristics as well as antioxidant and antifungal properties. Results indicate that CE achieves the highest extraction phytochemical yield (22.16%), but with similar chemical composition to that obtained by UAE and MAE. Moreover, CE also provided a superior thermal stability of NGLE. The phenolic composition of NGLE was confirmed firstly, by colorimetric assays and infrared spectra and then by chromatographic analysis, in which quercetin-3-O-rhamnoside was detected as the major compound (57.75–65.14%). Furthermore, the antioxidant capacity of the NGLE was not altered by the extraction methods, finding a high radical inhibition in all NGLE (>80% at 2 mg/mL). Regarding the antifungal activity, there was observed that NGLE possess effective bioactive compounds, which inhibit the Aspergillus niger growth.
Collapse
Affiliation(s)
- Daniela Thomas da Silva
- Center of Rural Sciences, Federal University of Santa Maria, Ave. Roraima 1000, Santa Maria 97105-900, Brazil.
| | - Rene Herrera
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia, Spain.
| | - Berta Maria Heinzmann
- Department of Industrial Pharmacy, Federal University of Santa Maria, Ave. Roraima 1000, Santa Maria 97105-900, Brazil.
| | - Javier Calvo
- Chromatography and Mass Spectrometry Platform, CIC BiomaGUNE, Paseo Miramon 182, 200009 San Sebastian, Spain.
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia, Spain.
| |
Collapse
|
27
|
Wang X, Zhang Y, Liu Z, Zhao M, Liu P. Purification, Characterization, and Antioxidant Activity of Polysaccharides Isolated from Cortex Periplocae. Molecules 2017; 22:molecules22111866. [PMID: 29088064 PMCID: PMC6150556 DOI: 10.3390/molecules22111866] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
In this study, crude Cortex Periplocae polysaccharides (CCPPs) were extracted with water. CCPPs were decolored with AB-8 resin and deproteinated using papain-Sevage methods. Then, they were further purified and separated through DEAE-52 anion exchange chromatography and Sephadex G-100 gel filtration chromatography, respectively. Three main fractions—CPP1, CPP2, and CPP3, (CPPs)—were obtained. The average molecular weights, monosaccharide analysis, surface morphology, and chemical compositions of the CPPs were investigated by high-performance gel permeation chromatography (HPGPC), gas chromatography-mass spectrometry (GC/MS), UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectrum, and nuclear magnetic resonance (NMR). In addition, the antioxidant activities of these three polysaccharides were investigated. The results indicated that all of the CPPs were composed of rhamnose, arabinose, mannose, glucose, and galactose. These three polysaccharides exhibited antioxidant activities in four assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2′-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical, reducing power, and total antioxidant activity in vitro. The data indicated that these three polysaccharides could be utilized as potential natural sources of alternative additives in the functional food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Tobacco Science/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yifei Zhang
- College of Tobacco Science/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhikai Liu
- College of Tobacco Science/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingqin Zhao
- College of Tobacco Science/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Pengfei Liu
- College of Tobacco Science/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
28
|
A benign alternative process for efficient separation of pure commercially important flavonoid nutraceuticals from edible plants. Journal of Food Science and Technology 2017; 54:1519-1526. [PMID: 28559611 DOI: 10.1007/s13197-017-2583-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/02/2017] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
Abstract
The present study signifies the development of a unique, optimized procedure for both selective determination and separation of different flavonoid nutraceuticals from edible plants. Totally ten different flavonoids were determined (HPLC-DAD) and isolated from five different plants using the developed process with a remarkable purity of 91-98% and recovery of 88-95%. Box-Behnken experimental design model yielded a optimized amount of 40.36 mg/g of AI extract (Pinostrobin) and 28.95 mg/g of AI extract (Baicalein) with a high correlation coefficient (0.98-0.99), indicating a good fit between the second order regression model and the experimental observations. The final purity of compounds through optimized process is 97.1% (Pinostrobin) and 93.5% (Baicalein) respectively. The optimized yields depicted a total recovery of 92% for pinostrobin, and 89% for Baicalein respectively. Thus, the developed process worked as a potential alternative which when statistically optimized results in a remarkable recovery of flavonoids from various plants. Being an environmentally friendly protocol the process could be useful in industrial separation of commercially important flavonoids widely applied in food industry.
Collapse
|