1
|
Zapata JE, Gómez-Sampedro LJ. Antioxidant and antiproliferative activity of enzymatic hydrolysates from red tilapia ( Oreochromis spp.) viscera. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00832. [PMID: 38948352 PMCID: PMC11211095 DOI: 10.1016/j.btre.2024.e00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 07/02/2024]
Abstract
The antioxidant and antiproliferative activity of red tilapia (Oreochromis spp.) viscera hydrolysates (RTVH) was evaluated. For that, the hydrolysates was applied to three cancer cell lines (HepG2, Huh7 and SW480) and the control (CCD-18Co). Finally, the line on which the hydrolysate had the greatest effect (SW480) and the control (CCD-18Co) were subjected to the ApoTox-Glo Triplex Assay to determine apoptosis, toxicity, and cell viability. The result showed that hydrolysate had a dose-dependent cytotoxic effect selective on the three cancer cell lines, compared to the control cells. There is a relationship between the antioxidant capacity of RTVHs and their antiproliferative capacity on cancer cells evaluated, which achieved cell viability by action of RTVH of 34.68 and 41.58 and 25.41 %, to HepG2, Huh7 and SW480, respectively. The action of RTVH on cancer cell line SW480 is not due to the induction of apoptosis but to the rupture of the cell membrane.
Collapse
Affiliation(s)
- José E. Zapata
- Nutrition and Food Technology Group, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Leidy J. Gómez-Sampedro
- Giepronal Group, School of Basic Sciences, Technology and Engineering, National Open and Distance University, Medellín 050023, Colombia
| |
Collapse
|
2
|
Bing SJ, Chen XS, Zhong X, Li YQ, Sun GJ, Wang CY, Liang Y, Zhao XZ, Hua DL, Chen L, Mo HZ. Structural, functional and antioxidant properties of Lentinus edodes protein hydrolysates prepared by five enzymes. Food Chem 2024; 437:137805. [PMID: 37879156 DOI: 10.1016/j.foodchem.2023.137805] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
The purpose of this study was to investigate structural, functional and antioxidant properties of Lentinus edodes protein hydrolysates (LEPHs) by alcalase, protamex, trypsin, papain and neutrase. Structural and functional properties were determined using gel electrophoresis, Fourier transform infrared spectroscopy, laser scattering, fluorescence spectroscopy, emulsifying properties etc. Antioxidant activities were detected by Fe2+ chelating, hydroxyl and DPPH radical scavenging assays. Enzymatic hydrolysis destroyed secondary and tertiary structures of Lentinus edodes protein, decreased its molecular weight and particle size, particularly hydrolysate prepared by alcalase with the highest hydrolytic degree (32.86 ± 0.98 %), the smallest particle (130.77 ± 1.85 nm) and molecular weight (5.86 kDa). Moreover, alcalase hydrolysate exhibited the highest emulsifying stability, the strongest hydroxyl radical scavenging activity and Fe2+ chelating ability among LEPHs. Whilst trypsin hydrolysate displayed the highest DPPH radical scavenging, foaming and fat absorption capacity. These results provided basis for LEPH as ingredients to be used for food industry.
Collapse
Affiliation(s)
- Shu-Jing Bing
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Xing-Shuo Chen
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Xin Zhong
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China.
| | - Gui-Jin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Chen-Ying Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Yan Liang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Xiang-Zhong Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Dong-Liang Hua
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Lei Chen
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Hai-Zhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 453003, China
| |
Collapse
|
3
|
Wang Q, Liu FJ, Wang XM, Zhao GH, Cai D, Yu JH, Yin FW, Zhou DY. Preparation and Hepatoprotective Activities of Peptides Derived from Mussels ( Mytilus edulis) and Clams ( Ruditapes philippinarum). Mar Drugs 2022; 20:719. [PMID: 36421997 PMCID: PMC9698671 DOI: 10.3390/md20110719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Low molecular weight (<5 kDa) peptides from mussels (Mytilus edulis) (MPs) and the peptides from clams (Ruditapes philippinarum) (CPs) were prepared through enzymatic hydrolysis by proteases (dispase, pepsin, trypsin, alcalase and papain). Both the MPs and the CPs showed excellent in vitro scavenging ability of free radicals including OH, DPPH and ABTS in the concentration range of 0.625−10.000 mg/mL. By contrast, the MPs hydrolyzed by alcalase (MPs-A) and the CPs hydrolyzed by dispase (CPs-D) had the highest antioxidant activities. Furthermore, MPs-A and CPs-D exhibited protective capabilities against oxidative damage induced by H2O2 in HepG2 cells in the concentration range of 25−800 μg/mL. Meanwhile, compared with the corresponding indicators of the negative control (alcohol-fed) mice, lower contents of hepatic MDA and serums ALT and AST, as well as higher activities of hepatic SOD and GSH-PX were observed in experiment mice treated with MPs-A and CPs-D. The present results clearly indicated that Mytilus edulis and Ruditapes philippinarum are good sources of hepatoprotective peptides.
Collapse
Affiliation(s)
- Qian Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fu-Jun Liu
- Liao Fishing Group Limited Company, Dalian 116000, China
| | - Xin-Miao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Guan-Hua Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dong Cai
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jing-Han Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fa-Wen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| |
Collapse
|
4
|
Comparative study on structural, biological and functional activities of hydrolysates from Adzuki bean (Vigna angularis) and mung bean (Vigna radiata) protein concentrates using Alcalase and Flavourzyme. Food Res Int 2022; 161:111797. [DOI: 10.1016/j.foodres.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
|
5
|
Wang L, Wang Z, Reziwangul S, Chen S. Study on antioxidant activity of chicken plasma protein hydrolysates. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2022.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
This study optimised the hydrolysis process of chicken plasma protein and explored the in vivo antioxidant activity of its hydrolysates. The results showed that alkaline protease provided the highest degree of hydrolysis (19.30%), the best antioxidant effect in vitro. The optimal hydrolysis process of alkaline protease was: temperature 50 °C, time 8 h, [E]/[S] 7000 U g−1, pH 7.5. Antioxidant studies in vivo showed that the low, medium, and high dose groups significantly reduced the serum MDA and protein carbonyl content (P < 0.05) and significantly increased the serum SOD and GSH contents (P < 0.05). The results of HE staining of the liver showed that the liver cells in the model group were severely damaged, but the chicken plasma protein hydrolysates could alleviate this pathological damage. Chicken plasma protein hydrolysis products had certain antioxidant activity.
Collapse
Affiliation(s)
- L.P. Wang
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
- Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China
| | - Z.F. Wang
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
- Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China
| | - S. Reziwangul
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
| | - S.E. Chen
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
- Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China
| |
Collapse
|
6
|
Akhtar G, Masoodi FA, Rather ZUK, Wani TA. Exploiting encapsulated Himalayan walnut oil as a vivid source of essential fatty acids for the development of novel functional bread. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gazalla Akhtar
- Department of Food Science and Technology University of Kashmir Hazratbal, Srinagar J&K 190006 India
| | - Farooq Ahmad Masoodi
- Department of Food Science and Technology University of Kashmir Hazratbal, Srinagar J&K 190006 India
| | - Zubaid Ul Khizar Rather
- Department of Chemistry National Institute of Technology Hazratbal, Srinagar J&K 190006 India
| | - Touseef Ahmad Wani
- Department of Food Science and Technology University of Kashmir Hazratbal, Srinagar J&K 190006 India
| |
Collapse
|
7
|
Chaijan M, Rodsamai T, Charoenlappanit S, Roytrakul S, Panya A, Phonsatta N, Cheong L, Panpipat W. Antioxidant activity and stability of endogenous peptides from farmed hybrid catfish (
Clarias macrocephalus
×
Clarias gariepinus
) muscle. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manat Chaijan
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Thasala Nakhon Si Thammarat 80161 Thailand
| | - Tanutchaporn Rodsamai
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Thasala Nakhon Si Thammarat 80161 Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park, Phaholyothin Rd, Khlong Nueng Khlong Luang Pathumthani 12120 Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park, Phaholyothin Rd, Khlong Nueng Khlong Luang Pathumthani 12120 Thailand
| | - Atikorn Panya
- Food Biotechnology Research Team Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park, Phaholyothin Rd, Khlong Nueng Khlong Luang Pathumthani 12120 Thailand
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park, Phaholyothin Rd, Khlong Nueng Khlong Luang Pathumthani 12120 Thailand
| | - Ling‐Zhi Cheong
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
| | - Worawan Panpipat
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Thasala Nakhon Si Thammarat 80161 Thailand
| |
Collapse
|
8
|
Islam MS, Hongxin W, Admassu H, Mahdi AA, Chaoyang M, Wei FA. In vitro Antioxidant, Cytotoxic and Antidiabetic Activities of Protein Hydrolysates Prepared from Chinese Pond Turtle ( Chinemys reevesii). Food Technol Biotechnol 2021; 59:360-375. [PMID: 34759767 PMCID: PMC8542177 DOI: 10.17113/ftb.59.03.21.7087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Research background Cardiovascular diseases and diabetes are the biggest causes of death globally. Bioactive peptides derived from many food proteins using enzymatic proteolysis and food processing have a positive impact on the prevention of these diseases. The bioactivity of Chinese pond turtle muscle proteins and their enzymatic hydrolysates has not received much attention, thus this study aims to investigate their antioxidant, antidiabetic and cytotoxic activities. Experimental approach Chinese pond turtle muscles were hydrolysed using four proteolytic enzymes (Alcalase, Flavourzyme, trypsin and bromelain) and the degrees of hydrolysis were measured. High-performance liquid chromatography (HPLC) was conducted to explore the amino acid profiles and molecular mass distribution of the hydrolysates. The antioxidant activities were evaluated using various in vitro tests, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl radical scavenging activity, reducing capacity, chelating Fe2+ and lipid peroxide inhibition activity. Antidiabetic activity was evaluated using α-amylase inhibition and α-glucosidase inhibition assays. Besides, cytotoxic effect of hydrolysates on human colon cancer (HT-29) cells was assessed. Results and conclusions The amino acid composition of the hydrolysates revealed higher mass fractions of glutamic, aspartic, lysine, hydroxyproline and hydrophobic amino acids. Significantly highest inhibition of lipid peroxidation was achieved when hydrolysate obtained with Alcalase was used. Protein hydrolysate produced with Flavourzyme had the highest radical scavenging activity measured by DPPH (68.32%), ABTS (74.12%) and FRAP (A700 nm=0.300) assays, α-glucosidase (61.80%) inhibition and cytotoxic effect (82.26%) on HT-29 cell line at 550 µg/mL. Hydrolysates obtained with trypsin and bromelain had significantly highest (p<0.05) hydroxyl radical scavenging (92.70%) and Fe2+ metal chelating (63.29%) activities, respectively. The highest α-amylase (76.89%) inhibition was recorded when using hydrolysates obtained with bromelain and Flavourzyme. Novelty and scientific contribution Enzymatic hydrolysates of Chinese pond turtle muscle protein had high antioxidant, cytotoxic and antidiabetic activities. The findings of this study indicated that the bioactive hydrolysates or peptides from Chinese pond turtle muscle protein can be potential ingredients in pharmaceuticals and functional food formulations.
Collapse
Affiliation(s)
- Md Serajul Islam
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, PR China
| | - Wang Hongxin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, PR China
| | - Habtamu Admassu
- Biotechnology and Bioprocessing Center of Excellence, Department of Food Process Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Amer Ali Mahdi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, PR China
| | - Ma Chaoyang
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu Province, PR China
| | - Fu An Wei
- Guangxi Zhongtaikang Technology Industry Co., Ltd., 530029 Nanning, Guangxi, PRChina
| |
Collapse
|
9
|
Characterization of Antioxidant Peptides from Thai Traditional Semi-Dried Fermented Catfish. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, the antioxidant peptides from a Thai traditional semi-dried fermented farmed hybrid catfish (Clarias macrocephalus × Clarias gariepinus) catfish, Pla Duk Ra, were characterized. After extraction and deproteinization, Pla Duk Ra crude peptide extract (CPE) was fractioned using 2 connected Hitrap Sephadex-G25 columns, yielding two significant fractions, F1 with higher browning intensity (A420) and F2. CPE, F1, and F2 had different amino acid profiles, contents, and sequences evaluated by LC-MS/MS, which could be responsible for their antioxidant properties. F2 contained the highest numbers of hydrophobic amino acid (HBA) (47.45%) and aromatic amino acid (27.31%), followed by F1, and CPE. The peptides with 8–24 amino acid residues were detected in CPE and its fractions. In CPE, F1, and F2, there were 69, 68, and 85 peptides with varied HBA content, respectively. ARHSYGMLYCSCPPND (50% HBA), ALRKMGRK (37.5% HBA), and ANWMIPLM (87.5% HBA) were the most prevalent peptides found in CPE, F1, and F2. Overall, F2 was the most effective at inhibiting free radicals (DPPH● and ABTS●+) and reactive oxygen species (hydroxyl radical, singlet oxygen, and hydrogen peroxide), followed by F1 and CPE. The metal chelation of F1 was, however, superior to that of F2 and CPE. For the stability test, the effects of pH, heating temperature, and in vitro digestion on the DPPH● scavenging activity of F2 were investigated. The activity was boosted by lowering the pH and raising the heating temperature. In the gastrointestinal tract model system, however, roughly 50% of DPPH● scavenging activity reduced after digesting.
Collapse
|
10
|
Laosam P, Panpipat W, Yusakul G, Cheong LZ, Chaijan M. Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments. PLoS One 2021; 16:e0258445. [PMID: 34695136 PMCID: PMC8544860 DOI: 10.1371/journal.pone.0258445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand's pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40-323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH• and ABTS•+ inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH's properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative.
Collapse
Affiliation(s)
- Phanthipha Laosam
- Department of Food Science and Innovation, Food Technology and Innovation Research Centre of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Worawan Panpipat
- Department of Food Science and Innovation, Food Technology and Innovation Research Centre of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, China
| | - Manat Chaijan
- Department of Food Science and Innovation, Food Technology and Innovation Research Centre of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
11
|
Effect of High Voltage Cold Plasma on Oxidation, Physiochemical, and Gelling Properties of Myofibrillar Protein Isolate from Asian Sea Bass ( Lates calcarifer). Foods 2021; 10:foods10020326. [PMID: 33557036 PMCID: PMC7913640 DOI: 10.3390/foods10020326] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of in-bag dielectric barrier discharge high voltage cold plasma (IB-DBD-HVCP) on myofibrillar protein isolate (MPI) from Asian sea bass (ASB) and its impact on the physiochemical and gelling properties of MPI gels were elucidated. A mixture of argon (90%) and oxygen (10%) was used for generating IB-DBD-HVCP. MPI was subjected to IB-DBD-HVCP for varying times (5–15 min). Total carbonyl content was increased, while total sulfhydryl content was decreased in MPI, especially with augmenting treatment time (TT) (p < 0.05). Surface hydrophobicity initially increased when IB-DBD-HVCP TT of 5 min (DBD-HVCP5) was implemented, followed by subsequent decrease with increasing TT. Based on gel electrophoresis, lower actin and myosin heavy chain (MHC) band intensities were found for MPI subjected to IB-DBD-HVCP, particularly when a TT longer than 10 min was used, compared to those of the control. Gel made from DBD-HVCP5 had higher breaking force, deformation, and highest G′ value compared to others. A more ordered and fibrous network was found in DBD-HVCP5 treated gel. Therefore, IB-DBD-HVCP treatment, particularly for 5 min, enhanced cross-linking of proteins in ASB myofibrillar proteins, which resulted in the improved gel elasticity and strength.
Collapse
|
12
|
Sepúlveda CT, Zapata JE. Effects of Enzymatic Hydrolysis Conditions on the Antioxidant Activity of Red Tilapia (<i>Oreochromis spp</i>.) Viscera Hydrolysates. Curr Pharm Biotechnol 2020; 21:1249-1258. [PMID: 32370711 DOI: 10.2174/1389201021666200506072526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/16/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fish is an essential source of nutrients for human nutrition due to the composition of proteins, vitamins, and minerals, among other nutrients. Enzymatic hydrolysis represents an alternative for the use of by-products of the aquaculture industry. OBJECTIVE We propose to evaluate the effect of stirring speed, temperature, and initial protein concentration on the degree of hydrolysis of proteins and antioxidant activity of red tilapia (Oreochromis spp.) viscera hydrolysates. METHODS The effect of stirring speed, temperature, and initial protein concentration on the degree of hydrolysis of proteins and antioxidant activity was evaluated using an experimental design that was adjusted to a polynomial equation. The hydrolysate was fractioned to determine the antioxidant activity of the fractions, and functional properties were also measured. RESULTS Stirring speed and protein concentration presented a statistically significant effect (p <0.05) on all the response variables. However, the temperature did not present a statistically significant effect on the degree of hydrolysis. DISCUSSION The best conditions of hydrolysis were stirring speed of 51.44 rpm, a temperature of 59.15°C, and the protein concentration of 10 g L-1. The solubility of the hydrolysate protein was high at different pH, and the hydrolysate fraction with the highest antioxidant activity has a molecular weight <1 kDa. CONCLUSION The degree of hydrolysis and the biological activity of red tilapia viscera hydrolysates (Oreochromis spp.) are affected by temperature, substrate concentration, and stirring speed. The optimal conditions of hydrolysis allowed to obtain a hydrolysate with antioxidant activity are due to the peptides with low molecular weight.
Collapse
Affiliation(s)
- Cindy T Sepúlveda
- Department of Pharmaceutical and Food Sciences, University of Antioquia, Medellin, Colombia
| | - José E Zapata
- Department of Pharmaceutical and Food Sciences, University of Antioquia, Medellin, Colombia
| |
Collapse
|
13
|
Chen C, Sun-Waterhouse D, Zhang Y, Zhao M, Sun W. The chemistry behind the antioxidant actions of soy protein isolate hydrolysates in a liposomal system: Their performance in aqueous solutions and liposomes. Food Chem 2020; 323:126789. [PMID: 32315947 DOI: 10.1016/j.foodchem.2020.126789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
Abstract
Soy protein isolate (SPI) and its derived hydrolysates (SPIHs) are popular food ingredients due to their demonstrated antioxidant, stabilizing and emulsifying properties. However, little is known about the interplays among these functions. This study aimed to fill this knowledge gap through comparing the antioxidant activities in single-phase assays systems and biphasic liposomal systems of the SPIHs produced by pepsin, trypsin or alcalase with/without flavourzyme. The peptide fraction of SPIHs with molecular weight < 1 kDa generally contributed more to the detected antioxidant activity. The combination hydrolysis of flavourzyme with pepsin/trypsin/alcalase significantly influenced SPIH's reducing power and Fe2+ chelating capacity. In liposomal systems, SPIHs influenced positively system's stability while inhibiting primary and secondary lipid oxidation products. Besides the factors affecting SPIH's antioxidant activity in the aqueous system (like amino acid composition, sequence and peptide chain length), interactions of peptides/amino acids with liposomal membrane and its lipid components also played critical roles.
Collapse
Affiliation(s)
- Chong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Yi Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
14
|
Hamzeh A, Wongngam W, Kiatsongchai R, Yongsawatdigul J. Cellular and chemical antioxidant activities of chicken blood hydrolysates as affected by in vitro gastrointestinal digestion. Poult Sci 2019; 98:6138-6148. [PMID: 31144724 DOI: 10.3382/ps/pez283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/19/2019] [Indexed: 11/20/2022] Open
Abstract
The effects of in vitro gastrointestinal (GI) digestion on the antioxidative activity of hydrolysates prepared from chicken blood plasma and red blood cell (RBC) by pepsin and thermolysin were investigated. The pepsin-hydrolyzed plasma (PHP) showed the highest scavenging activity of ABTS radicals (P < 0.05). RBC and plasma hydrolysates prepared by pepsin were hydrolyzed by GI proteases to a greater extent than hydrolysates prepared by thermolysin as evidenced by MALDI-TOF mass spectra. The antioxidative activity of all digesta increased compared to their respective parent hydrolysates, and PHP digesta showed the highest activity (P < 0.05). The digesta of PHP and thermolysin-hydrolyzed plasma showed cytoprotective properties in a dose-dependent manner, and 100 μg/mL of PHP digesta exhibited the highest protection of HepG2 cells against tert-butyl hydroperoxide (P < 0.05). Based on dichloro-dihydro-fluorescein diacetate assay, PHP digesta exhibited the greatest intracellular reactive oxygen species scavenging activity of approximately 71% at 100 μg/mL (P < 0.05). The peptide sequencing of PHP digesta revealed that they contained less than 10 amino acid residues, with an average hydrophobicity of 18.6. Chicken blood plasma is a better protein source for protein hydrolysates, and their digesta showed higher antioxidant activity compared to RBCs.
Collapse
Affiliation(s)
- Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wasana Wongngam
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ratana Kiatsongchai
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
15
|
Hamzeh A, Rezaei M, Khodabandeh S, Motamedzadegan A, Noruzinia M, Regenstein JM. Optimization of Antioxidant Peptides Production from the Mantle of Cuttlefish (Sepia pharaonis) Using RSM and Fractionation. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1594480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ali Hamzeh
- Department of Seafood Processing, Tarbiat Modares University, Noor, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Tarbiat Modares University, Noor, Iran
| | - Saber Khodabandeh
- Department of Marine Biology, Tarbiat Modares University, Noor, Iran
| | - Ali Motamedzadegan
- Department of Food Science, Agricultural Sciences and Natural Resources University of Sari, Sari, Iran
| | | | | |
Collapse
|
16
|
Gómez LJ, Gómez NA, Zapata JE, López-García G, Cilla A, Alegría A. In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates. Food Res Int 2019; 120:52-61. [PMID: 31000267 DOI: 10.1016/j.foodres.2019.02.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
The antioxidant capacity of red tilapia viscera hydrolysates (RTVH) with different degrees of hydrolysis (DH) as well as their ultrafiltration membrane fractions, were analyzed using different chemical assays. Their protective effects against oxidative stress were evaluated using H2O2-stressed human intestinal differentiated Caco-2. The highest antioxidant capacity was obtained with a DH of 42.5% (RTVH-A) and its <1 kDa fraction (FRTVH-V). RTVH-A and FRTVH-V did not show cytotoxic effects at a concentration of ≤0.5 mg/mL,prevented the decrease in cell viability, and suppressed intracellular reactive oxygen species (ROS) accumulation induced by H2O2. However, pretreatment with RTVH-A after adding H2O2, showed a greater decrease in glutathione levels. Moreover, FRTVH-V allowed for a recovery close to that of control levels of cell proportions in the G1 and G2/M cell cycle phases; and a decrease in the cell proportion in late apoptosis. These results suggest that RTVH-A and FRTVH-V can be beneficial ingredients with antioxidant properties and can have protective effects against ROS-mediated intestinal injuries.
Collapse
Affiliation(s)
- Leidy J Gómez
- Department of Food, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia.
| | - Nathalia A Gómez
- Department of Food, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia
| | - José E Zapata
- Department of Food, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia.
| | - Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain.
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain.
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain.
| |
Collapse
|
17
|
Hamzeh A, Benjakul S, Sae-leaw T, Sinthusamran S. Effect of drying methods on gelatin from splendid squid (Loligo formosana) skins. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Antiproliferative and antioxidative activities of cuttlefish (Sepia pharaonis) protein hydrolysates as affected by degree of hydrolysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9685-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|