1
|
Luo X, Li J, Cen Z, Feng G, Hong M, Huang L, Long Q. Exploring the therapeutic potential of lupeol: A review of its mechanisms, clinical applications, and advances in bioavailability enhancement. Food Chem Toxicol 2025; 196:115193. [PMID: 39662867 DOI: 10.1016/j.fct.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Lupeol, a naturally occurring triterpenoid, has garnered significant attention for its diverse range of biological activities and potential therapeutic applications. This comprehensive review delves into the various aspects of lupeol, including its sources, extraction methods, chemical characteristics, pharmacokinetics, safety evaluation, mechanisms of action, and applications in disease treatment. We highlight the compound's unique carbon skeleton and its role in inflammation regulation, antioxidant activity, and broad-spectrum antimicrobial effects. The review also underscores lupeol's potential in cancer therapy, cardiovascular protection, metabolic disease management, and wound healing. Furthermore, we discuss the challenges and future perspectives of lupeol's clinical application, emphasizing the need for further research to improve its bioavailability and explore its full therapeutic potential. The review concludes by recognizing the significance of lupeol in drug development and healthcare, with expectations for future breakthroughs in medical applications.
Collapse
Affiliation(s)
- Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ji Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhifeng Cen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiqi Hong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Castro-Muñoz R, Cabezas R, Plata-Gryl M. Mangiferin: A comprehensive review on its extraction, purification and uses in food systems. Adv Colloid Interface Sci 2024; 329:103188. [PMID: 38761602 DOI: 10.1016/j.cis.2024.103188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
With the target of fabricating healthier products, food manufacturing companies look for natural-based nutraceuticals that can potentially improve the physicochemical properties of food systems while being nutritive to the consumer and providing additional health benefits (biological activities). In this regard, Mangiferin joins all these requirements as a potential nutraceutical, which is typically contained in Mangifera indica products and its by-products. Unfortunately, knowing the complex chemical composition of Mango and its by-products, the extraction and purification of Mangiferin remains a challenge. Therefore, this comprehensive review revises the main strategies proposed by scientists for the extraction and purification of Mangiferin. Importantly, this review identifies that there is no report reviewing and criticizing the literature in this field so far. Our attention has been targeted on the timely findings on the primary extraction techniques and the relevant insights into isolation and purification. Our discussion has emphasized the advantages and limitations of the proposed strategies, including solvents, extracting conditions and key interactions with the target xanthone. Additionally, we report the current research gaps in the field after analyzing the literature, as well as some examples of functional food products containing Mangiferin.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| | - René Cabezas
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Maksymilian Plata-Gryl
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland
| |
Collapse
|
3
|
Kučuk N, Primožič M, Kotnik P, Knez Ž, Leitgeb M. Mango Peels as an Industrial By-Product: A Sustainable Source of Compounds with Antioxidant, Enzymatic, and Antimicrobial Activity. Foods 2024; 13:553. [PMID: 38397530 PMCID: PMC10888073 DOI: 10.3390/foods13040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Plant waste materials are important sources of bioactive compounds with remarkable health-promoting benefits. In particular, industrial by-products such as mango peels are sustainable sources of bioactive substances, with antioxidant, enzymatic, and antimicrobial activity. Appropriate processing is essential to obtain highly bioactive compounds for further use in generating value-added products for the food industry. The objective of the study was to investigate and compare the biological activity of compounds from fresh and dried mango peels obtained by different conventional methods and unconventional extraction methods using supercritical fluids (SFE). The highest total phenolic content (25.0 mg GAE/g DW) and the total content of eight phenolic compounds (829.92 µg/g DW) determined by LC-MS/MS were detected in dried mango peel extract obtained by the Soxhlet process (SE). SFE gave the highest content of proanthocyanidins (0.4 mg PAC/g DW). The ethanolic ultrasonic process (UAE) provided the highest antioxidant activity of the product (82.4%) using DPPH radical scavenging activity and total protein content (2.95 mg protein/g DW). Overall, the dried mango peels were richer in bioactive compounds (caffeic acid, chlorogenic acid, gallic acid, catechin, and hesperidin/neohesperidin), indicating successful preservation during air drying. Furthermore, outstanding polyphenol oxidase, superoxide dismutase (SOD), and lipase activities were detected in mango peel extracts. This is the first study in which remarkable antibacterial activities against the growth of Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) were evaluated by determining the microbial growth inhibition rate after 12 and 24 h incubation periods for mango peel extracts obtained by different methods. Ethanolic SE and UAE extracts from dried mango peels resulted in the lowest minimum inhibitory concentrations (MIC90) for all bacterial species tested. Mango peels are remarkable waste products that could contribute to the sustainable development of exceptional products with high-added value for various applications, especially as dietary supplements.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
| | - Petra Kotnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
Vilas-Franquesa A, Casertano M, Tresserra-Rimbau A, Vallverdú-Queralt A, Torres-León C. Recent advances in bio-based extraction processes for the recovery of bound phenolics from agro-industrial by-products and their biological activity. Crit Rev Food Sci Nutr 2023; 64:10643-10667. [PMID: 37366277 DOI: 10.1080/10408398.2023.2227261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Usually found bound to other complex molecules (e.g., lignin, hemicellulose), phenolic compounds (PC) are widely present in agro-industrial by-products, and their extraction is challenging. In recent times, research is starting to highlight the bioactive roles played by bound phenolics (BPC) in human health. This review aims at providing a critical update on recent advances in green techniques for the recovery of BPC, focusing on enzymatic-assisted (EAE) and fermentation-assisted extraction (FAE) as well as in the combination of technologies, showing variable yield and features. The present review also summarizes the most recent biological activities attributed to BPC extracts until now. The higher antioxidant activity of BPC-compared to FPC-coupled with their affordable by-product source make them medicinally potent and economically viable, promoting their integral upcycling and generating new revenue streams, business, and employment opportunities. In addition, EAE and FAE can have a biotransformative effect on the PC itself or its moiety, leading to improved extraction outcomes. Moreover, recent research on BPC extracts has reported promising anti-cancer and anti-diabetic activity. Yet further research is needed to elucidate their biological mechanisms and exploit the true potential of their applications in terms of new food products or ingredient development for human consumption.
Collapse
Affiliation(s)
- Arnau Vilas-Franquesa
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain, Bellaterra, Spain
| | - Melania Casertano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Anna Tresserra-Rimbau
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Cristian Torres-León
- Reaserch Center and Ethnobiological Garden (CIJE), Universidad Autonoma de Coahuila, Unidad Torreón, Viesca, Coahuila, Mexico
| |
Collapse
|
5
|
Yehia RS, Altwaim SA. An Insight into In Vitro Antioxidant, Antimicrobial, Cytotoxic, and Apoptosis Induction Potential of Mangiferin, a Bioactive Compound Derived from Mangifera indica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1539. [PMID: 37050165 PMCID: PMC10096949 DOI: 10.3390/plants12071539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Due to their low cost, toxicity, and health risks, medicinal plants have come to be seen as useful products and sources of biologically active compounds. Mangifera indica L., a medicinal plant with a long history, has a high bioactive metabolites content. Mangiferin (C19H18O11) is primary isolated from M. indica's leaves, which has many pharmacological benefits. In this investigation, ultrasonic-assisted extraction with ethanol as the extraction solvent was applied to obtain mangiferin from a local type of M. indica leaves. HPLC was performed after a dichloromethane-ethyl acetate liquid-liquid fractionation method. Further, UV-vis, FTIR, and NMR spectroscopy were utilized to elucidate the structure. Interestingly, purified mangiferin displayed promising antimicrobial efficacy against a diverse variety of fungal and bacterial pathogens with MICs of 1.95-62.5 and 1.95-31.25 µg/mL, respectively. Time-kill patterns also showed that mangiferin had both bactericidal and fungicidal action. Furthermore, it exhibited strong radical dosage-dependent scavenging activity (IC50 = 17.6 μg/mL) compared to vitamin C (Vc, IC50 = 11.9 μg/mL), suggesting it could be developed into a viable antioxidant agent. To our delight, the IC50 values of mangiferin for the MCF-7 and HeLa cell lines were 41.2 and 44.7 μg/mL, respectively, from MTT cell viability testing, and it was less harmful when tested against the noncancerous cell line. Notably, it significantly induced cell apoptosis in MCF-7 cells by 62.2-83.4% using annexin V-FITC/PI labeling. Hence, our findings suggest that mangiferin can be used in the medical industry to create therapeutic interventions and medication delivery systems for society.
Collapse
Affiliation(s)
- Ramy S. Yehia
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sarah A. Altwaim
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
6
|
Supercritical Impregnation of Mango Leaf Extract into PLA 3D-Printed Devices and Evaluation of Their Biocompatibility with Endothelial Cell Cultures. Polymers (Basel) 2022; 14:polym14132706. [PMID: 35808751 PMCID: PMC9269286 DOI: 10.3390/polym14132706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The addition of natural substances with pharmacoactive properties to polymeric biomedical devices would provide beneficial regarding the assimilation of these endoprostheses when implanted into a patient’s body. The added drug would facilitate endothelization by regulating the inflammatory processes that such interventions entail, preventing contamination hazards and favoring the angiogenesis or formation of blood vessels in the tissue. The present work used mango leaf extract (MLE) obtained through pressurized ethanol for this purpose. Polylactic acid (PLA) in the form of filaments or 3D-printed disks was impregnated by means of supercritical technology with MLE for the culture essays. The release kinetics has been studied and the polymer matrices have been examined by scanning electron microscopy (SEM). The impregnated devices were subjected to in vitro culture of colony-forming endothelial cells. The influence of the different impregnation conditions used for the production of the MLE impregnated polymeric devices on the development of the cell culture was determined by fluorescence microscopy. The best results were obtained from the calcein cultures on 35 °C MLE impregnated into 3D-printed polymer disks.
Collapse
|
7
|
Sohag AAM, Hossain MT, Rahaman MA, Rahman P, Hasan MS, Das RC, Khan MK, Sikder MH, Alam M, Uddin MJ, Rahman MH, Tahjib-Ul-Arif M, Islam T, Moon IS, Hannan MA. Molecular pharmacology and therapeutic advances of the pentacyclic triterpene lupeol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154012. [PMID: 35286936 DOI: 10.1016/j.phymed.2022.154012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant triterpenoids are major sources of nutraceuticals that provide many health benefits to humans. Lupeol is one of the pentacyclic dietary triterpenoids commonly found in many fruits and vegetables, which is highly investigated for its pharmacological effect and benefit to human health. PURPOSE This systematic review critically discussed the potential pharmacological benefits of lupeol and its derivatives as evidenced by various cellular and animal model studies. To gain insight into the pharmacological effects of lupeol, the network pharmacological approach is applied. Pharmacokinetics and recent developments in nanotechnology-based approaches to targeted delivery of lupeol along with its safety use are also discussed. METHODS This study is dependent on the systematic and non-exhaustive literature survey for related research articles, papers, and books on the chemistry, pharmacological benefits, pharmacokinetics, and safety of lupeol published between 2011 and 2021. For online materials, the popular academic search engines viz. Google Scholar, PubMed, Science Direct, Scopus, ResearchGate, Springer, as well as official websites were explored with selected keywords. RESULTS Lupeol has shown promising benefits in the management of cancer and many other human diseases such as diabetes, obesity, cardiovascular diseases, kidney and liver problems, skin diseases, and neurological disorders. The pharmacological effects of lupeol primarily rely on its capacity to revitalize the cellular antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Network pharmacological approach revealed some prospective molecular targets and pathways and presented some significant information that could help explain the pharmacological effects of lupeol and its derivatives. Despite significant progress in molecular pharmacology, the clinical application of lupeol is limited due to poor bioavailability and insufficient knowledge on its mode of action. Structural modification and nanotechnology-guided targeted delivery of lupeol improve the bioavailability and bioactivity of lupeol. CONCLUSION The pentacyclic triterpene lupeol possesses numerous human health-benefiting properties. This review updates current knowledge and critically discusses the pharmacological effects and potential applications of lupeol and its derivatives in human health and diseases. Future studies are needed to evaluate the efficacies of lupeol and its derivatives in the management and pathobiology of human diseases.
Collapse
Affiliation(s)
- Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Arifur Rahaman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Papia Rahman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Rakhal Chandra Das
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Kibria Khan
- Department of Pharmacy, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; Division of Chemistry and Biotechnology, Dongguk University, Gyeongju, 780-714, Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| |
Collapse
|
8
|
Akter S, Moni A, Faisal GM, Uddin MR, Jahan N, Hannan MA, Rahman A, Uddin MJ. Renoprotective Effects of Mangiferin: Pharmacological Advances and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031864. [PMID: 35162887 PMCID: PMC8834953 DOI: 10.3390/ijerph19031864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
Both acute and chronic kidney diseases substantially contribute to the morbidities and mortality of patients worldwide. The existing therapeutics, which are mostly developed from synthetic sources, present some unexpected effects in patients, provoking researchers to explore potential novel alternatives. Natural products that have protective effects against various renal pathologies could be potential drug candidates for kidney diseases. Mangiferin is a natural polyphenol predominantly isolated from Mangifera indica and possesses multiple health benefits against various human ailments, including kidney disease. The main objective of this review is to update the renoprotective potentials of mangiferin with underlying molecular pharmacology and to highlight the recent development of mangiferin-based therapeutics toward kidney problems. Literature published over the past decade suggests that treatment with mangiferin attenuates renal inflammation and oxidative stress, improves interstitial fibrosis and renal dysfunction, and ameliorates structural alteration in the kidney. Therefore, mangiferin could be used as a multi-target therapeutic candidate to treat renal diseases. Although mangiferin-loaded nanoparticles have shown therapeutic promise against various human diseases, there is limited information on the targeted delivery of mangiferin in the kidney. Further research is required to gain insight into the molecular pharmacology of mangiferin targeting kidney diseases and translate the preclinical results into clinical use.
Collapse
Affiliation(s)
- Sumaya Akter
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
| | - Golam Mahbub Faisal
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
- Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Muhammad Ramiz Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
| | - Nourin Jahan
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Japan;
| | - Md Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Japan;
- Correspondence: (A.R.); (M.J.U.)
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
- Correspondence: (A.R.); (M.J.U.)
| |
Collapse
|
9
|
Zhang J, Wang YD, Xue QW, Zhao TR, Khan A, Wang YF, Liu YP, Cao JX, Cheng GG. The effect of ultra-high pretreatment on free, esterified and insoluble-bound phenolics from mango leaves and their antioxidant and cytoprotective activities. Food Chem 2022; 368:130864. [PMID: 34438172 DOI: 10.1016/j.foodchem.2021.130864] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 01/06/2023]
Abstract
Ultra-high pressure (UHP) is a novel non-thermal pretreatment method in food processing for improving the extraction yield of polyphenols and functional properties. The present work investigated the phenolic profiles, antioxidant activities, and cytoprotective effects of the free, esterified, and insoluble-bound phenolic fractions from mango leaves before and after ultra-high pressure (UHP) treatment. UHPLC-Q-Orbitrap-MS/MS analysis resulted in the identification of 42 phenolic compounds in the different phenolic forms. UHP pretreatment could significantly influence the contents of total phenols, total flavonoids and individual compounds in the different phenolic fractions (p < 0.05). After UHP pretreatment, these phenolic fractions exhibited greater antioxidant activity, and inhibited reactive oxygen species production and cell apoptosis (p < 0.05). Meanwhile, IBP were the most potential antioxidative and cytoprotective ingredients. Therefore, UHP pretreated mango leaves with enhanced bioactivity could be used as biological agents in the health food industry to improve its application and economic values.
Collapse
Affiliation(s)
- Jing Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Yu-Dan Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, People's Republic of China
| | - Qing-Wang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Tian-Rui Zhao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Yi-Fen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, People's Republic of China
| | - Ya-Ping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Jian-Xin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Gui-Guang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China.
| |
Collapse
|
10
|
Mei S, Perumal M, Battino M, Kitts DD, Xiao J, Ma H, Chen X. Mangiferin: a review of dietary sources, absorption, metabolism, bioavailability, and safety. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34606395 DOI: 10.1080/10408398.2021.1983767] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mangiferin is a potential candidate for use in nutraceutical and functional food applications due to its numerous bioactivities. However, the low bioavailability of mangiferin is a major limitation for establishing efficacy for use. This review describes current information on known food sources and factors that influence mangiferin contents, absorption, and metabolism features, and recent progress that has come from research efforts to increase the bioavailability of mangiferin. We also list patents that targeted to enhance mangiferin bioavailability. Mangifera indica L. is the major dietary source for mangiferin, a xanthone that varies widely in different parts of the plant and is influenced by many factors that involve plant propagation and post-harvest processing. Mangiferin absorption occurs mostly in the small intestine by passive diffusion with varying absorption capacities in different segments of the gastrointestinal tract. Recent research has led to the development of novel technologies to encapsulate mangiferin in nano/microparticle carrier systems as well as generate mangiferin derivatives to improve solubility and bioavailability. Preclinical studies reported that mangiferin < 2000 mg/kg is generally nontoxic. The safety and the increase in bioavailability are key limiting factors for developing successful applications for mangiferin as a nutritional dietary supplement or nutraceutical.
Collapse
Affiliation(s)
- Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Manivel Perumal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Maurizio Battino
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - David D Kitts
- Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
PROMANCOA Modular Technology for the Valorization of Mango (Mangifera indica L.) and Cocoa (Theobroma cacao L.) Agricultural Biowastes. Processes (Basel) 2021. [DOI: 10.3390/pr9081312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PROMANCOA modular technology (PMT) aims at the development of modular agricultural biowaste valorization of mango (Mangifera indica L.) and cocoa (Theobroma cacao L.) cultivars within the concept of circular economy in agriculture management. The modular design includes four modules: (1) green raw material (GRM) selection and collection, (2) GRM processing, (3) GRM extraction, in order to obtain bioactive green extracts (BGE) and bioactive green ingredients (BGI), and (4) quality control, which lead to formula components for food, feed, nutraceutical and/or cosmeceutical products. PMT was applied to mango stem bark and tree branches, and cocoa pod husk and bean shells, from cultivars of mango and cocoa in provinces of the Dominican Republic (DR). PMT might be applied to other agricultural biowastes, where a potential of value-added BGE/BGI may be present. Alongside the market potential of these bioactive ingredients, the reduction of carbon dioxide and methane emissions of agricultural biowastes would be a significant contribution in order to reduce the greenhouse effect of these residuals.
Collapse
|
12
|
Vázquez-González Y, Ragazzo-Sánchez JA, Calderón-Santoyo M. Characterization and antifungal activity of jackfruit (Artocarpus heterophyllus Lam.) leaf extract obtained using conventional and emerging technologies. Food Chem 2020; 330:127211. [DOI: 10.1016/j.foodchem.2020.127211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 11/15/2022]
|
13
|
Singla RK, Shen B. In Silico ADMET Evaluation of Natural DPP-IV Inhibitors for Rational Drug Design against Diabetes. Curr Drug Metab 2020; 21:768-777. [PMID: 32875983 DOI: 10.2174/1389200221999200901202945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND As a metabolic and lifestyle disorder, diabetes mellitus poses a prodigious health risk. Out of the many key targets, DPP-IV is one of the very imperative therapeutic targets for the treatment of diabetic patients. METHODS In our current study, we have done the in silico simulations of ADME-T properties for naturally originated potent DPP-IV inhibitors like quinovic acid, stigmasterol, quinovic acid-3-beta-D-glycopyranoside, zygophyloside E, and lupeol. Structural topographies associated with different pharmacokinetic properties have been systematically assessed. RESULTS Glycosylation on quinovic acid is found to be noteworthy for the improvement of pharmacokinetic and toxicological properties, which leads to the prediction that zygophyloside E can be further tailored down to get the lead DPP-IV inhibitor. CONCLUSION This assessment provides useful insight into the future development of novel drugs for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| |
Collapse
|