1
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
2
|
Selvaraj B, Ganapathy D. Exploration of Sargassum wightii: Extraction, Phytochemical Analysis, and Antioxidant Potential of Polyphenol. Cureus 2024; 16:e63706. [PMID: 39100033 PMCID: PMC11294488 DOI: 10.7759/cureus.63706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Background The marine environment, with its rich biodiversity and nutrient-dense ecosystems, offers immense potential for discovering novel pharmaceutical products. Sargassum wightii is a type of brown seaweed that is particularly abundant in sulfated polysaccharides and polyphenolic compounds. These compounds are renowned for their wide range of biological activities. The exploration of such marine resources is crucial for identifying new compounds that can be harnessed for pharmaceutical and nutraceutical applications. Aims and objectives The primary aim of this study is to explore the bioactive compounds present in S. wightii, with a specific focus on its polyphenolic content. Additionally, the study seeks to evaluate the antioxidant properties of the compound. By doing so, the research aims to contribute to the growing body of knowledge on marine bioresources and their potential health benefits. Methods S. wightii samples were collected from the Mandapam coastal region in Rameshwaram, India. The cleaned seaweed was transported to the laboratory, where it was further washed, shade-dried, and ground into a fine powder. The powdered seaweed was then subjected to extraction using four different solvents: n-hexane, dichloromethane, ethyl acetate, and methanol. Phytochemical analyses were conducted on these extracts to identify the presence of various bioactive compounds. The total phenolic content of the extracts was determined, and antioxidant activity was assessed using the phosphomolybdenum method. Functional groups present in the extracts were identified using Fourier Transform Infrared (FT-IR) spectroscopy. Results Among the solvents used, the methanol extract yielded the highest amount of crude extract. Phytochemical analysis revealed a variety of bioactive compounds, with the methanol extract showing a notable presence of polyphenols. The total phenolic content was measured at 1.25 ± 0.6 mg gallic acid equivalence (GAE)/g of extract. The antioxidant activity, assessed through the phosphomolybdenum method, demonstrated significant free radical scavenging capabilities with an IC50 (half maximal inhibitory concentration) value of 68.23 ± 3.5 μg/mL. FT-IR spectroscopy confirmed the presence of functional groups characteristic of polyphenols and other bioactive compounds. Conclusion The study highlights the significant potential of S. wightii as a source of bioactive compounds with substantial antioxidant properties. These findings emphasize the importance of marine algae in the development of pharmaceutical and nutraceutical products, showcasing S. wightii's promising role in health-related applications.
Collapse
Affiliation(s)
- Bharathi Selvaraj
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Yang X, Cao D, Ji H, Xu H, Feng Y, Liu A. Physicochemical characterization, rheological properties, and hypolipidemic and antioxidant activities of compound polysaccharides in Chinese herbal medicines by fractional precipitation. Int J Biol Macromol 2023; 242:124838. [PMID: 37172701 DOI: 10.1016/j.ijbiomac.2023.124838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
This study aimed to investigate the effects of different compound polysaccharides (CPs) extracted from Folium nelumbinis, Fructus crataegi, Fagopyrum tataricum, Lycium barbarum, Semen cassiae, and Poria cocos (w/w, 2:4:2:1:1.5:1) by gradient ethanol precipitation on the physicochemical properties and biological activities. Three CPs (CP50, CP70, and CP80) were obtained and comprised rhamnose, arabinose, xylose, mannose, glucose, and galactose in different proportions. The CPs contained different amounts of total sugar, uronic acid, and proteins. These also exhibited different physical properties, including particle size, molecular weight, microstructure, and apparent viscosity. Scavenging abilities of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 1,1'-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and superoxide radicals of CP80 were more potent compared to those of the other two CPs. Furthermore, CP80 significantly increased serum levels of high-density lipoprotein cholesterol (HDL-C) and lipoprotein lipase (LPL), and hepatic lipase (HL) activity in the liver, while decreasing the serum levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C), along with LPS activity. Therefore, CP80 may serve as a natural novel lipid regulator in the field of medicinal and functional food.
Collapse
Affiliation(s)
- Xu Yang
- National Center of Inspection and Testing for Processed Food Quality, Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China.
| | - Dongli Cao
- National Center of Inspection and Testing for Processed Food Quality, Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China
| | - Haiyu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huijing Xu
- National Center of Inspection and Testing for Processed Food Quality, Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China
| | - Yingying Feng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Kumar A, Hanjabam MD, Kishore P, Uchoi D, Panda SK, Mohan CO, Chatterjee NS, Zynudheen AA, Ravishankar CN. Exploitation of Seaweed Functionality for the Development of Food Products. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Healy LE, Zhu X, Pojic M, Poojary MM, Curtin J, Tiwari U, Sullivan C, Tiwari BK. Impact of dry, particle-size fractionation on protein and amino acid content of three seaweed species. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2120001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Laura E Healy
- Department of Food Chemistry and Technology,Teagasc Food Research Centre, Ashtown, Dublin, Ireland
- Department of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Xianglu Zhu
- Department of Food Chemistry and Technology,Teagasc Food Research Centre, Ashtown, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| | - Milica Pojic
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Rolighedsvej Frederiksberg C, Denmark
| | - James Curtin
- Department of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Uma Tiwari
- Department of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Carl Sullivan
- Department of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology,Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
6
|
Ghelani H, Khursheed M, Adrian TE, Jan RK. Anti-Inflammatory Effects of Compounds from Echinoderms. Mar Drugs 2022; 20:693. [PMID: 36355016 PMCID: PMC9699147 DOI: 10.3390/md20110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Chronic inflammation can extensively burden a healthcare system. Several synthetic anti-inflammatory drugs are currently available in clinical practice, but each has its own side effect profile. The planet is gifted with vast and diverse oceans, which provide a treasure of bioactive compounds, the chemical structures of which may provide valuable pharmaceutical agents. Marine organisms contain a variety of bioactive compounds, some of which have anti-inflammatory activity and have received considerable attention from the scientific community for the development of anti-inflammatory drugs. This review describes such bioactive compounds, as well as crude extracts (published during 2010-2022) from echinoderms: namely, sea cucumbers, sea urchins, and starfish. Moreover, we also include their chemical structures, evaluation models, and anti-inflammatory activities, including the molecular mechanism(s) of these compounds. This paper also highlights the potential applications of those marine-derived compounds in the pharmaceutical industry to develop leads for the clinical pipeline. In conclusion, this review can serve as a well-documented reference for the research progress on the development of potential anti-inflammatory drugs from echinoderms against various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
7
|
Kumar Y, Tarafdar A, Kumar D, Saravanan C, Badgujar PC, Pharande A, Pareek S, Fawole OA. Polyphenols of Edible Macroalgae: Estimation of In Vitro Bio-Accessibility and Cytotoxicity, Quantification by LC-MS/MS and Potential Utilization as an Antimicrobial and Functional Food Ingredient. Antioxidants (Basel) 2022; 11:antiox11050993. [PMID: 35624857 PMCID: PMC9137927 DOI: 10.3390/antiox11050993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Macroalgae are a rich source of polyphenols, and their ingestion promotes various health benefits. However, information on factors contributing to health benefits such as antioxidants, antimicrobial properties, bioaccessibility, and cytotoxicity is less explored and often unavailable. Therefore, this study aims to investigate the above-mentioned parameters for the brown and green macroalgae Sargassum wightii and Ulva rigida, respectively, collected from the southeast coast of India. S. wightii exhibited higher antioxidant activity and moderate antimicrobial activity against major food pathogens in an agar well diffusion assay and in the broth microdilution method (MIC50 being <0.5 mg/mL for all microorganisms tested). Both macroalgae extracts exhibited significantly high bioaccessibility of polyphenols. To evaluate the safety of the extracts, in vitro cytotoxicity by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was carried out on the primary cells: mouse splenic lymphocytes. An almost complete decline in the cell viability was seen at considerably high concentration (50 mg/mL), expressing the reasonably high safety of the extracts. The extracts of both macroalgae were quantified for polyphenols, wherein fucoxanthin (9.27 ± 2.28 mg/kg DW) and phloroglucinol (17.96 ± 2.80 mg/kg DW) were found to be greater in the S. wightii apart from other phenolics, like gallic acid, quercetin, vanillin, and ferulic acid. The results signify the tremendous scope for the value addition of S. wightii through extraction and purification of polyphenols for its potential exploitation in functional foods and nutraceuticals or as an antimicrobial ingredient in active or smart packaging.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India; (Y.K.); (D.K.)
| | - Ayon Tarafdar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India;
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India; (Y.K.); (D.K.)
| | - Chakkaravarthi Saravanan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India;
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India; (Y.K.); (D.K.)
- Correspondence: (P.C.B.); (S.P.); (O.A.F.)
| | - Aparna Pharande
- Laboratory Services Division, Ashwamedh Engineers & Consultants, Nashik 422009, Maharashtra, India;
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India
- Correspondence: (P.C.B.); (S.P.); (O.A.F.)
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
- Correspondence: (P.C.B.); (S.P.); (O.A.F.)
| |
Collapse
|
8
|
Bharathi M, Sivamaruthi BS, Kesika P, Thangaleela S, Chaiyasut C. In Silico Screening of Bioactive Compounds of Representative Seaweeds to Inhibit SARS-CoV-2 ACE2-Bound Omicron B.1.1.529 Spike Protein Trimer. Mar Drugs 2022; 20:md20020148. [PMID: 35200677 PMCID: PMC8877529 DOI: 10.3390/md20020148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Omicron is an emerging SARS-CoV-2 variant, evolved from the Indian delta variant B.1.617.2, which is currently infecting worldwide. The spike glycoprotein, an important molecule in the pathogenesis and transmissions of SARS-CoV-2 variants, especially omicron B.1.1.529, shows 37 mutations distributed over the trimeric protein domains. Notably, fifteen of these mutations reside in the receptor-binding domain of the spike glycoprotein, which may alter transmissibility and infectivity. Additionally, the omicron spike evades neutralization more efficiently than the delta spike. Most of the therapeutic antibodies are ineffective against the omicron variant, and double immunization with BioNTech-Pfizer (BNT162b2) might not adequately protect against severe disease induced by omicron B.1.1.529. So far, no efficient antiviral drugs are available against omicron. The present study identified the promising inhibitors from seaweed’s bioactive compounds to inhibit the omicron variant B.1.1.529. We have also compared the seaweed’s compounds with the standard drugs ceftriaxone and cefuroxime, which were suggested as beneficial antiviral drugs in COVID-19 treatment. Our molecular docking analysis revealed that caffeic acid hexoside (−6.4 kcal/mol; RMSD = 2.382 Å) and phloretin (−6.3 kcal/mol; RMSD = 0.061 Å) from Sargassum wightii (S. wightii) showed the inhibitory effect against the crucial residues ASN417, SER496, TYR501, and HIS505, which are supported for the inviolable omicron and angiotensin-converting enzyme II (ACE2) receptor interaction. Cholestan-3-ol, 2-methylene-, (3beta, 5 alpha) (CMBA) (−6.0 kcal/mol; RMSD = 3.074 Å) from Corallina officinalis (C. officinalis) manifested the strong inhibitory effect against the omicron RBD mutated residues LEU452 and ALA484, was magnificently observed as the essential residues in Indian delta variant B.1.617.2 previously. The standard drugs (ceftriaxone and cefuroxime) showed no or less inhibitory effect against RBD of omicron B.1.1.529. The present study also emphasized the pharmacological properties of the considered chemical compounds. The results could be used to develop potent seaweed-based antiviral drugs and/or dietary supplements to treat omicron B.1.1529-infected patients.
Collapse
Affiliation(s)
- Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.K.); (C.C.); Tel.: +66-53-944-340 (C.C.)
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
- Correspondence: (P.K.); (C.C.); Tel.: +66-53-944-340 (C.C.)
| |
Collapse
|
9
|
Moss R, McSweeney MB. Do Consumers Want Seaweed in Their Food? A Study Evaluating Emotional Responses to Foods Containing Seaweed. Foods 2021; 10:2737. [PMID: 34829018 PMCID: PMC8621969 DOI: 10.3390/foods10112737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Seaweeds are nutrient-dense marine organisms that have been proposed as a key ingredient to produce new functional foods. This study's first objective was to identify consumers' emotional responses and purchase intent towards a variety of food products containing seaweed. The secondary objective was to evaluate how hunger status and lifestyle affect consumers' emotional responses. Participants (n = 108) were asked to evaluate pictures of different food items containing seaweed (beef burger, cheddar cheese, fettuccine, fish filet, sausage, bread, yogurt, and dried seaweed) using the CATA variant of EsSense25 Profile® and a purchase-intent scale. The consumers also answered questions about their hunger status, food neophobia, food-related lifestyle, as well as open-ended comment questions about seaweed. Participants' purchase-intent scores were highest for bread and dried seaweed, which they associated with positive emotions. The participants disliked yogurt and sausage, indicating that they were disgusted with them. Participants believed seaweed could be added to fish, savoury, and cereal grains-based foods. The participants' hunger status as well as their food neophobia and lifestyle impacted their emotional responses. Future research should continue to investigate how emotions affect purchase intent, how participant's hunger status affects their emotions, and how participants' lifestyle changes how they perceive new food products.
Collapse
Affiliation(s)
| | - Matthew B. McSweeney
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2K5, Canada;
| |
Collapse
|
10
|
Protease Catalyzed Production of Spent Hen Meat Hydrolysate Powder for Health Food Applications. J FOOD QUALITY 2021. [DOI: 10.1155/2021/9247998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole spent hen meat of Indian commercial layer bird (BV-300 breed) was enzymatically hydrolyzed using Flavourzyme® derived from Aspergillus oryzae. Different time, temperature, and pH combinations generated through response surface methodology (RSM) were tested to find the optimal hydrolysis condition at which maximum antioxidant potential and degree of hydrolysis can be achieved. Hydrolysis for 30 min at a temperature of 53.9°C and pH of 6.56 was found suitable for achieving high degree of hydrolysis and antioxidant activity. Antioxidant potential at optimized conditions was estimated at 93.26% by DPPH radical scavenging assay and 2.32 mM TEAC by FRAP assay. Amino acid profiling of the hydrolysate correlated very well with SDS-PAGE profiling. SDS-PAGE results confirmed that 30 min hydrolysis time was enough to produce low molecular weight peptides (2–5 kDa) with high antioxidant potential. Antioxidant rich Indian spent hen meat hydrolysate powder was economically produced using spray drying. Sensory analysis revealed that 10% hydrolysate powder had satisfactory overall acceptability and has potential to be used in health/functional foods at this concentration. This is the first study wherein optimum hydrolysis conditions for Indian spent hen meat have been reported.
Collapse
|
11
|
Singhal S, Kumar Y, Badgujar PC. Effect of Hydrothermal Processing on Physico-chemical Properties and Antioxidant Activity of Edible Brown Seaweed Sargassum wightii. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1987607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Somya Singhal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| |
Collapse
|
12
|
Physicochemical and Thermal Characteristics of Onion Skin from Fifteen Indian Cultivars for Possible Food Applications. J FOOD QUALITY 2021. [DOI: 10.1155/2021/7178618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Every year tons of onion waste is produced worldwide. The dried outer onion skin contributed up to 70% of this waste. Outer-dried skins of fifteen prominent onion cultivars from India were selected for the study. A comparative study was done for proximate profiling, thermal characteristics, functional grouping, and mineral contents. Skin of cv. “NHRDF Red” contained the highest amount of crude protein (5.97 ± 0.15 g/100 g), ash (12.24 ± 0.59 g/100 g), and fiber (8.28 ± 0.20 g/100 g), whereas cv. “Pusa Red” possessed the highest amount of total fat (0.47 ± 0.02 g/100 g) and the maximum carbohydrates (76.66 ± 0.56 g/100 g) were found in “Pusa Riddhi.” Mineral analysis showed that cv. “NHRDF Red” had the maximum concentration of all 9 minerals along with sulphur content. Fourier transform infrared spectroscopy analysis explored the various metabolites present in each cultivar. The thermal analysis explored cv. “Agrifound Dark Red” as highly thermally stable having 70.98% residual mass. The lowest Tg temperature range was found between 64.4°C and 90.6°C for “Agrifound Dark Red.” Skin of cv. “NHRDF Red” was reported as the best source of protein, fiber, and minerals, which may be utilized for developing a food product.
Collapse
|
13
|
Evaluation of Chemical, Functional, Spectral, and Thermal Characteristics of Sargassum wightii and Ulva rigida from Indian Coast. J FOOD QUALITY 2021. [DOI: 10.1155/2021/9133464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Usage of seaweeds as a functional food/food ingredient is very limited due to paucity of scientific information about variations in the nutritional composition of seaweeds under diverse climatic conditions. Sargassum wightii and Ulva rigida seaweeds are found abundantly on the Southern Indian coastline and were thoroughly evaluated in this work. Crude fiber and lipid of S. wightii were higher (24.93 ± 0.23% and 3.09 ± 0.41%, respectively) as compared to U. rigida; however, U. rigida had higher crude protein content (27.11 ± 0.62%). Evaluation of mineral and CHNS content indicated that the concentration of potassium, magnesium, and calcium was 1.36 ± 0.08 mg/g, 8.39 ± 0.80 mg/g, and 14.03 ± 3.46 mg/g, respectively, that was higher in the S. wightii, whereas U. rigida contained higher value of iron, carbon, and sulphur (0.70 ± 0.13 mg/g, 37.72 ± 4.63%, and 2.61 ± 0.16%, respectively). Swelling capacity (19.42 ± 0.00 mL/g DW to 22.66 ± 00 mL/g DW), water-holding capacity (6.15 ± 0.08 g/g DW to 6.38 ± 0.14 g/g DW), and oil-holding capacity (2.96 ± 0.13 g/g DW) of U. rigida were significantly (
) higher as compared to S. wightii. It was observed from DSC thermograms that S. wightii can be safely processed for food formulations even at a temperature of 134°C. The thermograms also revealed changes in the sulphated polysaccharide (fucoidan) profile due to the presence of hydroxyl and carboxyl groups with denaturation of proteins. TGA of S. wightii and U. rigida showed degradation temperature within the range of 200–300°C due to divergent polysaccharide compositions. FTIR spectroscopy suggested the presence of phenolic groups in both seaweeds (at 1219 cm−1). Results of the study suggested that the manufacturing of functional food products from seaweeds could be beneficial and may aid in social upliftment of cultivators/fishermen.
Collapse
|
14
|
Seaweed as a Source of Natural Antioxidants: Therapeutic Activity and Food Applications. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5753391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Seaweed is a valuable source of bioactive compounds, polysaccharides, antioxidants, minerals, and essential nutrients such as fatty acids, amino acids, and vitamins that could be used as a functional ingredient. The variation in the composition of biologically active compounds in seaweeds depends on the environmental growth factors that make seaweed of the same species compositionally different across the globe. Nevertheless, all seaweeds exhibit extraordinary antioxidant potential which can be harnessed for a broad variety of food applications such as in preparation of soups, pasta, salads, noodles, and other country specific dishes. This review highlights the nutritional and bioactive compounds occurring in different classes of seaweeds while focusing on their therapeutic activities including but not limited to blood cell aggregation, antiviral, antitumor, anti-inflammatory, and anticancer properties. The review also explores the existing and potential application of seaweeds as a source of natural antioxidant in food products. Seaweed-derived compounds have great potential for being used as a supplement in functional foods due to their high stability as well as consumer demand for antioxidant-rich foods.
Collapse
|
15
|
Tarafdar A, Kumar Y, Kaur BP, Badgujar PC. High‐pressure microfluidization of sugarcane juice: Effect on total phenols, total flavonoids, antioxidant activity, and microbiological quality. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ayon Tarafdar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonepat Haryana India
- Division of Livestock Production and Management ICAR‐Indian Veterinary Research Institute Bareilly Uttar Pradesh India
| | - Yogesh Kumar
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Sonepat Haryana India
| | - Barjinder Pal Kaur
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonepat Haryana India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Sonepat Haryana India
| |
Collapse
|
16
|
Kasara A, Babar OA, Tarafdar A, Senthilkumar T, Sirohi R, Arora VK. Thin‐layer drying of
sadabahar
(
Catharanthus roseus
) leaves using different drying techniques and fate of bioactive compounds. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Akansha Kasara
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat India
| | - Onkar A. Babar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat India
| | - Ayon Tarafdar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat India
- Divison of Livestock Production and Management ICAR‐Indian Veterinary Research Institute Izatnagar, Bareilly India
| | - Thangalakshmi Senthilkumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat India
| | - Ranjna Sirohi
- The Centre for Energy and Environmental Sustainability Lucknow UP India
| | - Vinkel Kumar Arora
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat India
| |
Collapse
|
17
|
Zhang X, Lin J, Pi F, Zhang T, Ai C, Yu S. Rheological characterization of RG-I chicory root pectin extracted by hot alkali and chelators. Int J Biol Macromol 2020; 164:759-770. [PMID: 32650011 DOI: 10.1016/j.ijbiomac.2020.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
This work aimed to extract gelatinous chicory root pectin (CRP) and evaluated the rheological behavior of the dispersions and gels. CRP was extracted by citric acid (CEP), alkaline (AEP), ammonium oxalate (OEP) and sodium citrate (SEP). The yield, molecular weight (Mw) and the degree of esterification (DE) of pectin samples varied from 8.8 to 14.8% (w/w), 204 to 336 k Da and 4.0 to 47.4%, respectively. AFM studies showed self-organize on mica of CEP, revealing a random coil conformation due to the interaction of multiple branching, whereas, AEP exhibited long linear filamentous structures. The flow behavior study verified the pseudoplastic character of CEP and SEP at 25 °C, while OEP and AEP belonged to dilatant fluid, besides, a closed hysteresis loop was observed when the CEP concentration increased to 1.5%. OEP gel was thermo insensitive and stiff, AEP gel presented most sensitive to calcium ion but more brittle, and SEP was observed a weak syneresis in spite of the poor gelation property. The texture analysis indicated OEP gel had a superior firmness and chewiness. These findings demonstrated that CRP may be attractive as a thickener or gelling agent to modulate textures of sugar-free and calcium content food.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Pi
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Zhang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Ai
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shujuan Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
18
|
Kumar D, Jyoti A, Tarafdar A, Kumar A, Badgujar PC. Comparative functional and spectroscopic analysis of spent hen meat hydrolysate by individual and combined treatment of microbial proteases. Prep Biochem Biotechnol 2020; 51:618-627. [PMID: 33243073 DOI: 10.1080/10826068.2020.1848865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Simultaneous (Sm) and sequential (Sq) use of microbial proteases for the hydrolysis of spent hen/chicken meat from antioxidant potential perspective is relatively unexplored and requires attention. In this work, meat was hydrolyzed using Flavourzyme (Fz) and Alcalase (Ac), each at 1, 2, and 3% for 6 h as well as using both enzymes (at 2% each) in Sm and Sq treatment. Maximum attained %DPPH-RSA (Fz:68.25; Ac:77.18; Sm:59.82; and Sq:65.97) and FRAP (mM TEAC/g) values (Fz:3.77; Ac:2.56; Sm:2.54; and Sq:3.37) were measured as a function of hydrolysis time. The highest (23.38%) and lowest (10.68%) degree of hydrolysis (DH) was obtained with 3% Ac and 1% Fz, respectively. FTIR spectroscopy clearly revealed changes in the secondary structure of proteins. SDS PAGE profiling of hydrolysates showed that Fz produces low molecular weight peptides (2-75 kDa) as compared to Ac or its combination with Ac. As per the results of this study, Sq enzyme treatment is recommended for preparing spent hen meat hydrolysate with higher functional attributes for possible use as functional food/nutraceutical.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| | - Aakash Jyoti
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| | - Ayon Tarafdar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India.,Division of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Aman Kumar
- Department of Animal Biotechnology, LalaLajpatRai University of Veterinary & Animal Sciences, Hisar, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| |
Collapse
|
19
|
Vasanthi C, Appa Rao V, Narendra Babu R, Sriram P, Karunakaran R. In‐vitro antioxidant activities of aqueous and alcoholic extracts of
Sargassum species
—Indian brown seaweed. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chandrasekar Vasanthi
- Department of Livestock Products Technology (Meat Science) Madras Veterinary CollegeTamil Nadu Veterinary and Animal Sciences University Chennai India
| | - Velluru Appa Rao
- College of Food and Dairy Technology Tamil Nadu Veterinary and Animal Sciences University Chennai India
| | - Ravindran Narendra Babu
- Department of Livestock Products Technology (Meat Science) Madras Veterinary CollegeTamil Nadu Veterinary and Animal Sciences University Chennai India
| | - Padmanaban Sriram
- Department of Veterinary Pharmacology and Toxicology Madras Veterinary CollegeTamil Nadu Veterinary and Animal Sciences University Chennai India
| | - Raman Karunakaran
- Department of Animal Nutrition Madras Veterinary CollegeTamil Nadu Veterinary and Animal Sciences University Chennai India
| |
Collapse
|