1
|
Oliveira BCRD, Martins CPDC, Soutelino MEM, Rocha RS, Cruz AG, Mársico ET, Silva ACO, Esmerino EA. An overview of the potential of select edible Amazonian fruits and their applications in dairy products. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39440531 DOI: 10.1080/10408398.2024.2417796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND The Amazon forest produces a variety of fruits with strong biotechnological potential. However, their use in dairy products is restricted. SCOPE AND APPROACH This work aims to carry out a bibliographic survey on the technological applications of select edible Amazonian fruits and their residues in the elaboration and quality of dairy products. The Web of Science© (WOS), Science Direct®, PubMed®/MEDLINE, and Capes Periodicals databases were used. KEY FINDINGS AND CONCLUSIONS Adding Amazonian fruits to dairy products expands their nutritional and functional profile, presenting significant technological potential. Incorporating pulps from fruits such as "açaí" (Euterpe oleracea), "araçá-boi" (Eugenia stipitata), "bacuri" (Platonia insignis), "buriti" (Mauritia flexuosa), "camu-camu" (Myrciaria dubia), and "cupuaçu" (Theobroma grandiflorum) provides varied technological benefits, improving sensory aspects, positively influencing the growth and survival of relevant microorganisms, and increasing acceptance. In addition to the pulp, "camu-camu" residues (peel and seed) can be incorporated into dairy products as food additives or functional ingredients. This approach also diversifies the dairy market, promoting food security and sustainability for local and regional communities.
Collapse
Affiliation(s)
- Bianca Cristina R de Oliveira
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | | | - Maria Eduarda M Soutelino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Ramon S Rocha
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Adriano G Cruz
- Department of Food, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Eliane T Mársico
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Adriana Cristina O Silva
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| | - Erick A Esmerino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF) - Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Borgonovi TF, Fugaban JII, Bucheli JEV, Casarotti SN, Holzapfel WH, Todorov SD, Penna ALB. Dual Role of Probiotic Lactic Acid Bacteria Cultures for Fermentation and Control Pathogenic Bacteria in Fruit-Enriched Fermented Milk. Probiotics Antimicrob Proteins 2024; 16:1801-1816. [PMID: 37572214 DOI: 10.1007/s12602-023-10135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
The food industry has been developing new products with health benefits, extended shelf life, and without chemical preservation. Bacteriocin-producing lactic acid bacteria (LAB) strains have been evaluated for food fermentation to prevent contamination and increase shelf life. In this study, potentially probiotic LAB strains, Lactiplantibacillus (Lb.) plantarum ST8Sh, Lacticaseibacillus (Lb.) casei SJRP38, and commercial starter Streptococcus (St.) thermophilus ST080, were evaluated for their production of antimicrobial compounds, lactic acid and enzyme production, carbohydrate assimilation, and susceptibility to antibiotics. The characterization of antimicrobial compounds, the proteolytic activity, and its inhibitory property against Listeria (List.) monocytogenes and Staphylococcus (Staph.) spp. was evaluated in buriti and passion fruit-supplemented fermented milk formulations (FMF) produced with LAB strains. Lb. plantarum ST8Sh was found to inhibit List. monocytogenes through bacteriocin production and produced both L(+) and D(-) lactic acid isomers, while Lb. casei SJRP38 mainly produced L(+) lactic acid. The carbohydrate assimilation profiles were compatible with those usually found in LAB. The potentially probiotic strains were susceptible to streptomycin and tobramycin, while Lb. plantarum ST8Sh was also susceptible to ciprofloxacin. All FMF produced high amounts of L(+) lactic acid and the viability of total lactobacilli remained higher than 8.5 log CFU/mL during monitored storage period. Staph. aureus ATCC 43300 in fermented milk with passion fruit pulp (FMFP) and fermented milk with buriti pulp (FMB), and Staph. epidermidis KACC 13234 in all formulations were completely inhibited after 14 days of storage. The combination of Lb. plantarum ST8Sh and Lb. casei SJRP38 and fruit pulps can provide increased safety and shelf-life for fermented products, and natural food preservation meets the trends of the food market.
Collapse
Affiliation(s)
- Taís Fernanda Borgonovi
- Department of Food Engineering and Technology, São Paulo State University (UNESP), São José Do Rio Preto, SP, 15054-000, Brazil
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Joanna Ivy Irorita Fugaban
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jorge Enrique Vazquez Bucheli
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Sabrina Neves Casarotti
- Faculty of Health Sciences, Federal University of Rondonópolis (UFR), Rondonópolis, MT, 78736-900, Brazil
| | - Wilhelm Heinrich Holzapfel
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University (UNESP), São José Do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
3
|
Carlos de Sousa W, Alves Morais R, Damian Giraldo Zuniga A. Buriti (Mauritia flexuosa) shell flour: Nutritional composition, chemical profile, and antioxidant potential as a strategy for valuing waste from native Brazilian fruits. Food Res Int 2024; 190:114578. [PMID: 38945600 DOI: 10.1016/j.foodres.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
The Cerrado is one of the most biodiverse biomes in the world, characterized by a wealth of native fruits with unique nutritional characteristics. In this sense, the social, economic, and environmental importance of fully utilizing food is widely recognized. Therefore, generally considered waste, fruit shells can be transformed into a coproduct with high added value. The objective of this work was to carry out a comprehensive assessment of the physicochemical properties, carbohydrate and fatty acid profile, phytochemical compounds, phenolic profile, and antioxidant potential of the recovered extracts of buriti (Mauritia flexuosa) shells in natura and dehydrated at 55 °C (flour). In addition, the functional properties were verified by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) from buriti shell flour. The results indicated high fiber content and energy value for the sample processed at 55 °C (58.95 g/100 g and 378.91 kcal/100 g, respectively) and low lipid and protein content (1.03 g/100 g and 1.39 g/100 g, respectively). Regardless of the sample analyzed, maltose was the majority sugar (37.33 - 281.01 g/100 g). The main fatty acids detected were oleic acid (61.33 - 62.08 %) followed by palmitic acid (33.91 - 34.40 %). The analysis of the mineral profile demonstrated that the samples did not differ significantly from each other, showing that the drying process did not interfere with the results obtained (p ≤ 0.05). The analysis of individual phenolics allowed the identification of six phenolic compounds in buriti shells. However, it is possible to observe that the drying method had a positive and significant influence on the phenolic profile (p ≤ 0.05), with chlorogenic acid (2.63 - 8.27 mg/100 g) and trigonelline (1.06 - 41.52 mg/100 g), the majority compounds. On the other hand, it is important to highlight that buriti shells have a high content of carotenoids, mainly β-carotene (27.18 - 62.94 µg/100 g) and α-carotene (18.23 - 60.28 µg/100 g), also being positively influenced by the drying process at 55 °C (p ≤ 0.05). The dried shells showed a high content of phytochemical compounds and high antioxidant activity based on the different methods tested. The results show that buriti shell flour can be fully utilized and has nutritional and chemical aspects that can be applied to develop new sustainable, nutritious, and functional food formulations.
Collapse
Affiliation(s)
- Wallace Carlos de Sousa
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil
| | - Romulo Alves Morais
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil.
| | - Abraham Damian Giraldo Zuniga
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil
| |
Collapse
|
4
|
Delmonte A, Visentini FF, Fernández JL, Santiago LG, Perez AA. Development, characterization, and evaluation of the antioxidant activity of nanocarriers based on surfactant swollen micelles that encapsulate essential oils. Colloids Surf B Biointerfaces 2024; 235:113783. [PMID: 38340418 DOI: 10.1016/j.colsurfb.2024.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
This work aimed to compare the performance of two relatively underexplored methods for the swollen micelles (SMs) production as nanocarriers for essential oils (EOs). Origanum vulgare and Thymus vulgaris EOs were examined. The first method (SMs-1), involved a self-assembly process, while the second one (SMs-2), employed titration operation of an emulsion into a surfactant solution for SMs formation. Tween 80 and ethanol were used as surfactant and co-surfactant, respectively. The solubilization kinetics and the saturation concentration of EOs were determined. Particle size (measured by DLS) and encapsulation efficiency (EE) were the control parameters assessed, along with the EOs-loaded SMs' stability during 30 days of storage. Additionally, the EOs-loaded SMs' morphology was analyzed using atomic force microscopy (AFM). Finally, the antioxidant activity through the ABTS+ radical scavenging and the reducing power of EOs encapsulated in SMs was determined. The results showed that the solubilization of EOs in SMs was a rapid process with high EE. EOs-loaded SMs-2 systems exhibited greater colloidal stability and higher EE compared to EOs-loaded SMs-1 systems, showing smaller and more homogeneous particle sizes. Moreover, EOs-loaded SMs-2 systems maintained constant EE throughout the storage period. AFM imaging confirmed the rounded and heterogeneous morphology of EOs-loaded SMs-1 and the smaller, more homogeneous, and spherical morphology of EOs-loaded SMs-2. EOs-loaded SMs-2 showed high ABTS+ radical scavenging and reducing power when encapsulated in SMs. In conclusion, the SMs-2 method emerged as an effective approach for producing efficient nanocarriers for EOs, signifying a promising path for future developments in antioxidant delivery systems.
Collapse
Affiliation(s)
- Agustina Delmonte
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET, Argentina; Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 1 de Mayo 3250, Santa Fe 3000, Argentina
| | - Flavia F Visentini
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET, Argentina; Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 1 de Mayo 3250, Santa Fe 3000, Argentina
| | - José L Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET, Argentina; Instituto de Química Aplicada del Litoral (IQAL, UNL-CONICET) and Programa de Electroquímica Aplicada e Ingeniería Electroquímica (PRELINE, Facultad de Ingeniería Química), Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| | - Liliana G Santiago
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 1 de Mayo 3250, Santa Fe 3000, Argentina
| | - Adrián A Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET, Argentina; Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 1 de Mayo 3250, Santa Fe 3000, Argentina.
| |
Collapse
|
5
|
Evaluating the in vitro digestion of lipids rich in medium-chain fatty acids (MCFAs) using dynamic and static protocols. Food Chem 2023; 406:135080. [PMID: 36462354 DOI: 10.1016/j.foodchem.2022.135080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Investigating the digestion of lipids is paramount for developing new lipid-based products. This work evaluated the gastrointestinal (GI) digestion of medium-chain fatty acids (MCFAs) rich lipids. The dynamic GI in vitro system was used to simulate gastric, duodenal, jejunal, and ileal GI tract portions. Results from the dynamic protocol were compared against static in vitro assays and GC analyses were conducted to assess the FA profile of FFA released during digestion. Caprylic and capric acids released during the gastric digestion of MCT oil varied from 61-63% and 36-38% of total esterified FA, respectively. Lauric acid was the most representative FFA released (31-54%) during the gastric digestion of coconut oil samples. It was observed that the gastric digestion phase plays a crucial role in the MCFA lipolysis and the lipase activity restricted the amount of free MCFA liberated during the GI digestion, resulting in incomplete lipids hydrolysis.
Collapse
|
6
|
Barboza NL, Cruz JMDA, Corrêa RF, Lamarão CV, Lima AR, Inada NM, Sanches EA, Bezerra JDA, Campelo PH. Buriti (Mauritia flexuosa L. f.): An Amazonian fruit with potential health benefits. Food Res Int 2022; 159:111654. [DOI: 10.1016/j.foodres.2022.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
|
7
|
Santos OVD, Pinaffi Langley ACDC, Mota de Lima AJ, Vale Moraes VS, Dias Soares S, Teixeira-Costa BE. Nutraceutical potential of Amazonian oilseeds in modulating the immune system against COVID-19 - A narrative review. J Funct Foods 2022; 94:105123. [PMID: 35634457 PMCID: PMC9127052 DOI: 10.1016/j.jff.2022.105123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/31/2023] Open
Abstract
Since the outbreak of COVID-19 disease, medical and scientific communities are facing a challenge to contain its spread, develop effective treatments, and reduce its sequelae. Together with the therapeutical treatments, the use of dietary bioactive compounds represents a promising and cost-effective strategy to modulate immunological responses. Amazonian oilseeds are great sources of bioactive compounds, thus representing not only a dietary source of nutrients but also of substances with great interest for human health. This narrative review compiled the available evidence regarding the biochemical properties of some Amazonian oilseeds, especially Brazil nut, Açaí berry, Bacaba, Peach palm, Sapucaya and Tucuma fruits, on human health and its immune system. These effects were discussed from an etiological and pathophysiological perspective, emphasizing their potential role as a co-adjuvant strategy against COVID-19. Besides this, the cost associated with these strategies hinders their applicability in many nations, especially low-income countries and communities living in social insecurity.
Collapse
Affiliation(s)
| | | | - Ana Júlia Mota de Lima
- Graduate Program in Food Science and Technology, Technology Institute, Federal University of Pará, Belém 66075-900, Pará, Brazil
| | - Vinícius Sidonio Vale Moraes
- Graduate Program in Food Science and Technology, Technology Institute, Federal University of Pará, Belém 66075-900, Pará, Brazil
| | - Stephanie Dias Soares
- Graduate Program in Food Science and Technology, Technology Institute, Federal University of Pará, Belém 66075-900, Pará, Brazil
| | | |
Collapse
|
8
|
Yao Y, Tan P, Kim JE. Effects of dietary fats on the bioaccessibility and bioavailability of carotenoids: a systematic review and meta-analysis of in vitro studies and randomized controlled trials. Nutr Rev 2021; 80:741-761. [PMID: 34897461 DOI: 10.1093/nutrit/nuab098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Dietary fats are one of the well-known stimulators of carotenoid absorption, but the effects of the quantity and the type of dietary fats on carotenoid absorption have not yet been studied systematically. OBJECTIVE This review aimed to analyze data from both in vitro studies and randomized controlled trials (RCTs) to examine the effects of dietary fats on the bioaccessibility and bioavailability of carotenoids. DATA SOURCES A systematic search of 5 databases (Scopus, PubMed, Embase, CINAHL and the Cochrane Library) was conducted. STUDY SELECTION In vitro studies and RCTs were selected according to the PICOS criteria and were reviewed independently by 2 investigators. DATE EXTRACTION Key study characteristics from the eligible in vitro studies and RCTs were extracted independently by 2 investigators using a standardized table. RESULTS A total of 27 in vitro studies and 12 RCTs were included. The meta-regression of in vitro studies showed that the bioaccessibility of carotenoids, except for lycopene, was positively associated with the concentration of dietary fats. The meta-analysis of RCTs showed that the bioavailability of carotenoids was enhanced when a higher quantity of dietary fats was co-consumed. Moreover, fats rich in unsaturated fatty acids resulted in greater improvement in carotenoid bioavailability (SMD 0.90; 95%CI, 0.69-1.11) as compared with fats rich in saturated fatty acids (SMD 0.27; 95%CI, 0.08-0.47). CONCLUSIONS Co-consuming dietary fats, particularly those rich in unsaturated fatty acids, with carotenoid-rich foods can improve the absorption of carotenoids. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42020188539.
Collapse
Affiliation(s)
- Yuanhang Yao
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Peiyi Tan
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Jung Eun Kim
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
9
|
Oliveira ALMD, Vilela DR, Zitha EZM, de Barros HEA, Lago RCD, Carvalho EEN, Vilas Boas EVDB. Cell wall break down of pitanga fruit (
Eugenia uniflora
L.) is associated with pectic solubilisation and softening. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Daiana Ribeiro Vilela
- Department of Food Science Federal University of Lavras UFLA Lavras MG 37200‐900 Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Hu C, Salter Venzon D, Lange K, Maathuis A, Bellmann S, Gellenbeck K. Evaluation of the bioaccessibility of a carotenoid beadlet blend using an in vitro system mimicking the upper gastrointestinal tract. Food Sci Nutr 2021; 9:3289-3296. [PMID: 34136193 PMCID: PMC8194940 DOI: 10.1002/fsn3.2295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The release characteristics of a unique blend of carotenoid beadlets designed to increase bioavailability were tested using the dynamic gastrointestinal model TIM-1. Individual carotenoid bioaccessibility peaks were observed over approximately 3-4 hr in the order of lutein and zeaxanthin first, followed by lycopene, and then finally α- and β-carotene; when tested as a beadlet blend or when the beadlets were compressed into tablets. Bioaccessibility measurements of 7%-20% were similar to those previously reported in literature and comparable between the two formulations, beadlet blend and tablet formulations. Total recovery of carotenoids from all compartments ranged from 70% to 90% for all carotenoids, except lycopene where almost 50% was unrecoverable after digestion in the TIM system.
Collapse
Affiliation(s)
- Chun Hu
- Nutrilite Health InstituteBuena ParkCAUSA
| | | | | | | | | | | |
Collapse
|
11
|
Borgonovi TF, Casarotti SN, Penna ALB. Lacticaseibacillus casei SJRP38 and buriti pulp increased bioactive compounds and probiotic potential of fermented milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Review on the potential application of non-phenolic compounds from native Latin American food byproducts in inflammatory bowel diseases. Food Res Int 2021; 139:109796. [DOI: 10.1016/j.foodres.2020.109796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
|
13
|
Menegazzi GDS, Teixeira EC, Pinto LADA, Burkert JFDM. Spray-Drying Microencapsulation of Carotenoids Produced by Phaffia rhodozyma. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guilherme da Silva Menegazzi
- Bioprocess Engineering Laboratory, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Erika Carvalho Teixeira
- Bioprocess Engineering Laboratory, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Luiz Antonio de Almeida Pinto
- Industrial Technology Laboratory, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | | |
Collapse
|
14
|
Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, Varghese E, Ashrafizadeh M, Najafi M, Shakibaei M, Büsselberg D, Giordano FA, Golubnitschaja O, Kubatka P. Carotenoids in Cancer Apoptosis-The Road from Bench to Bedside and Back. Cancers (Basel) 2020; 12:E2425. [PMID: 32859058 PMCID: PMC7563597 DOI: 10.3390/cancers12092425] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
An incidence and mortality of cancer are rapidly growing worldwide, especially due to heterogeneous character of the disease that is associated with irreversible impairment of cellular homeostasis and function. Targeting apoptosis, one of cancer hallmarks, represents a potent cancer treatment strategy. Carotenoids are phytochemicals represented by carotenes, xanthophylls, and derived compounds such as apocarotenoids that demonstrate a broad spectrum of anti-cancer effects involving pro-apoptotic signaling through extrinsic and intrinsic pathways. As demonstrated in preclinical oncology research, the apoptotic modulation is performed at post-genomic levels. Further, carotenoids demonstrate additive/synergistic action in combination with conventional oncostatic agents. In addition, a sensitization of tumor cells to anti-cancer conventional treatment can be achieved by carotenoids. The disadvantage of anti-cancer application of carotenoids is associated with their low solubility and, therefore, poor bioavailability. However, this deficiency can be improved by using nanotechnological approaches, solid dispersions, microemulsions or biofortification that significantly increase the anti-cancer and pro-apoptotic efficacy of carotenoids. Only limited number of studies dealing with apoptotic potential of carotenoids has been published in clinical sphere. Pro-apoptotic effects of carotenoids should be beneficial for individuals at high risk of cancer development. The article considers the utility of carotenoids in the framework of 3P medicine.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, 51368 Tabriz, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, 67146 Kermanshah, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|