1
|
Shen Z, Dai J, Yang X, Liu Y, Liu L, Huang Y, Wang L, Chen P, Chen X, Zhang C, Zhao J, Yang X, Wang Q. Comparison of sea buckthorn fruit oil nanoemulsions stabilized by protein-polysaccharide conjugates prepared using β-glucan from various sources. Food Chem 2024; 457:140098. [PMID: 38901345 DOI: 10.1016/j.foodchem.2024.140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
To understand the influence of β-glucans structure on the emulsifying properties of protein-polysaccharide conjugates, sodium caseinate (NaCas) was utilized to form glycosylation conjugates with varying degrees of glycosylation (10.68-17.50%) using three β-glucans from bacteria, yeast, and oats. This process induced alterations in the secondary structure of protein. The nanoemulsions prepared with the glycosylated conjugates exhibited superior stability compared to those formulated solely with NaCas, particularly under conditions of drastic pH fluctuations and extended storage periods. The nanoemulsion prepared with the NaCas-Salecan conjugate demonstrated exceptional stability at pH 4 and 6, or storage for 20 days. Additionally, it significantly attenuated the oxidation of unsaturated fatty acids and exhibited the lowest levels of aggregation, flocculation, and free fatty acid release rate during in vitro digestion. This study suggested the potential of the NaCas-Salecan conjugates in enhancing the stability of nanoemulsions and facilitating the colorectal-targeted delivery of sea buckthorn fruit oil.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xinyue Yang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Yao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Lei Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - YuKun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Chisong Zhang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 610500, PR China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., Chengdu, 610000, PR China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China.
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
2
|
Jabbar M, Baboo I, Majeed H, Farooq Z, Palangi V, Lackner M. Preparation and Characterization of Cumin Essential Oil Nanoemulsion (CEONE) as an Antibacterial Agent and Growth Promoter in Broilers: A Study on Efficacy, Safety, and Health Impact. Animals (Basel) 2024; 14:2860. [PMID: 39409810 PMCID: PMC11475229 DOI: 10.3390/ani14192860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
This research characterized and explored the effect of cumin essential oil nanoemulsion (CEONE) on broiler growth performance, serum biochemistry, hematological parameters, and cecal microbial count. Day-old (n = 96) broilers (Ross 308) were randomly assigned to six treatments with five replicates of three broilers each. The dietary treatments consisted of negative control (only basal diet), positive control (basal diet + 200 µL of enrofloxacin), 25 µL (basal diet + 25 µL of CEONE), 50 µL (basal diet + 50 µL of CEONE), 75 µL (basal diet + 75 µL of CEONE), and 100 µL (basal diet + 100 µL of CEONE). The broiler's body weight gain (BWG) after 42 days of treatment exhibited increased weight in the CEONE group (976.47 ± 11.82-1116.22 ± 29.04). The gain in weight was further evidenced by the beneficial microbe load (107 log) compared to the pathogenic strain. All the biochemical parameters were observed in the normal range, except for a higher level of HDL and a lower LDL value. This safety has been validated by pKCSM toxicity analysis showing a safe and highly tolerable dose of cuminaldehyde. In conclusion, this research observed the potential of CEONE as a multifunctional agent. It is a valuable candidate for further application in combating bacterial infections and enhancing animal health and growth.
Collapse
Affiliation(s)
- Muhammad Jabbar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Irfan Baboo
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Hamid Majeed
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan;
| | - Zahid Farooq
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 Izmir, Türkiye;
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, 17 Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
3
|
Shahnaz T, Fawole AO, Adeyanju AA, Onuh JO. Food Proteins as Functional Ingredients in the Management of Chronic Diseases: A Concise Review. Nutrients 2024; 16:2323. [PMID: 39064766 PMCID: PMC11279393 DOI: 10.3390/nu16142323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic diseases have emerged as a formidable global health concern, with their prevalence steadily rising over the years. Several approaches to addressing these concerns include the use of medications, which are often expensive, contain synthetic chemical substances, and have reported adverse effects. The use of foods, especially proteins, as an alternative approach to addressing chronic health concerns by treating and managing chronic diseases is increasing. This review evaluates the intriguing role of food proteins in mitigating chronic diseases and improving our understanding of the therapeutic potential of different protein types, including those derived from legumes, nuts, and seeds, dairy, fish, and numerous other sources. They have been reported to offer promising avenues for managing chronic diseases, including cardiovascular diseases, diabetes, chronic inflammation, weight management, bone health, glycemic control, muscle preservation, and many other health benefits. Although the exact mechanisms for these actions are still not properly elucidated, it is, however, understood that food proteins exert these health-beneficial effects by their unique nutritional and bioactive profiles, especially their bioactive peptides and amino acids. Practical applications are also discussed, including dietary interventions that are tailored towards incorporating protein-rich foods and the development of functional foods for disease prevention and management. Food proteins are a promising approach to combating chronic diseases that can turn around public health practices.
Collapse
Affiliation(s)
- Thaniyath Shahnaz
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| | | | - Adeyemi A. Adeyanju
- Department of Food Science and Microbiology, Landmark University, PMB 1001, Omu-Aran 251103, Nigeria;
| | - John O. Onuh
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| |
Collapse
|
4
|
Jaime-Báez R, Saldo J, González-Soto RA. Comparison of Gamma-Oryzanol Nanoemulsions Fabricated by Different High Energy Techniques. Foods 2024; 13:2256. [PMID: 39063338 PMCID: PMC11275623 DOI: 10.3390/foods13142256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Gamma-oryzanol (GO) is a bioactive compound that, due to its biological characteristics, can be added to a food matrix. However, the bioactive compound is difficult to incorporate due to its low solubility and stability. A nanoemulsion allows substances to be packaged in nanometric sizes, improving their bioavailability. In this work, a GO nanoemulsion was developed using high-energy techniques. The methodological process began with the formulation of the coarse emulsion, where the emulsifiers (sodium caseinate and citrus pectin), diluent (rice bran oil), and pH were varied to find the most stable formulation. The coarse emulsion was subjected to four high-energy techniques (conventional homogenization, high-pressure homogenization, ultra-high-pressure homogenization, and ultrasonication) to reduce the droplet size. A physical-stability test, rheological-behavior test, image analysis, and particle-size-and-distribution test were conducted to determine which was the best technique. The formulation with the highest stability (pH 5.3) was composed of 87% water, 6.1% sodium caseinate, 0.6% citrus pectin, 6.1% rice bran oil, and 0.2% GO. The ultrasonic treatment obtains the smallest particle size (30.1 ± 1 nm), and the high-pressure treatment obtains the greatest stability (TSI < 0.3), both at 0 and 7 days of storage. High-energy treatments significantly reduce the droplet size of the emulsion, with important differences between each technique.
Collapse
Affiliation(s)
- Rodrigo Jaime-Báez
- Departamento de Desarrollo Tecnológico, Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional (IPN), Yautepec 62730, Mexico
- Centre de Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), MALTA Consolider Team, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Jordi Saldo
- Centre de Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), MALTA Consolider Team, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Centro de Investigación de Alimentos (CIAL), Facultad de Ingeniería, Universidad UTE, Quito 170147, Ecuador
| | - Rosalía América González-Soto
- Centre de Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), MALTA Consolider Team, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| |
Collapse
|
5
|
Bednorz J, Smela K, Zapotoczny S. Tailoring Properties of Hyaluronate-Based Core-Shell Nanocapsules with Encapsulation of Mixtures of Edible Oils. Int J Mol Sci 2023; 24:14995. [PMID: 37834444 PMCID: PMC10573177 DOI: 10.3390/ijms241914995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Dispersions of core-shell nanocapsules (nanoemulsion) composed of liquid oil cores and polysaccharide-based shells were fabricated with emulsification using various mixtures of edible oils and amphiphilic hyaluronate derivatized with 12-carbon alkyl chains forming the shells. Such nanocapsules, with typical diameters in the 100-500 nm range, have been previously shown as promising carriers of lipophilic bioactive compounds. Here, the influence of some properties of the oil cores on the size and stability of the capsules were systematically investigated using oil binary mixtures. The results indicated that, in general, the lower the density, viscosity, and interfacial tension (IFT) between the oil and aqueous polymer solution phases, the smaller the size of the capsules. Importantly, an unexpected synergistic reduction of IFT of mixed oils was observed leading to the values below the measured for individual oils. Such a behavior may be used to tailor size but also other properties of the nanocapsules (e.g., stability, solubility of encapsulated compounds) that could not be achieved applying just a single oil. It is in high demand for applications in pharmaceutical or food industries and opens opportunities of using more complex combinations of oils with more components to achieve an even further reduction of IFT leading to even smaller nanocapsules.
Collapse
Affiliation(s)
- Justyna Bednorz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
- CHDE Polska S.A., Biesiadna 7, 35-304 Rzeszow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Krzysztof Smela
- Independent Researcher, Chopin St. 7, 35-055 Rzeszow, Poland;
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| |
Collapse
|
6
|
Khalid A, Arshad MU, Imran A, Haroon Khalid S, Shah MA. Development, stabilization, and characterization of nanoemulsion of vitamin D 3-enriched canola oil. Front Nutr 2023; 10:1205200. [PMID: 37693243 PMCID: PMC10484710 DOI: 10.3389/fnut.2023.1205200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
In this study, the oil-in-water nanoemulsion (NE) was prepared and loaded with vitamin D3 in food-grade (edible) canola oil and stabilized by Tween 80 and Span 80 by using a water titration technique with droplet sizes of 20 to 200 nm. A phase diagram was established for the influence of water, oil, and S-Mix concentration. The outcomes revealed that the particle size of blank canola oil nanoemulsion (NE) ranged from 60.12 to 62.27 (d.nm) and vitamin D3 NE ranged from 93.92 to 185.5 (d.nm). Droplet size and polydispersity index (PDI) of both blank and vitamin D3-loaded NE results were less than 1, and zeta potential results for blank and vitamin D3 loaded NE ranged from -9.71 to -15.32 mV and -7.29 to -13.56 mV, respectively. Furthermore, the pH and electrical conductivity of blank NE were 6.0 to 6.2 and 20 to 100 (μs/cm), respectively, whereas vitamin D3-loaded NE results were 6.0 to 6.2 and 30 to 100 (μs/cm), respectively. The viscosity results of blank NE ranged from 0.544 to 0.789 (mPa.s), while that of vitamin D3-loaded NE ranged from 0.613 to 0.793 (mPa.s). In this study, the long-term stability (3 months) of canola oil NE containing vitamin D3 at room temperature (25 C) and high temperature (40 C) was observed.
Collapse
Affiliation(s)
- Aafia Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Ali Imran
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Government College University, Faisalabad, Pakistan
| | - Mohd Asif Shah
- School of Business, Woxsen University, Hyderabad, Telangana, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
- School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Economics, Kabridahar University, Somali, Ethiopia
| |
Collapse
|
7
|
Abedini A, Dakhili S, Bazzaz S, Kamaladdin Moghaddam S, Mahmoudzadeh M, Andishmand H. Fortification of chocolates with high-value-added plant-based substances: Recent trends, current challenges, and future prospects. Food Sci Nutr 2023; 11:3686-3705. [PMID: 37457143 PMCID: PMC10345668 DOI: 10.1002/fsn3.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 07/18/2023] Open
Abstract
High consumption of delicious foods, such as chocolates, is considered excellent snacks, capable of converting from health-threatening to great functional foods. The fortification of chocolates with high-value-added plant-based substances might improve their healthful effects, nutritional properties, and shelf life. Chocolate could be an effective carrier for plant-based substances delivery, and it could be an effective vehicle to treat and reduce the indications of disease, such as obesity, overweight, hypertension, stress, cardiovascular failure, congestive heart failure, and diabetes. Referring to the recent studies in chocolate fortification with high-value-added plant-based substances, it seems that the recent trends are toward its therapeutic effects against noncommunicable diseases. Despite the undeniable functional effects of fortified chocolates, there are some challenges in the fortification way of chocolates. In other words, their functional characteristics, such as rheological and sensory attributes, may undesirably change. It seems that encapsulation techniques, such as spray drying, antisolvent precipitation, nanoemulsification, and liposomal encapsulation, could almost overcome these challenges. Thus, several studies focused on designing and fabricating nanoscale delivery systems with the aim of chocolate fortification, which is discussed.
Collapse
Affiliation(s)
- Amirhossein Abedini
- Department of Environmental Health Engineering, Food Safety Division, School of Public HealthTehran University of Medical SciencesTehranIran
- Students' Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Samira Dakhili
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Saba Kamaladdin Moghaddam
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Maryam Mahmoudzadeh
- Department of Food Science and Technology, Faculty of Nutrition and Food ScienceTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Hashem Andishmand
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
8
|
Comparison of the Engine Performance of Soybean Oil Biodiesel Emulsions Prepared by Phase Inversion Temperature and Mechanical Homogenization Methods. Processes (Basel) 2023. [DOI: 10.3390/pr11030907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
The engine performance and emission characteristics of burning emulsions of soybean oil biodiesel in a compression-ignition diesel engine prepared through the phase inversion temperature method were compared with those of neat soybean oil biodiesel and the emulsion prepared by the mechanical homogenization method. The engine torque was set constantly at 98 N·m with varying engine speeds. The experimental results show that the emulsion prepared by the method of phase inversion temperature had higher O2 and NOx emissions, a higher excess air ratio, a higher exhaust gas temperature, and a higher brake fuel conversion efficiency than the emulsion prepared by the mechanical homogenization method, which had lower CO and CO2 emissions, a lower equivalence ratio, and lower brake-specific fuel consumption. While the neat soybean oil biodiesel was found to have the lowest fuel consumption rate, brake-specific fuel consumption, and CO and CO2 emissions, it had the highest exhaust gas temperature and brake fuel conversion efficiency, NOx and O2 emissions, and excess air ratio among those three fuels. Therefore, the phase inversion temperature method is considered promising for preparing fuel emulsions as an alternative to petro-derived diesel for compression-ignition engines.
Collapse
|
9
|
Kulawik P, Jamróz E, Kruk T, Szymkowiak A, Tkaczewska J, Krzyściak P, Skóra M, Guzik P, Janik M, Vlčko T, Milosavljević V. Active edible multi-layer chitosan/furcellaran micro/nanoemulsions with plant essential oils and antimicrobial peptides: Biological properties and consumer acceptance. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Yi X, Gao X, Zhang X, Xia G, Shen X. Preparation of liposomes by glycolipids/phospholipids as wall materials: studies on stability and digestibility. Food Chem 2022; 402:134328. [DOI: 10.1016/j.foodchem.2022.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
|
11
|
Perrin L, Desobry-Banon S, Gillet G, Desobry S. Review of High-Frequency Ultrasounds Emulsification Methods and Oil/Water Interfacial Organization in Absence of any Kind of Stabilizer. Foods 2022; 11:2194. [PMID: 35892779 PMCID: PMC9331899 DOI: 10.3390/foods11152194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Emulsions are multiphasic systems composed of at least two immiscible phases. Emulsion formulation can be made by numerous processes such as low-frequency ultrasounds, high-pressure homogenization, microfluidization, as well as membrane emulsification. These processes often need emulsifiers' presence to help formulate emulsions and to stabilize them over time. However, certain emulsifiers, especially chemical stabilizers, are less and less desired in products because of their negative environment and health impacts. Thus, to avoid them, promising processes using high-frequency ultrasounds were developed to formulate and stabilize emulsifier-free emulsions. High-frequency ultrasounds are ultrasounds having frequency greater than 100 kHz. Until now, emulsifier-free emulsions' stability is not fully understood. Some authors suppose that stability is obtained through hydroxide ions' organization at the hydrophobic/water interfaces, which have been mainly demonstrated by macroscopic studies. Whereas other authors, using microscopic studies, or simulation studies, suppose that the hydrophobic/water interfaces would be rather stabilized thanks to hydronium ions. These theories are discussed in this review.
Collapse
Affiliation(s)
- Louise Perrin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
- SAS GENIALIS, Route d’Achères, 18250 Henrichemont, France;
| | - Sylvie Desobry-Banon
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| | | | - Stephane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| |
Collapse
|