1
|
Sancho LG, Aramburu A, Etayo J, Beltrán-Sanz N. Floristic Similarities between the Lichen Flora of Both Sides of the Drake Passage: A Biogeographical Approach. J Fungi (Basel) 2023; 10:9. [PMID: 38248919 PMCID: PMC10817543 DOI: 10.3390/jof10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
This paper analyses the lichen flora of Navarino Island (Tierra del Fuego, Cape Horn Region, Chile), identifying species shared with the South Shetland Islands (Antarctic Peninsula). In this common flora, species are grouped by their biogeographic origin (Antarctic-subantarctic endemic, austral, bipolar, and cosmopolitan), their habitat on Navarino Island (coastal, forest, and alpine), their morphotype (crustaceous, foliaceous, fruticulose, and cladonioid), and the substrate from which they were collected (epiphytic, terricolous and humicolous, and saxicolous). A total of 124 species have been recognised as common on both sides of the Drake Passage, predominantly bipolar, crustaceous, and saxicolous species, and with an alpine distribution on Navarino Island. The most interesting fact is that more than 30% of the flora is shared between the southern tip of South America and the western Antarctic Peninsula, which is an indication of the existence of a meridian flow of propagules capable of crossing the Antarctic polar front.
Collapse
Affiliation(s)
- Leopoldo G. Sancho
- Faculty of Pharmacy, Section of Botany, Complutense University, Pl. de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.); (N.B.-S.)
| | - Ana Aramburu
- Faculty of Pharmacy, Section of Botany, Complutense University, Pl. de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.); (N.B.-S.)
| | - Javier Etayo
- Calle Navarro Villoslada 16, 3º dcha., Navarra, 31003 Pamplona, Spain;
| | - Núria Beltrán-Sanz
- Faculty of Pharmacy, Section of Botany, Complutense University, Pl. de Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.A.); (N.B.-S.)
| |
Collapse
|
2
|
Beck A, Casanova-Katny A, Gerasimova J. Metabarcoding of Antarctic Lichens from Areas with Different Deglaciation Times Reveals a High Diversity of Lichen-Associated Communities. Genes (Basel) 2023; 14:genes14051019. [PMID: 37239380 DOI: 10.3390/genes14051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Lichens have developed numerous adaptations to optimise their survival under harsh abiotic stress, colonise different substrates, and reach substantial population sizes and high coverage in ice-free Antarctic areas, benefiting from a symbiotic lifestyle. As lichen thalli represent consortia with an unknown number of participants, it is important to know about the accessory organisms and their relationships with various environmental conditions. To this end, we analysed lichen-associated communities from Himantormia lugubris, Placopsis antarctica, P. contortuplicata, and Ramalina terebrata, collected from soils with differing deglaciation times, using a metabarcoding approach. In general, many more Ascomycete taxa are associated with the investigated lichens compared to Basidiomycota. Given our sampling, a consistently higher number of lichen-associated eukaryotes are estimated to be present in areas with deglaciation times of longer than 5000 years compared to more recently deglaciated areas. Thus far, members of Dothideomycetes, Leotiomycetes, and Arthoniomycetes have been restricted to the Placopsis specimens from areas with deglaciation times longer than 5000 years. Striking differences between the associated organisms of R. terebrata and H. lugubris have also been discovered. Thus, a species-specific basidiomycete, Tremella, was revealed for R. terebrata, as was a member of Capnodiales for H. lugubris. Our study provides further understanding of the complex terricolous lichen-associated mycobiome using the metabarcoding approach. It also illustrates the necessity to extend our knowledge of complex lichen symbiosis and further improve the coverage of microbial eukaryotes in DNA barcode libraries, including more extended sampling.
Collapse
Affiliation(s)
- Andreas Beck
- SNSB-Botanische Staatssammlung München, 80638 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Angélica Casanova-Katny
- Laboratorio de Ecofisiología Vegetal y Cambio Climático, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | | |
Collapse
|
3
|
Porada P, Bader MY, Berdugo MB, Colesie C, Ellis CJ, Giordani P, Herzschuh U, Ma Y, Launiainen S, Nascimbene J, Petersen I, Raggio Quílez J, Rodríguez-Caballero E, Rousk K, Sancho LG, Scheidegger C, Seitz S, Van Stan JT, Veste M, Weber B, Weston DJ. A research agenda for nonvascular photoautotrophs under climate change. THE NEW PHYTOLOGIST 2023; 237:1495-1504. [PMID: 36511294 DOI: 10.1111/nph.18631] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.
Collapse
Affiliation(s)
- Philipp Porada
- Ecological Modelling, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Maaike Y Bader
- Ecological Plant Geography, University of Marburg, Deutschhausstr. 10, 35032, Marburg, Germany
| | - Monica B Berdugo
- Ecological Plant Geography, University of Marburg, Deutschhausstr. 10, 35032, Marburg, Germany
| | - Claudia Colesie
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JW, UK
| | | | | | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute, Telegrafenberg A45, 14473, Potsdam, Germany
| | - Yunyao Ma
- Ecological Modelling, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Samuli Launiainen
- Ecosystems and Modeling, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Juri Nascimbene
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| | - Imke Petersen
- Ecological Modelling, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - José Raggio Quílez
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | | | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, København, Denmark
| | - Leopoldo G Sancho
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Christoph Scheidegger
- Biodiversity and Conservation Biology, Eidg. Forschungsanstalt WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
| | - Steffen Seitz
- Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19-23, 72070, Tübingen, Germany
| | - John T Van Stan
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Maik Veste
- Institute of Environmental Sciences, Brandenburgische Technische Universität Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, 03046, Cottbus, Germany
| | - Bettina Weber
- Division of Plant Sciences, Institute for Biology, University of Graz, Holteigasse 6, A-8010, Graz, Austria
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
4
|
Marín C, Barták M, Palfner G, Vergara-Barros P, Fernandoy F, Hájek J, Casanova-Katny A. Antarctic Lichens under Long-Term Passive Warming: Species-Specific Photochemical Responses to Desiccation and Heat Shock Treatments. PLANTS 2022; 11:plants11192463. [PMID: 36235326 PMCID: PMC9572451 DOI: 10.3390/plants11192463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
Climate warming in the Antarctic tundra will affect locally dominant cryptogams. Being adapted to low temperatures and freezing, little is known about the response of the polar lichens’ primary photochemistry to warming and desiccation. Since 2008, we have monitored the ecophysiological responses of lichens to the future warming scenario during a long-term warming experiment through open top chambers (OTCs) on Fildes Peninsula. We studied the primary photochemical response (potential Fv/Fm and effective efficiency of photosystem II YPSII) of different lichen taxa and morphotypes under desiccation kinetics and heat shock experiments. As lichens grow slowly, to observe changes during warming we methodologically focused on carbon and nitrogen content as well as on the stable isotope ratios. Endemic Himantormia lugubris showed the strongest effect of long-term warming on primary photochemistry, where PSII activity occurred at a lower %RWC inside the OTCs, in addition to higher Fv/Fm values at 30 °C in the heat shock kinetic treatment. In contrast, Usnea aurantiaco-atra did not show any effect of long-term warming but was active at a thallus RWC lower than 10%. Both Cladonia species were most affected by water stress, with Cladonia aff. gracilis showing no significant differences in primary photochemical responses between the warming and the control but a high sensibility to water deficiency, where, at 60% thallus RWC, the photochemical parameters began to decrease. We detected species-specific responses not only to long-term warming, but also to desiccation. On the other hand, the carbon content did not vary significantly among the species or because of the passive warming treatment. Similarly, the nitrogen content showed non-significant variation; however, the C/N ratio was affected, with the strongest C/N decrease in Cladonia borealis. Our results suggest that Antarctic lichens can tolerate warming and high temperature better than desiccation and that climate change may affect these species if it is associated with a decrease in water availability.
Collapse
Affiliation(s)
- Catalina Marín
- Laboratory of Mycology and Mycorrhiza, Faculty of Natural Sciences and Oceanography, Campus Concepción, Concepción University, Concepción 4030000, Chile
| | - Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic
| | - Götz Palfner
- Laboratory of Mycology and Mycorrhiza, Faculty of Natural Sciences and Oceanography, Campus Concepción, Concepción University, Concepción 4030000, Chile
| | - Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Francisco Fernandoy
- Isotope Analysis Laboratory, Andrés Bello University, Viña del Mar 2531015, Chile
| | - Josef Hájek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic
| | - Angélica Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Rudecindo Ortega #03694, Temuco 4780000, Chile
- Correspondence: ; Tel.: +56-96-209-7709
| |
Collapse
|
5
|
Areche C, Parra JR, Sepulveda B, García-Beltrán O, Simirgiotis MJ. UHPLC-MS Metabolomic Fingerprinting, Antioxidant, and Enzyme Inhibition Activities of Himantormia lugubris from Antarctica. Metabolites 2022; 12:metabo12060560. [PMID: 35736493 PMCID: PMC9227586 DOI: 10.3390/metabo12060560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/22/2023] Open
Abstract
Himantormia lugubris is a Chilean native small lichen shrub growing in the Antarctica region. In this study, the metabolite fingerprinting and the antioxidant and enzyme inhibitory potential from this species and its four major isolated compounds were investigated for the first time. Using ultra-high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry analysis (UHPLC-Q-Orbitrap-MS), several metabolites were identified including specific compounds as chemotaxonomical markers, while major metabolites were quantified in this species. A good inhibition activity against cholinesterase (acetylcholinesterase (AChE) IC50: 12.38 ± 0.09 µg/mL, butyrylcholinesterase (BChE) IC50: 31.54 ± 0.20 µg/mL) and tyrosinase (22.32 ± 0.21 µg/mL) enzymes of the alcoholic extract and the main compounds (IC50: 28.82 ± 0.10 µg/mL, 36.43 ± 0.08 µg/mL, and 7.25 ± 0.18 µg/mL, respectively, for the most active phenolic atranol) was found. The extract showed a total phenolic content of 47.4 + 0.0 mg of gallic acid equivalents/g. In addition, antioxidant activity was assessed using bleaching of DPPH and ORAC (IC50: 75.3 ± 0.02 µg/mL and 32.7 ± 0.7 μmol Trolox/g lichen, respectively) and FRAP (27.8 ± 0.0 μmol Trolox equivalent/g) experiments. The findings suggest that H. lugubris is a rich source of bioactive compounds with potentiality in the prevention of neurodegenerative or noncommunicable chronic diseases.
Collapse
Affiliation(s)
- Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nuñoa, Santiago 7800024, Chile
- Correspondence: (C.A.); (M.J.S.); Tel.: +51-956-379-865 (C.A.); +56-(63)-2386110 (M.J.S.)
| | - Javier Romero Parra
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Casilla, Santiago 6640022, Chile;
| | - Beatriz Sepulveda
- Departamento de Ciencias Químicas, Viña del Mar, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia;
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Elena Haverbeck S-N, Valdivia 5090000, Chile
- Correspondence: (C.A.); (M.J.S.); Tel.: +51-956-379-865 (C.A.); +56-(63)-2386110 (M.J.S.)
| |
Collapse
|
6
|
Abstract
AbstractThere is considerable scientific interest as to how terrestrial biodiversity in Antarctica might respond, or be expected to respond, to climate change. The two species of vascular plant confined to the Antarctic Peninsula have shown clear gains in density and range extension. However, little information exists for the dominant components of the flora, lichens and bryophytes. One approach has been to look at change in biodiversity using altitude as a proxy for temperature change and previous results for Livingston Island suggested that temperature was the controlling factor. We have extended this study at the same site by using chlorophyll fluorometers to monitor activity and microclimate of the lichen, Usnea aurantiaco-atra, and the moss, Hymenoloma crispulum. We confirmed the same lapse rate in temperature but show that changes in water relations with altitude is probably the main driver. There were differences in water source with U. aurantiaco-atra benefitting from water droplet harvesting and the species performed substantially better at the summit. In contrast, activity duration, chlorophyll fluorescence and photosynthetic modelling all show desiccation to have a large negative impact on the species at the lowest site. We conclude that water relations are the main drivers of biodiversity change along the altitudinal gradient with nutrients, not measured here, as another possible contributor.
Collapse
|
7
|
Barták M, Hájek J, Orekhova A, Villagra J, Marín C, Palfner G, Casanova-Katny A. Inhibition of Primary Photosynthesis in Desiccating Antarctic Lichens Differing in Their Photobionts, Thallus Morphology, and Spectral Properties. Microorganisms 2021; 9:microorganisms9040818. [PMID: 33924436 PMCID: PMC8070113 DOI: 10.3390/microorganisms9040818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Five macrolichens of different thallus morphology from Antarctica (King George Island) were used for this ecophysiological study. The effect of thallus desiccation on primary photosynthetic processes was examined. We investigated the lichens' responses to the relative water content (RWC) in their thalli during the transition from a wet (RWC of 100%) to a dry state (RWC of 0%). The slow Kautsky kinetics of chlorophyll fluorescence (ChlF) that was recorded during controlled dehydration (RWC decreased from 100 to 0%) and supplemented with a quenching analysis revealed a polyphasic species-specific response of variable fluorescence. The changes in ChlF at a steady state (Fs), potential and effective quantum yields of photosystem II (FV/FM, ΦPSII), and nonphotochemical quenching (NPQ) reflected a desiccation-induced inhibition of the photosynthetic processes. The dehydration-dependent fall in FV/FM and ΦPSII was species-specific, starting at an RWC range of 22-32%. The critical RWC for ΦPSII was below 5%. The changes indicated the involvement of protective mechanisms in the chloroplastic apparatus of lichen photobionts at RWCs of below 20%. In both the wet and dry states, the spectral reflectance curves (SRC) (wavelength 400-800 nm) and indices (NDVI, PRI) of the studied lichen species were measured. Black Himantormia lugubris showed no difference in the SRCs between wet and dry state. Other lichens showed a higher reflectance in the dry state compared to the wet state. The lichen morphology and anatomy data, together with the ChlF and spectral reflectance data, are discussed in relation to its potential for ecophysiological studies in Antarctic lichens.
Collapse
Affiliation(s)
- Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic; (M.B.); (J.H.); (A.O.)
| | - Josef Hájek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic; (M.B.); (J.H.); (A.O.)
| | - Alla Orekhova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic; (M.B.); (J.H.); (A.O.)
| | - Johana Villagra
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Rudecindo Ortega #03694, 4780000 Temuco, Chile;
| | - Catalina Marín
- Laboratory of Mycology and Mycorrhiza, Faculty of Natural Sciences and Oceanography, Campus Concepción, Concepción University, 4030000 Concepción, Chile; (C.M.); (G.P.)
| | - Götz Palfner
- Laboratory of Mycology and Mycorrhiza, Faculty of Natural Sciences and Oceanography, Campus Concepción, Concepción University, 4030000 Concepción, Chile; (C.M.); (G.P.)
| | - Angélica Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Rudecindo Ortega #03694, 4780000 Temuco, Chile;
- Correspondence: ; Tel.: +56-96-209-7709
| |
Collapse
|