1
|
Aminzai MT, Yildirim M, Yabalak E. Metallic nanoparticles unveiled: Synthesis, characterization, and their environmental, medicinal, and agricultural applications. Talanta 2024; 280:126790. [PMID: 39217711 DOI: 10.1016/j.talanta.2024.126790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Metallic nanoparticles (MNPs) have attracted great interest among scientists and researchers for years due to their unique optical, physiochemical, biological, and magnetic properties. As a result, MNPs have been widely utilized across a variety of scientific fields, including biomedicine, agriculture, electronics, food, cosmetics, and the environment. In this regard, the current review article offers a comprehensive overview of recent studies on the synthesis of MNPs (metal and metal oxide nanoparticles), outlining the benefits and drawbacks of chemical, physical, and biological methods. However, the biological synthesis of MNPs is of great importance considering the biocompatibility and biological activity of certain MNPs. A variety of characterization techniques, including X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, scanning electron microscopy, dynamic light scattering, atomic force microscopy, Fourier transform infrared spectroscopy, and others, have been discussed in depth to gain deeper insights into the unique structural and spectroscopic properties of MNPs. Furthermore, their unique properties and applications in the fields of medicine, agriculture, and the environment are summarized and deeply discussed. Finally, the main challenges and limitations of MNPs synthesis and applications, as well as their future prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan
| | - Metin Yildirim
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, 33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
2
|
Bioremediation of Hazardous Wastes Using Green Synthesis of Nanoparticles. Processes (Basel) 2023. [DOI: 10.3390/pr11010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Advanced agronomic methods, urbanisation, and industrial expansion contaminate air, water and soil, globally. Agricultural and industrial activities threaten living biota, causing biodiversity loss and serious diseases. Strategies such as bioremediation and physiochemical remediation have not been effectively beneficial at treating pollutants. Metal-based nanoparticles (NPs) such as copper, zinc, silver, gold, etc., in various nanoformulations and nanocomposites are used more and more as they effectively resist the uptake of toxic compounds via plants by facilitating their immobilisation. According to studies, bio-based NP synthesis is a recent and agroecologically friendly approach for remediating environmental waste, which is effective against carcinogens, heavy metal contamination, treating marine water polluted with excessive concentrations of phosphorus, nitrogen and harmful algae, and hazardous dye- and pesticide-contaminated water. Biogenic resources such as bacteria, fungi, algae and plants are extensively used for the biosynthesis of NPs, particularly metallic NPs. Strategies involving green synthesis of NPs are nontoxic and could be employed for commercial scale production. Here, the focus is on the green synthesis of NPs for reduction of hazardous wastes to help with the clean-up process.
Collapse
|
3
|
Shaheen S, Saeed Z, Ahmad A, Pervaiz M, Younas U, Mahmood Khan RR, Luque R, Rajendran S. Green synthesis of graphene-based metal nanocomposite for electro and photocatalytic activity; recent advancement and future prospective. CHEMOSPHERE 2023; 311:136982. [PMID: 36309056 DOI: 10.1016/j.chemosphere.2022.136982] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The presence of pollutants in waste water is a demanding problem for human health. Investigations have been allocated to study the adsorptive behavior of graphene-based materials to remove pollutants from wastewater. Graphene (GO) due to its hydrophilicity, high surface area, and oxygenated functional groups, is an effective adsorbent for the removal of dyes and heavy metals from water. The disclosure of green synthesis opened the gateway for the economic productive methods. This article reveals the fabrication of graphene-based composite from aloe vera extract using a green method. The proposed mechanism of GO reduction via plant extract has also been mentioned in this work. The mechanism associated with the removal of dyes and heavy metals by graphene-based adsorbents and absorptive capacities of heavy metals has been discussed in detail. The toxicity of heavy metals has also been mentioned here. The Polyaromatic resonating system of GO develops significant π-π interactions with dyes whose base form comprises principally oxygenated functional groups. This review article illustrates a literature survey by classifying graphene-based composite with a global market value from 2010 to 2025 and also depicts a comparative study between green and chemical reduction methods. It presents state of art for the fabrication of GO with novel adsorbents such as metal, polymer, metal oxide and elastomers-based nanocomposites for the removal of pollutants. The current progress in the applications of graphene-based composites in antimicrobial, anticancer, drug delivery, and removal of dyes with photocatalytic efficacy of 73% is explored in this work. It gives a coherent overview of the green synthesis of graphene-based composite, various prospective for the fabrication of graphene, and their biotoxicity.
Collapse
Affiliation(s)
- Shumila Shaheen
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Awais Ahmad
- Departmento de Quimica Organicia, Universitidad de Cordoba, Edificio Marie Curie (C-3) Ctra Nnal IV-A ,km 396, E14104, Cordoba, Spain
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University, Lahore, Pakistan.
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | | | - Rafael Luque
- Departmento de Quimica Organicia, Universitidad de Cordoba, Edificio Marie Curie (C-3) Ctra Nnal IV-A ,km 396, E14104, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|
4
|
Khan F, Shahid A, Zhu H, Wang N, Javed MR, Ahmad N, Xu J, Alam MA, Mehmood MA. Prospects of algae-based green synthesis of nanoparticles for environmental applications. CHEMOSPHERE 2022; 293:133571. [PMID: 35026203 DOI: 10.1016/j.chemosphere.2022.133571] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 05/22/2023]
Abstract
Green synthesis of nanoparticles (NPs) has emerged as an eco-friendly alternative to produce nanomaterials with diverse physical, chemical, and biological characteristics. Previously used, physical and chemical methods involve the production of toxic byproducts, costly instrumentation, and energy-intensive experimental processes thereby, limiting their applicability. Biogenic synthesis of nanoparticles has come forward as a potential alternative, providing an eco-friendly, cost-effective, and energy-efficient approach for the synthesis of a diverse range of NPs. Several biological entities are employed in the biosynthesis of NPs including bacteria, fungi, and algae. However, the distinguishing characteristics of microalgae and cyanobacteria make them promising candidates for NPs synthesis because of their higher growth rate, substantially higher rate of sequestering CO2, hyperaccumulation of heavy metals, absence of toxic byproducts, minimum energy input, and employment of biomolecules (pigments and enzymes) as reducing and capping agents. Algal extract, being a natural reducing and capping agent, serves as a living cell factory for the efficient green synthesis of nanoparticles. Physiological and biological methods allow algal cells to uptake heavy metals and utilize them as nutrient source to generate biomass by regulating their metabolic processes. Despite their enormous potential, studies on the microalgae-based synthesis of nanoparticles for the removal of toxic pollutants from wastewater remained an unexplored research area in the literature. This review was aimed to summarize the recent advancements and prospects in the algae-based synthesis of nanoparticles for environmental applications particularly treating the wastewater.
Collapse
Affiliation(s)
- Fahad Khan
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Muhammad Rizwan Javed
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Jianren Xu
- College of Bioscience and Engineering, North Minzu University, Yinchuan, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
5
|
Malik S, Kishore S, Shah MP, Kumar SA. A comprehensive review on nanobiotechnology for bioremediation of heavy metals from wastewater. J Basic Microbiol 2022; 62:361-375. [PMID: 34978081 DOI: 10.1002/jobm.202100555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022]
Abstract
Removal of contaminants from wastewater is a big concern for the scientific community. Heavy metals are one of the major contaminants present in wastewater. Heavy metals such as Cd2+ , Pb2+ , Mn2+ , and so forth, are highly toxic and pose a serious threat to the environment due to their nonbiodegradable nature. With the advent of nanobiotechnology, heavy metal contaminants can be mitigated with the help of nanomaterials produced by eco-friendly methods. Specially designed bionanomaterials often exhibit properties such as increased shelf life, self-healing nature, adaptability in different environments, and cost-effectiveness, thus showing advantages over nanomaterials produced by physicochemical methods. Due to their high specificity and adsorption capacity, bionanomaterials can remove heavy metals present even in a very low concentration in wastewater. The use of bionanotechnology in their remediation paves a way for environmental sustainability and helps in cost reduction. This paper intends to discuss the nanobiotechnological approach for the remediation of heavy metals from wastewater. Furthermore, the paper also reviews some important nanomaterials and their potential applications in the depollution of heavy-metal contaminated wastewater.
Collapse
Affiliation(s)
- Sumira Malik
- Amity institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Shristi Kishore
- Amity institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Maulin P Shah
- Environmental Technology Lab, Bharuch, Gujarat, India
| | - Shradha A Kumar
- Amity institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| |
Collapse
|
6
|
Pandiyaraj V, Murmu A, Pandy SK, Sevanan M, Arjunan S. Metal nanoparticles and its application on phenolic and heavy metal pollutants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
The perpetual exposure of several manmade materials and their activities such as urbanization, industrialization, transportation, mining, construction, petroleum refining, manufacturing, preservatives, disinfectants etc., release various pollutants like organic, inorganic, and heavy metals which pollute the air, water, and soil. This poses various environmental issues which are relevant to the ecosystem and human wellbeing that intensify the implementation of new expedient treatment technologies. Likewise, phenolic and heavy metal pollutants find their way into the environment. These phenolic and heavy metals are toxic to the liver, heart and carcinogenic. Therefore, the removal of these kinds of pollutants from the environment is a highly challenging issue. As conventional treatment technologies have consequent drawbacks, new interests have been developed to remediate and remove pollutants from the ecosystem using metal nanoparticles (MPNs). To date, many researchers all over the world have been investigating novel approaches to enhance various remediation application technologies. One such approach that the researchers are constantly showing interest in is the use of nanomaterials with potential applications towards the environment. In this regard, MPNs like Copper (Cu), Nickel (Ni), Palladium (Pd), Gold (Au), Silver (Ag), Platinum (Pt), Titanium (Ti), and other nano metals are serving as a suitable agent to eliminate emerging contaminants in various fields, particularly in the removal of phenolic and heavy metal pollutants. This chapter discusses the mechanism and application of various MPNs in eliminating various phenolic and heavy metal pollutants from the environment.
Collapse
Affiliation(s)
- Vaanmathy Pandiyaraj
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Ankita Murmu
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Saravana Kumari Pandy
- Department of Microbiology , Rathnavel Subramaniam College of Arts and Science , Coimbatore , India
| | - Murugan Sevanan
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Shanamitha Arjunan
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| |
Collapse
|
7
|
Verma A, Bharadvaja N. Plant-Mediated Synthesis and Characterization of Silver and Copper Oxide Nanoparticles: Antibacterial and Heavy Metal Removal Activity. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02091-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Akpomie KG, Conradie J. Biogenic and chemically synthesized Solanum tuberosum peel-silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye. Sci Rep 2020; 10:17094. [PMID: 33051565 PMCID: PMC7555862 DOI: 10.1038/s41598-020-74254-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
This work was aimed at the synthesis of a hybrid (STpe-AgNP), obtained by impregnation of silver nanoparticles (AgNP) onto Solanum tuberosum peel (STpe), for the ultrasonic assisted adsorption of bromophenol blue (BB) dye. SEM, FTIR, XRD, EDX, TGA and BET techniques were used to characterize the adsorbents. The XRD, SEM and EDX confirmed successful impregnation of AgNPs onto STpe to form the hybrid. The AgNPs impregnated onto the hybrid were found to be water stable at various pH values of 2.0-9.0. Chi-square (χ2 < 0.024) and linear regression (R2 > 0.996) showed that the Freundlich model was best fitted among the isotherm models, corroborated by the oriented site model. Kinetic analysis conformed to the intraparticle diffusion and pseudo-first-order rate equations, while thermodynamics displayed a physical, spontaneous and endothermic adsorption process. The presence of competing Pb(II), Ni(II), Cd(II) and Zn(II) metal ions in solution interfered with the adsorption of BB onto the biosorbents. In terms of reusability, STpe and STpe-AgNP showed BB desorption of 91.3% and 88.5% respectively, using NaOH as eluent. Ultra-sonication significantly enhanced the adsorption of BB by both adsorbents, but the impregnation of AgNPs only slightly improved adsorption of the dye from the simulated wastewater. This study also illustrated that pristine STpe biomass waste is a cheap viable option for the decontamination of BB from water.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Physical Chemistry Research Laboratory, Department of Chemistry, University of the Free State, Bloemfontein, South Africa.
- Industrial/Physical Chemistry Unit, Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Jeanet Conradie
- Physical Chemistry Research Laboratory, Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
9
|
Abstract
The discharge of toxic heavy metals including zinc (Zn), nickel (Ni), lead (Pb), copper (Cu), chromium (Cr), and cadmium (Cd) in water above the permissible limits causes high threat to the surrounding environment. Because of their toxicity, heavy metals greatly affect the human health and the environment. Recently, better remediation techniques were offered using the nanotechnology and nanomaterials. The attentions were directed toward cost-effective and new fabricated nanomaterials for the application in water/wastewater remediation, such as zeolite, carbonaceous, polymer based, chitosan, ferrite, magnetic, metal oxide, bimetallic, metallic, etc. This review focused on the synthesis and capacity of various nanoadsorbent materials for the elimination of different toxic ions, with discussion of the effect of their functionalization on the adsorption capacity and separation process. Additionally, the effect of various experimental physicochemical factors on heavy metals adsorption, such as ionic strength, initial ion concentration, temperature, contact time, adsorbent dose, and pH was discussed.
Collapse
|