1
|
Chopra H, Verma R, Kaushik S, Parashar J, Madan K, Bano A, Bhardwaj R, Pandey P, Kumari B, Purohit D, Kumar M, Bhatia S, Rahman MH, Mittal V, Singh I, Kaushik D. Cyclodextrin-Based Arsenal for Anti-Cancer Treatments. Crit Rev Ther Drug Carrier Syst 2023; 40:1-41. [PMID: 36734912 DOI: 10.1615/critrevtherdrugcarriersyst.2022038398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, India
| | - Sakshi Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kumud Madan
- Lloyd Institute of Management and Technology (Pharm), Knowledge Park, Greater Noida, U.P., India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122413, India
| | - Beena Kumari
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
2
|
Zhang J, Yang C, Hu J, Zhang Y, Lai Y, Gong H, Guo F, Li X, Ye L, Li B. Deciphering a novel chloramphenicols resistance mechanism: Oxidative inactivation of the propanediol pharmacophore. WATER RESEARCH 2022; 225:119127. [PMID: 36155007 DOI: 10.1016/j.watres.2022.119127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Expanding knowledge about new types of antibiotic resistance genes is of great significance in dealing with the global antibiotic resistance crisis. Herein, a novel oxidoreductase capO was discovered to be responsible for oxidative inactivation of chloramphenicol and thiamphenicol. The antibiotic resistance mechanism was comprehensively deciphered using multi-omics and multiscale computational approaches. A 66,383 bp DNA fragment carrying capO was shared among four chloramphenicol-resistant strains, and the co-occurrence of capO with a mobile genetic element cluster revealed its potential mobility among different taxa. Metagenomic analysis of 772 datasets indicated that chloramphenicol was the crucial driving factor for the development and accumulation of capO in activated sludge bioreactors treating antibiotic production wastewater. Therefore, we should pay sufficient attention to its possible prevalence and transfer to pathogens, especially in some hotspot environments contaminated with high concentrations of chloramphenicols. This finding significantly expands our knowledge boundary about chloramphenicols resistance mechanisms.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, China
| | - Jiahui Hu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Yiting Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, China
| | - Yuezheng Lai
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, China
| | - Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, China
| | - Fangliang Guo
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China.
| |
Collapse
|
3
|
Sivakumar K, Chaitanya GK. α- Cyclodextrin based Chemosensors: A Review. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2121277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- K. Sivakumar
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (Deemed to be University) (SCSVMV), Tamilnadu, India
| | - G. Krishna Chaitanya
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (Deemed to be University) (SCSVMV), Tamilnadu, India
| |
Collapse
|
4
|
Majchrzak W, Motyl I, Śmigielski K. Biological and Cosmetical Importance of Fermented Raw Materials: An Overview. Molecules 2022; 27:molecules27154845. [PMID: 35956792 PMCID: PMC9369470 DOI: 10.3390/molecules27154845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The cosmetics industry is currently looking for innovative ingredients with higher bioactivity and bioavailability for the masses of natural and organic cosmetics. Bioferments are innovative ingredients extracted from natural raw materials by carrying out a fermentation process with appropriate strains of microorganisms. The review was conducted using the SciFinder database with the keywords “fermented plant”, “cosmetics”, and “fermentation”. Mainly bioferments are made from plant-based raw materials. The review covers a wide range of fermented raw materials, from waste materials (whey with beet pulp) to plant oils (F-Shiunko, F-Artemisia, F-Glycyrrhiza). The spectrum of applications for bioferments is broad and includes properties such as skin whitening, antioxidant properties (blackberry, soybean, goji berry), anti-aging (red ginseng, black ginseng, Citrus unshiu peel), hydrating, and anti-allergic (aloe vera, skimmed milk). Fermentation increases the biochemical and physiological activity of the substrate by converting high-molecular compounds into low-molecular structures, making fermented raw materials more compatible compared to unfermented raw materials.
Collapse
Affiliation(s)
- Weronika Majchrzak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Interdisciplinary Doctoral School, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland
- Correspondence: ; Tel.: +48-42-631-34-92
| | - Ilona Motyl
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland; (I.M.); (K.Ś.)
| | - Krzysztof Śmigielski
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland; (I.M.); (K.Ś.)
| |
Collapse
|
5
|
Liu Z, Wu G, Wu H. Molecular cloning, and optimized production and characterization of recombinant cyclodextrin glucanotransferase from Bacillus sp. T1. 3 Biotech 2022; 12:58. [PMID: 35186655 PMCID: PMC8816995 DOI: 10.1007/s13205-022-03111-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/08/2022] [Indexed: 11/26/2022] Open
Abstract
Cyclodextrin glucosyltransferase (CGTase) is an enzyme which degrades starch to produce cyclodextrins (CDs). In this study, the β-CGTase producing strain T1 was identified as Bacillus sp. by its morphological characteristics and 16S rDNA sequence analysis. The cgt-T1 gene was cloned and expressed in Escherichia coli. CGTase-T1 was purified by Ni-nitrilotriacetic acid agarose column and the molecular weight was determined as approximately 75 kDa using SDS-PAGE analysis. For the expression of soluble proteins, the optimal induction conditions were 10 h at 25 °C with OD600 at 0.8. The purified CGTase-T1 exhibited maximum activity with an optimal pH and temperature of 6.0 and 65 °C. The enzyme was stable in a pH range of 7.0-10.0, retaining over 85% relative activity for 1 h. CGTase-T1 activity can be significantly enhanced by adding 1 mM Ba2+. Using a soluble starch substrate, the kinetic parameters were revealed with K M and k cat/K M values of 2.75 mg mL-1 and 1253.97 s-1 mL mg-1, respectively. Additionally, the four enzyme activities of CGTase-T1 were determined. The highest conversion rate to CDs (40.9%) was achieved from soluble starch after 8 h of enzyme reaction, where mainly β-CD was produced (79.1% of the total CDs yield), indicating that CGTase-T1 potentially has industrial application prospect. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03111-8.
Collapse
Affiliation(s)
- Zhenyang Liu
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025 China
| | - Guogan Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Bei Zhai Road, Shanghai, 201106 China
| | - Huawei Wu
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025 China
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025 China
| |
Collapse
|
6
|
Lim CH, Rasti B, Sulistyo J, Hamid MA. Comprehensive study on transglycosylation of CGTase from various sources. Heliyon 2021; 7:e06305. [PMID: 33665455 PMCID: PMC7907775 DOI: 10.1016/j.heliyon.2021.e06305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Transglycosylation is the in-vivo or in-vitro process of transferring glycosyl groups from a donor to an acceptor, which is usually performed by enzymatic reactions because of their simplicity, low steric hindrance, high region-specificity, low production cost, and mild processing conditions. One of the enzymes commonly used in the transglycosylation reaction is cyclodextrin glucanotransferase (CGTase). The transglycosylated products, catalyzed by CGTase, are widely used in food additives, supplements, and personal care and cosmetic products. This is due to improvements in the solubility, stability, bioactivity and length of the synthesized products. This paper's focus is on the importance of enzymes used in the transglycosylation reaction, their characteristics and mechanism of action, sources and production yield, and donor and acceptor specificities. Moreover, the influence of intrinsic and extrinsic factors on the enzymatic reaction, catalysis of glycosidic linkages, and advantages of CGTase transglycosylation reactions are discussed in detail.
Collapse
Affiliation(s)
- Chin Hui Lim
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Babak Rasti
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Joko Sulistyo
- Faculty of Biotechnology, University of Surabaya, Jalan Ngagel Jaya Selatan, Surabaya, 60294, Indonesia
| | - Mansoor Abdul Hamid
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
7
|
Gupta PL, Rajput M, Oza T, Trivedi U, Sanghvi G. Eminence of Microbial Products in Cosmetic Industry. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:267-278. [PMID: 31214881 PMCID: PMC6646485 DOI: 10.1007/s13659-019-0215-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/13/2019] [Indexed: 05/21/2023]
Abstract
Cosmetology is the developing branch of science, having direct impact on the society. The cosmetic sector is interested in finding novel biological alternatives which can enhance the product attributes as well as it can substitute chemical compounds. Many of the compounds are having biological origin and are acquire from bacteria, fungi, and algae. A range of biological compounds, like bio-surfactant, vitamins, antioxidants, pigments, enzymes, peptides have promising features and beneficial properties. Moreover, these products can be produced commercially with ease. The review will encompass the importance and use of microbial compounds for new cosmetic formulations as well as products associated with it.
Collapse
Affiliation(s)
| | | | - Tejas Oza
- Department of Microbiology, Marwadi University, Rajkot, 360001, India
| | | | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, 360001, India.
| |
Collapse
|
8
|
Zhang J, Zhao Y, Li M, Liu T. Optimization of defined medium for recombinant Komagataella phaffii expressing cyclodextrin glycosyltransferase. Biotechnol Prog 2019; 35:e2867. [PMID: 31187591 DOI: 10.1002/btpr.2867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022]
Abstract
The cyclodextrin glycosyltransferase (CGTase) is an important enzyme for cyclodextrin (CD) production, and is also widely used in the biotechnology, food, and pharmaceuticals industries. Secretory CGTase production by recombinant Komagataella phaffii using defined medium is a promising approach because of low cost, less impurity protein. It was found that no CGTase was expressed using traditional defined medium (basal salt medium [BSM]) because of pH value decreasing significantly. CGTase was expressed by recombinant K. phaffii through pH maintenance in range of 5.5-7.0. β-CGTase activity increased to 122.0 U/mL after optimization of glycerol, phosphate buffer, pH value, ammonium sulfate, temperature, methanol, and additives based on BSM, establishing a modified defined medium. These results showed that it was necessary to establish recombinant K. phaffii-based special defined medium although the same host cell used for different heterologous protein expression.
Collapse
Affiliation(s)
- Jianguo Zhang
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yixin Zhao
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengla Li
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Taiyu Liu
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Upadhyay D, Sharma S, Shrivastava D, Kulshreshtha NM. Production and characterization of β-cyclodextrin glucanotransferase from Bacillus sp. ND1. J Basic Microbiol 2018; 59:192-205. [PMID: 30548870 DOI: 10.1002/jobm.201800390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023]
Abstract
A potent β-CGTase producing bacterium ND1 has been isolated from sugarcane field soil in India. The biochemical, physiologicaland phylogenetic analyses based on 16S rRNA gene suggest that the isolate belongs to Bacillus cereus group. The enzyme β-CGTase produced from isolate ND1 catalyzes production of β-cyclodextrin utilizing starch as a substrate which has diverse applications in various fields. The enzyme production parameters pH, temperature, and substrate concentration were optimized using Central Composite Design (CCD) of Response Surface Methodology (RSM) and were found to be 8.9, 30.55 °C, and 1.88%, respectively for optimal enzyme activity. The crude enzyme was partially purified (29-fold) using ammonium sulphate precipitation followed by ion exchange chromatography. The specific activity of the purified enzyme was found to be 63.53 U mg-1 . The enzyme is monomeric in nature with a molecular weight of 97.4 kD as determined by SDS-PAGE. It is stable in a wide range of pH (6-10) and temperature (40-60 °C) values. The maximum CGTase activity was observed at pH 9 and temperature 50 °C. The Km value was found to be 2.613 ± 0.5 and Vmax was 0.309 ± 0.05 µg min-1 indicating high substrate specificity. Together; these results suggest that the enzyme may be of wide commercial value in various industrial processes.
Collapse
Affiliation(s)
- Dhwani Upadhyay
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Sonika Sharma
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Divya Shrivastava
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Niha M Kulshreshtha
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India.,Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
| |
Collapse
|
10
|
Kabacaoğlu E, Karakaş Budak B. Heterologous expression of β-γ-type cyclodextrin glycosyltransferase of newly isolated alkaliphilic Bacillussp. SD5 in Pichia pastoris. STARCH-STARKE 2017. [DOI: 10.1002/star.201600365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eda Kabacaoğlu
- Faculty of Engineering; Department of Food Engineering; Akdeniz University; Antalya Turkey
| | - Barçın Karakaş Budak
- Faculty of Engineering; Department of Food Engineering; Akdeniz University; Antalya Turkey
| |
Collapse
|