1
|
Brahma S, Goyal AK, Dhamodhar P, Kumari MR, Jayashree S, Usha T, Middha SK. Can Polyherbal Medicine be used for the Treatment of Diabetes? - A Review of Historical Classics, Research Evidence and Current Prevention Programs. Curr Diabetes Rev 2024; 20:e140323214600. [PMID: 36918778 DOI: 10.2174/1573399819666230314093721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 03/16/2023]
Abstract
Diabetes mellitus (DM), a chronic medical condition, has attained a global pandemic status over the last few decades affecting millions of people. Despite a variety of synthetic drugs available in the market, the use of herbal medicines for managing diabetes is gaining importance because of being comparatively safer. This article reviews the result of a substantial literature search on polyherbal formulations (PHFs) developed and evaluated with potential for DM. The accumulated data in the literature allowed us to enlist 76PHFs consisting of different parts of 147 plant species belonging to 58 botanical families. The documented plant species are laden with bioactive components with anti-diabetic properties and thus draw attention. The most favoured ingredient for PHFs was leaves of Gymnema sylvestre and seeds of Trigonella foenum-graecum used in 27 and 22 formulations, respectively. Apart from herbs, shilajit (exudates from high mountain rocks) formed an important component of 9 PHFs, whereas calcined Mytilus margaritiferus and goat pancreas were used in Dolabi, the most commonly used tablet form of PHF in Indian markets. The healing properties of PHFs against diabetes have been examined in both pre-clinical studies and clinical trials. However, the mechanism(s) of action of PHFs are still unclear and considered the pitfalls inherent in understanding the benefits of PHFs. From the information available based on experimental systems, it could be concluded that plant-derived medicines will have a considerable role to play in the control of diabetes provided the challenges related to their bioavailability, bioefficacy, optimal dose, lack of characterization, ambiguous mechanism of action, and clinical efficiency are addressed.
Collapse
Affiliation(s)
- Sudem Brahma
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Prakash Dhamodhar
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangaluru-560054, Karnataka, India
| | - Mani Reema Kumari
- Department of Botany, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - S Jayashree
- School of Allied Health Sciences, REVA University, Bengaluru-560064, Karnataka, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - Sushil Kumar Middha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| |
Collapse
|
2
|
Narzary I, Swarnakar A, Kalita M, Middha SK, Usha T, Babu D, Mochahary B, Brahma S, Basumatary J, Goyal AK. Acknowledging the use of botanicals to treat diabetic foot ulcer during the 21 st century: A systematic review. World J Clin Cases 2023; 11:4035-4059. [PMID: 37388781 PMCID: PMC10303622 DOI: 10.12998/wjcc.v11.i17.4035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a serious health issue of diabetes mellitus that affects innumerable people worldwide. Management and treatment of this complication are challenging, especially for those whose immune system is weak. AIM To discuss the plants and their parts used to heal DFU, along with the mode of their administration in diabetic patients. METHODS The original articles on "the plants for the treatment of DFU" studied in clinical cases only were obtained from various bibliographic databases using different keywords. RESULTS The search resulted in 22 clinical cases records with 20 medicinal plants belonging to 17 families on 1553 subjects. The fruits and leaves were the most preferentially used parts for DFU treatment, regardless of whether they were being administered orally or applied topically. Of the 20 medicinal plants, 19 reported their effectiveness in increasing angiogenesis, epithelialization, and granulation, thus hastening the wound-healing process. The efficacy of these botanicals might be attributed to their major bioactive compounds, such as actinidin and ascorbic acid (in Actinidia deliciosa), 7-O-(β-D-glucopyranosyl)-galactin (in Ageratina pichinchensis), omega-3-fatty acid (in Linum usitatissimum), isoquercetin (in Melilotus officinalis), anthocyanins (in Myrtus communis), and plantamajoside (in Plantago major). CONCLUSION The validation of mechanisms of action underlying these phytocompounds contributing to the management of DFU can aid in our better understanding of creating efficient treatment options for DFU and its associated problems.
Collapse
Affiliation(s)
- Illora Narzary
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
- Department of Zoology, Baosi Banikanta Kakati College, Barpeta 781311, Assam, India
| | - Amit Swarnakar
- Medical Unit, Bodoland University, Kokrajhar 783370, Assam, India
| | - Mrinal Kalita
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru 560012, Karnataka, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru 560012, Karnataka, India
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Banjai Mochahary
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Sudem Brahma
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Jangila Basumatary
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| |
Collapse
|
3
|
Sansenya S, Payaka A, Mansalai P. Biological activity and inhibition potential against α-glucosidase and α-amylase of 2,4-di-tert-butylphenol from bamboo shoot extract by in vitro and in silico studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Rathour R, Kumar H, Prasad K, Anerao P, Kumar M, Kapley A, Pandey A, Kumar Awasthi M, Singh L. Multifunctional applications of bamboo crop beyond environmental management: an Indian prospective. Bioengineered 2022; 13:8893-8914. [PMID: 35333141 PMCID: PMC9161982 DOI: 10.1080/21655979.2022.2056689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Increasing population, industrialization, and economic growth cause several adverse impacts on the existing environment and living being. Therefore, rising pollutants load and their mitigation strategies, as well as achieving energy requirements while reducing reliance on fossil fuels are the key areas, which needs significant consideration for sustainable environment. Since India has considerable biomass resources, bioenergy is a significant part of the country’s energy policy. However, the selection of feedstock is a crucial step in bioenergy production that could produce raw material without compromising food reserve along with the sustainable environment. Higher growth capacity of bamboo species makes them a suitable lignocellulosic substrate for the production of high-value greener products such as fuels, chemicals, and biomaterials as well as an appropriate candidate for eco-restoration of degraded land. In that context, the current review discusses the multidimensional applications of bamboo species in India. The bioenergy potency of bamboo and probability of aligning its production, cultivation, and operation with economic and social development agendas are also addressed, making it an exceptional crop in India. Additionally, its fast growth, perennial root systems, and capability to restore degraded land make it an essential part of ecological restoration. Furthermore, this review explores additional benefits of bamboo plantation on the environment, economy, and society along with future research prospects.
Collapse
Affiliation(s)
- Rashmi Rathour
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Hemant Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Komal Prasad
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Atya Kapley
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, India.,Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.,Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| |
Collapse
|
5
|
Boro H, Usha T, Babu D, Chandana P, Goyal AK, Ekambaram H, Yusufoglu HS, Das S, Middha SK. Hepatoprotective activity of the ethanolic extract of Morus indica roots from Indian Bodo tribes. SN APPLIED SCIENCES 2022; 4:49. [DOI: https:/doi.org/10.1007/s42452-021-04859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/02/2021] [Indexed: 09/01/2023] Open
Abstract
AbstractThe roots of Morus species are well described in the Pharmacopoeia of the People's Republic of China (ChP) for its traditional use in treating liver fibrosis due to its hepatoprotective property. However, little is known about the hepatoprotective effect of the roots of Morus indica L. (RoMi), and the pharmacological mechanism(s) are uncertain due to its intricacy. Therefore, this study evaluates the hepatoprotective activity of the ethanolic extract of RoMi (eRoMi) against the CCl4-induced in-vivo animal model at different dosages (100 and 200 mg/kg BW) in comparison with silymarin as a positive control. The hepatoprotective activity of eRoMi was evaluated by measuring the levels of serum biomarkers, hepatic antioxidant enzymes and was verified by histological studies. Interestingly, 1,2-bis(trimethylsilyl) benzene, 1,4-phenylenebis (trimethylsilane), 2,4,6-cycloheptatriene-1-one, 3,5-bis-trimethylsilyl and α-amyrin were the active components found in eRoMi as detected by GC–MS. Oral administration of eRoMi (200 mg/kg BW) to rats significantly protected serum biochemical parameters (increased ALT, AST, LDH, bilirubin and GGT as well as depletion of antioxidant enzymes and hepatic GSH) and elevation in hepatic lipid peroxidation as compared to CCl4-treated rats. The hematological indices such as erythrocytes, hemoglobin, monocytes and lymphocytes were also normal in eRoMi-treated rats. The histopathological evaluation indicated a significant restoration of liver structure as compared to silymarin. This study is the first scientific validation for the traditional use of eRoMi to understand its hepatoprotective activity.
Collapse
|
6
|
Boro H, Usha T, Babu D, Chandana P, Goyal AK, Ekambaram H, Yusufoglu HS, Das S, Middha SK. Hepatoprotective activity of the ethanolic extract of Morus indica roots from Indian Bodo tribes. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-021-04859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AbstractThe roots of Morus species are well described in the Pharmacopoeia of the People's Republic of China (ChP) for its traditional use in treating liver fibrosis due to its hepatoprotective property. However, little is known about the hepatoprotective effect of the roots of Morus indica L. (RoMi), and the pharmacological mechanism(s) are uncertain due to its intricacy. Therefore, this study evaluates the hepatoprotective activity of the ethanolic extract of RoMi (eRoMi) against the CCl4-induced in-vivo animal model at different dosages (100 and 200 mg/kg BW) in comparison with silymarin as a positive control. The hepatoprotective activity of eRoMi was evaluated by measuring the levels of serum biomarkers, hepatic antioxidant enzymes and was verified by histological studies. Interestingly, 1,2-bis(trimethylsilyl) benzene, 1,4-phenylenebis (trimethylsilane), 2,4,6-cycloheptatriene-1-one, 3,5-bis-trimethylsilyl and α-amyrin were the active components found in eRoMi as detected by GC–MS. Oral administration of eRoMi (200 mg/kg BW) to rats significantly protected serum biochemical parameters (increased ALT, AST, LDH, bilirubin and GGT as well as depletion of antioxidant enzymes and hepatic GSH) and elevation in hepatic lipid peroxidation as compared to CCl4-treated rats. The hematological indices such as erythrocytes, hemoglobin, monocytes and lymphocytes were also normal in eRoMi-treated rats. The histopathological evaluation indicated a significant restoration of liver structure as compared to silymarin. This study is the first scientific validation for the traditional use of eRoMi to understand its hepatoprotective activity.
Collapse
|
7
|
Boro H, Das S, Middha SK. The therapeutic potential and the health benefits of Morus indica Linn.: a mini review. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00544-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
|
9
|
Mobeen A, Ahmad AK. The efficacy and safety of herbal combination of Unani Medicine in chronic urticaria: A randomized, controlled study. J Tradit Complement Med 2021; 11:303-310. [PMID: 34195024 PMCID: PMC8240108 DOI: 10.1016/j.jtcme.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background and Aim; Chronic urticaria (CU) is a fluctuating and pruritic erythematous papule that persists for over six weeks. It affects 0.5-1% of the population and interferes with subjective well-being and daily life. Its etiology is highly complex which makes a causal and/or curative treatment difficult. Nonsedating H1-antihistamines are given as symptomatic therapy, which reduces symptoms effectively in <50% of patients. In Unani medicine, urticaria is known as Shara and treated according to its established etiology. The present study objective was to investigate the effect of herbal combination of Unani medicine (HCUM) comprising Rosa damascena Mill, Bambusa arundinacea Linn, Cinnamomum camphora Linn, Mentha arvensis Linn, in comparison with Levocetirizine in CU. Experimental procedure; This randomized open-labeled standard control clinical trial was conducted between 42 male/female patients aged 20-50 years with moderate to severe CU who were randomly allocated in a 3:1 ratio into HCUM and Levocetirizine 5 mg groups. HCUM powder 5.125 Gm and Levocetirizine 5 mg were given for 4 weeks. Urticaria activity score (UAS7) and chronic urticaria quality of life questionnaire (CU-Q2oL) were primary and secondary outcomes and analyzed per protocol. Results: A total of 40 patients completed the study. Data analysis showed a significant decrease (P=<0.001) in the scores of UAS7 (32.43 ± 2.34-14.03 ± 2.16 and 32.10 ± 2.33-28.40 ± 3.78) and CU-Q2oL (67.57 ± 9.56-36.50 ± 3.01 and 65.20 ± 11.78-59.60 ± 11.13) in HCUM and Levocetirizine groups respectively. Conclusion: As an alternative treatment in terms of safety, efficacy, tolerability, and quality of life the HCUM treatment proved to be more effective than Levocetirizine 5 mg in moderate to severe CU.
Collapse
Affiliation(s)
- Abdul Mobeen
- Dept. of Moalajat, Ntional Institute of Unani Medicine, Bangalore, 56009, India
| | - A Khaleel Ahmad
- Dept. of Moalajat, Government Unani Medical College, Chennai, 600106, India
| |
Collapse
|
10
|
Middha SK, Usha T, Basistha BC, Goyal AK. Amelioration of antioxidant potential, toxicity, and antihyperglycemic activity of Hippophae salicifolia D. Don leaf extracts in alloxan-induced diabetic rats. 3 Biotech 2019; 9:308. [PMID: 31355117 PMCID: PMC6661051 DOI: 10.1007/s13205-019-1840-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Efficacy of several plant extracts in the clinical research for modulating oxidative stress correlated with diabetes mellitus (DM) is well documented. In the present study, we investigated the in vitro antioxidant activity, toxicity, and anti-diabetic activity of methanolic extract of Hippophae salicifolia leaves in normal and alloxan-induced diabetic wistar rats. H. salicifolia leaves were found to be rich in antioxidants. The acute toxicity test of methanolic extract of H. salicifolia leaves revealed that the median lethal dose (LD50) was found to be 3.92 g/kg body weight in mice. Administration of H. salicifolia leaves at 200 mg/kg and 400 mg/kg in alloxan-induced diabetic rats illustrated significant reduction (22% and 39%, respectively) in fasting blood glucose compared to diabetic control. Both the doses were found to be effective when compared to diabetic rats. The Hippophae-treated diabetic rats showed significant increase in the endogenous antioxidant enzymes, superoxide dismutase (50% and 74%, respectively), glutathione peroxidase (57% and 41%, respectively) and decrease in malondialdehyde (33% and 15%, respectively) levels. These results suggested that the methanolic leaf extract of H. salicifolia enhanced the antioxidant defence against reactive oxygen species produced under hyperglycaemic conditions.
Collapse
Affiliation(s)
- Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Malleswaram, Bengaluru, Karnataka 560012 India
| | - Talambedu Usha
- Department of Biochemistry, Bangalore University, Sneha Bhavana, Jnanabharathi Campus, Bengaluru, Karnataka 5600056 India
| | | | - Arvind Kumar Goyal
- Centre for Bamboo Studies and Department of Biotechnology, Bodoland University, Bodoland Territorial Area Districts (BTAD), Kokrajhar, Assam 783370 India
| |
Collapse
|
11
|
Wei BB, Chen ZX, Liu MY, Wei MJ. Development of a UPLC-MS/MS Method for Simultaneous Determination of Six Flavonoids in Rat Plasma after Administration of Maydis stigma Extract and Its Application to a Comparative Pharmacokinetic Study in Normal and Diabetic Rats. Molecules 2017; 22:molecules22081267. [PMID: 28758910 PMCID: PMC6152039 DOI: 10.3390/molecules22081267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 11/28/2022] Open
Abstract
Maydis stigma is an important medicine herb used in many parts of the world for treatment of diabetes mellitus, which main bioactive ingredients are flavonoids. This paper describes for the first time a study on the comparative pharmacokinetics of six active flavonoid ingredients of Maydis stigma in normal and diabetic rats orally administrated with the decoction. Therefore, an efficient and sensitive ultra high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of six anti-diabetic ingredients (cynaroside, quercetin, luteolin, isorhamnetin, rutin and formononetin) of Maydis stigma in rat plasma has been developed and validated in plasma samples, which showed good linearity over a wide concentration range (r2 > 0.99), and gave a lower limit of quantification of 1.0 ng·mL−1 for the analytes. The intra- and interday assay variability was less than 15% for all analytes. The mean extraction recoveries and matrix effect of analytes and IS from rats plasma were all more than 85.0%. The stability results showed the measured concentration for six analytes at three QC levels deviated within 15.0%. The results indicated that significant differences in the pharmacokinetic parameters of the analytes were observed between the two groups of animals, whereby the absorptions of these analytes in the diabetic group were all significantly higher than those in the normal group, which provides an experimental basis for the role of Maydis stigma in anti-diabetic treatment.
Collapse
Affiliation(s)
- Bin-Bin Wei
- School of Pharmacy, China Medical University, 77 Puhe Road, Shenyang 110122, China.
| | - Zai-Xing Chen
- School of Pharmacy, China Medical University, 77 Puhe Road, Shenyang 110122, China.
| | - Ming-Yan Liu
- School of Pharmacy, China Medical University, 77 Puhe Road, Shenyang 110122, China.
| | - Min-Jie Wei
- School of Pharmacy, China Medical University, 77 Puhe Road, Shenyang 110122, China.
| |
Collapse
|