1
|
Krishnan A, Raghu S, Eswaramoorthy R, Perumal G. Biodegradable glutamic acid loaded polycaprolactone nanofibrous scaffold for controlled dentin mineralization. J Drug Deliv Sci Technol 2025; 104:106546. [DOI: 10.1016/j.jddst.2024.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Shah S, Famta P, Vambhurkar G, Kumar R, Pandey G, Singh G, Wagh S, Kanaujiya S, Arya DK, Sharma A, Shinde A, Bhanu Prasad S, Chandankar S, Shinde S, Sharma A, Rajinikanth PS, Khatri DK, Asthana A, Srivastava S. Docetaxel and niclosamide-loaded nanofiber systems for improved chemo-therapeutic activity and resistance reversal in prostate cancer. Drug Dev Ind Pharm 2025; 51:132-143. [PMID: 39815752 DOI: 10.1080/03639045.2025.2453533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/28/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVE The objective of the study was to tackle the recurrence of prostate cancer (PCa) post-surgery and to re-sensitize the docetaxel (DTX)-resistant PC-3 cells to chemo-therapy using NIC. SIGNIFICANCE Prolonged DTX therapy leads to the emergence of chemo-resistance by overexpression of PI3K-AKT pathway in PCa along with tumor recurrence post-surgery. Suppression of this pathway could be essential in improving the anticancer activity of DTX and re-sensitizing the resistant cells. METHOD Niclosamide (NIC), an anthelmintic drug has shown tremendous anticancer potential and has re-sensitized the resistant cells to various drugs. To mitigate the post-surgical tumor recurrence, an implant-based system facilitating the sustained release of DTX and NIC could be beneficial. DTX and NIC were incorporated within a nanofiber (NF) system to prevent on-site recurrence by local release and re-sensitize the DTX-resistant cells. KEY FINDINGS The fabricated DTX-NIC NF via electrospinning were 334 ± 96.14 nm in diameter and demonstrated sustained release profile till 6 d. Elevated mitochondrial damage, reactive oxygen species levels and apoptotic index revealed improvement in the cytotoxicity of DTX-NIC post incorporation into the NF owing to their sustained release profile. Re-sensitization of PC-3/DTX cells was observed by introduction of NIC which could be due to the suppression of p-Akt1, which was overexpressed in resistant cells. CONCLUSION From superior activity of DTX-NIC NF and re-sensitization of resistant cells, we conclude that DTX-NIC NF could be a beneficial therapeutic regimen in preventing tumor recurrence in PCa.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Laboratory (PITRL), National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Laboratory (PITRL), National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Laboratory (PITRL), National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Giriraj Pandey
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Laboratory (PITRL), National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Gurpreet Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Suraj Wagh
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Laboratory (PITRL), National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | | | | | - Abhishek Sharma
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Laboratory (PITRL), National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Akshay Shinde
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Laboratory (PITRL), National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Sajja Bhanu Prasad
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Laboratory (PITRL), National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Sachin Chandankar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Swapnil Shinde
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Laboratory (PITRL), National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | | | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
- Department of Pharmacology, Molecular and Cellular Biology Laboratory, Nims Institute of Pharmacy, Nims University, Jaipur, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, Pharmaceutical Innovation and Translational Research Laboratory (PITRL), National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
3
|
Zhao J, Zhang R, Zhang Y, Piao H, Ren Z, Zhang H, Fan T, Jiang F, Cai Z, Fan L. Biobased Polybutyrolactam Nanofiber with Excellent Biodegradability and Cell Growth for Sustainable Healthcare Textiles. Biomacromolecules 2024; 25:5745-5757. [PMID: 39173040 DOI: 10.1021/acs.biomac.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The white pollution caused by unsustainable materials is a significant challenge around the globe. Here, a novel and fully biobased polybutyrolactam (PBY) nanofiber membrane was fabricated via the electrospinning method. As-spun PBY nanofiber membranes have good thermal stability, high porosity of up to 71.94%, and excellent wetting behavior. The biodegradability in soil, UV aging irradiation, and seawater was investigated. The PBY nanofiber membrane is almost completely degraded in the soil within 80 days, showing excellent degradability. More interestingly, γ-aminobutyric acid, as a healthcare agent with intrinsic hypotensive, tranquilizing, diuretic, and antidiabetic efficacy, can be detected in the degradation intermediates. In addition, the PBY nanofiber membrane also exhibits antibacterial ability against Escherichia coli. As a fully biomass-derived material, the PBY membrane has excellent biodegradable performance in various environments as well as negligible cytotoxicity and commendable cell proliferation. Our PBY nanofiber membrane shows great potential as biodegradable packaging and in vitro healthcare materials.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Run Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yajing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hongwei Piao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhibo Ren
- Textile Testing Center, China Textile Information Center, Beijing 100025, China
| | - Huan Zhang
- Textile Testing Center, China Textile Information Center, Beijing 100025, China
| | - Tingting Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Feng Jiang
- State Key Laboratory of Bio-based Fiber Manufacture Technology, China Textile Academy, Beijing 100025, P.R. China
| | - Zengxiao Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
4
|
Kang DH, Kim NK, Lee W, Kang HW. Geometric feature extraction in nanofiber membrane image based on convolution neural network for surface roughness prediction. Heliyon 2024; 10:e35358. [PMID: 39170369 PMCID: PMC11336630 DOI: 10.1016/j.heliyon.2024.e35358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
As a technique in artificial intelligence, a convolution neural network model has been utilized to extract average surface roughness from the geometric characteristics of a membrane image featuring micro- and nanostructures. For surface roughness measurement, e.g. atomic force microscopy and optical profiler, the previous methods have been performed to analyze a porous membrane surface on an interest of region with a few micrometers of the restricted area according to the depth resolution. However, an image from the scanning electron microscope, combined with the feature extraction process, provides clarity on surface roughness for multiple areas with various depth resolutions. Through image preprocessing, the geometric pattern is elucidated by amplifying the disparity in pixel intensity values between the bright and dark regions of the image. The geometric pattern of the binary image and magnitude spectrum confirmed the classification of the surface roughness of images in a categorical scatter plot. A group of cropped images from an original image is used to predict the logarithmic average surface roughness values. The model predicted 4.80 % MAPE for the test dataset. The method of extracting geometric patterns through a feature map-based CNN, combined with a statistical approach, suggests an indirect surface measurement. The process is achieved through a bundle of predicted output data, which helps reduce the randomness error of the structural characteristics. A novel feature extraction approach of CNN with statistical analysis is a valuable method for revealing hidden physical characteristics in surface geometries from irregular pixel patterns in an array of images.
Collapse
Affiliation(s)
- Dong Hee Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
- Department of Industrial and Systems Engineering, Texas A&M University, College station, TX, 77843, United States
| | - Na Kyong Kim
- Green Energy System Research Center, Korea Automotive Technology Institute, 55 Jingoksandanjungang-ro, Gwangsan-Gu, Gwangju, 62465, Republic of Korea
| | - Wonoh Lee
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Hyun Wook Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
5
|
Ali SH, Mahammed MA, Yasin SA. Characterization of Electrospinning Chitosan Nanofibers Used for Wound Dressing. Polymers (Basel) 2024; 16:1984. [PMID: 39065300 PMCID: PMC11281056 DOI: 10.3390/polym16141984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Wound dressings play a crucial role in promoting wound healing by providing a protective barrier against infections and facilitating tissue regeneration. Electrospun nanofibers have emerged as promising materials for wound dressing applications due to their high surface area, porosity, and resemblance to the extracellular matrix. In this study, chitosan, a biocompatible and biodegradable polymer, was electrospun into nanofibers for potential use in wound dressing. The chitosan nanofibers were characterized by using various analytical techniques to assess their morphology and biocompatibility. Scanning electron microscopy (SEM) revealed the formation of uniform and bead-free nanofibers with diameters ranging from tens to hundreds of nanometers. Structural analysis, including Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD), elucidated the chemical composition and crystalline structure of the nanofibers. Furthermore, in vitro studies evaluated the cytocompatibility of the chitosan nanofibers with human dermal fibroblasts, demonstrating cell viability and proliferation on the nanofibers. Additionally, antibacterial properties were assessed to evaluate the potential of chitosan nanofibers in preventing wound infections. Overall, the characterization results highlight the promising attributes of electrospun chitosan nanofibers as wound dressings, paving the way for further investigation and development in the field of advanced wound care. This study has been carried out for the first time in our region and has assessed the antibacterial properties of electrospun chitosan nanofiber material. The created mat has shown efficaciousness against bacteria that are both gram-positive and gram-negative.
Collapse
Affiliation(s)
- Shahla H. Ali
- College of Medicine, University of Duhok, Duhok 42001, Iraq;
| | | | - Suhad A. Yasin
- College of Science, University of Duhok, Duhok 42001, Iraq;
| |
Collapse
|
6
|
Paolella G, Montefusco A, Caputo I, Gorrasi G, Viscusi G. Quercetin encapsulated polycaprolactone-polyvinylpyrrolidone electrospun membranes as a delivery system for wound healing applications. Eur J Pharm Biopharm 2024; 200:114314. [PMID: 38740224 DOI: 10.1016/j.ejpb.2024.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The present work focuses on the production of electrospun membranes based on Poly(ε-caprolactone) (PCL) and Polyvinylpyrrolidone (PVP) for the topical release of Quercetin (Q). Membranes were prepared at 0.5, 1.0, 3.0, 7.0 and 15 % wt of Quercetin and studied from a morphological, physical, and biological point of view. The scanning electron microscopy (SEM) evidences micrometric dimensions of the fibres with a good dispersion of the functional molecule. The retention degree of liquids was evaluated by testing four different liquid media while the radical scavenging activity of Quercetin-loaded membranes was evaluated through DPPH analysis. The release kinetics of Quercetin highlights the presence of an initial burst followed by slower release up to attaining an equilibrium state, after roughly 50 h, showing the possibility of a fine-tuning of drug release. Diffusion coefficients were then evaluated by using Fick's law. Finally, to verify the actual biocompatibility of the systems produced and the possible application in the repair of tissue injury, the biological activity of Quercetin released from drug-loaded membranes was analysed in an immortalized human keratinocyte cell line HaCaT by a wound healing assay. So, the reported preliminary data confirm the possibility of applying the electrospun Quercetin-loaded PCL-PVP membranes for wound healing applications.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Antonio Montefusco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
7
|
Krishnan A, Raghu S, Arumugam P, Eswaramoorthy R. Assessment of Physicochemical Characterization and Mineralization of Nanofibrous Scaffold Incorporated With Aspartic Acid for Dental Mineralization: An In Vitro Study. Cureus 2024; 16:e61741. [PMID: 38975499 PMCID: PMC11226181 DOI: 10.7759/cureus.61741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Aim The aim of this study was to assess the physicochemical characterization and mineralization of nanofibrous scaffold incorporated with nanohydroxyapatite (nHA) and aspartic acid (Asp) for dental mineralization. Methodology Three nanofibrous scaffolds were prepared, namely polycaprolactone (PCL), PCL with nHA, and PCL with nHA and Asp. Each scaffold was prepared separately by electrospinning. The physicochemical characterization of the surface of the nanofibrous scaffold was imaged using a scanning electron microscope (SEM), energy dispersive X-ray Analysis (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). In vitro mineralization studies were performed by immersing the sample in simulated body fluid (SBF) for 7, 14, and 21 days. The surface of the samples was observed under SEM with EDX. Results SEM analysis of PCL/nHA/Asp revealed that the nanofibers were bead-free, smooth, randomly oriented, and loaded with Asp. The EDX spectra of PCL/nHA/Asp composite nanofibrous scaffold revealed broad peaks and corresponded to the amorphous form, while the sharp peaks corresponded to the specific crystalline structure of nHA. FTIR analysis showed specific functional groups corresponding to PCL, nHA, and Asp. The scaffolds incorporated with Asp exhibited higher mineralization potential with an apatite-like crystal formation, which increased with an increase in the duration of immersion in SBF. Conclusion Physiochemical characterization demonstrated the incorporation of PCL/nHA/Asp in the electrospun nanofibrous scaffold. The mineralization analysis revealed that the presence of Asp enhanced the mineralization when compared with the PCL and PCL/nHA. PCL/nHA/Asp incorporated in scaffold can be a promising material for dental mineralization.
Collapse
Affiliation(s)
- Aruna Krishnan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sandhya Raghu
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Priyadharsan Arumugam
- Department of Cariology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajalakshmanan Eswaramoorthy
- Department of Biochemistry, Center of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
8
|
Villanueva-Lumbreras J, Rodriguez C, Aguilar MR, Avilés-Arnaut H, Cordell GA, Rodriguez-Garcia A. Nanofibrous ε-Polycaprolactone Matrices Containing Nano-Hydroxyapatite and Humulus lupulus L. Extract: Physicochemical and Biological Characterization for Oral Applications. Polymers (Basel) 2024; 16:1258. [PMID: 38732727 PMCID: PMC11085452 DOI: 10.3390/polym16091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Oral bone defects occur as a result of trauma, cancer, infections, periodontal diseases, and caries. Autogenic and allogenic grafts are the gold standard used to treat and regenerate damaged or defective bone segments. However, these materials do not possess the antimicrobial properties necessary to inhibit the invasion of the numerous deleterious pathogens present in the oral microbiota. In the present study, poly(ε-caprolactone) (PCL), nano-hydroxyapatite (nHAp), and a commercial extract of Humulus lupulus L. (hops) were electrospun into polymeric matrices to assess their potential for drug delivery and bone regeneration. The fabricated matrices were analyzed using scanning electron microscopy (SEM), tensile analysis, thermogravimetric analysis (TGA), FTIR assay, and in vitro hydrolytic degradation. The antimicrobial properties were evaluated against the oral pathogens Streptococcus mutans, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. The cytocompatibility was proved using the MTT assay. SEM analysis established the nanostructured matrices present in the three-dimensional interconnected network. The present research provides new information about the interaction of natural compounds with ceramic and polymeric biomaterials. The hop extract and other natural or synthetic medicinal agents can be effectively loaded into PCL fibers and have the potential to be used in oral applications.
Collapse
Affiliation(s)
- Jaime Villanueva-Lumbreras
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza 66455, NL, Mexico; (J.V.-L.); (H.A.-A.)
| | - Ciro Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca 66629, NL, Mexico
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain;
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER.BBN, 28029 Madrid, Spain
| | - Hamlet Avilés-Arnaut
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza 66455, NL, Mexico; (J.V.-L.); (H.A.-A.)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60201, USA;
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Aida Rodriguez-Garcia
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza 66455, NL, Mexico; (J.V.-L.); (H.A.-A.)
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
| |
Collapse
|
9
|
Jahangirnezhad M, Mahmoudinezhad SS, Moradi M, Moradi K, Rohani A, Tayebi L. Bone Scaffold Materials in Periodontal and Tooth-supporting Tissue Regeneration: A Review. Curr Stem Cell Res Ther 2024; 19:449-460. [PMID: 36578254 DOI: 10.2174/1574888x18666221227142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontium is an important tooth-supporting tissue composed of both hard (alveolar bone and cementum) and soft (gingival and periodontal ligament) sections. Due to the multi-tissue architecture of periodontium, reconstruction of each part can be influenced by others. This review focuses on the bone section of the periodontium and presents the materials used in tissue engineering scaffolds for its reconstruction. MATERIALS AND METHODS The following databases (2015 to 2021) were electronically searched: ProQuest, EMBASE, SciFinder, MRS Online Proceedings Library, Medline, and Compendex. The search was limited to English-language publications and in vivo studies. RESULTS Eighty-three articles were found in primary searching. After applying the inclusion criteria, seventeen articles were incorporated into this study. CONCLUSION In complex periodontal defects, various types of scaffolds, including multilayered ones, have been used for the functional reconstruction of different parts of periodontium. While there are some multilayered scaffolds designed to regenerate alveolar bone/periodontal ligament/cementum tissues of periodontium in a hierarchically organized construct, no scaffold could so far consider all four tissues involved in a complete periodontal defect. The progress and material considerations in the regeneration of the bony part of periodontium are presented in this work to help investigators develop tissue engineering scaffolds suitable for complete periodontal regeneration.
Collapse
Affiliation(s)
- Mahmood Jahangirnezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadaf Sadat Mahmoudinezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Melika Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kooshan Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Rohani
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, 53233, USA
| |
Collapse
|
10
|
Ibrahim SW, Hamad TI, Haider J. Biological properties of polycaprolactone and barium titanate composite in biomedical applications. Sci Prog 2023; 106:368504231215942. [PMID: 38031343 PMCID: PMC10687994 DOI: 10.1177/00368504231215942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The ceramic-polymer composite materials are widely known for their exceptional mechanical and biological properties. Polycaprolactone (PCL) is a biodegradable polymer material extensively used in various biomedical applications. At the same time, barium titanate (BT), a ceramic material, exhibits piezoelectric properties similar to bone, which is essential for osseointegration. Furthermore, a composite material that combines the benefits of PCL and BT results in an innovative composite material with enhanced properties for biomedical applications. Thus, this review is organised into three sections. Firstly, it aims to provide an overview of the current research on evaluating biological properties, including antibacterial activity, cytotoxicity and osseointegration, of PCL polymeric matrices in its pure form and reinforced structures with ceramics, polymers and natural extracts. The second section investigates the biological properties of BT, both in its pure form and in combination with other supporting materials. Finally, the third section provides a summary of the biological properties of the PCLBT composite material. Furthermore, the existing challenges of PCL, BT and their composites, along with future research directions, have been presented. Therefore, this review will provide a state-of-the-art understanding of the biological properties of PCL and BT composites as potential futuristic materials in biomedical applications.
Collapse
Affiliation(s)
- Sabreen Waleed Ibrahim
- Prosthodontic Department, College of Dentistry, Al Mustansiriyah University, Baghdad, Iraq
| | - Thekra Ismael Hamad
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
11
|
Abdo VL, Suarez LJ, de Paula LG, Costa RC, Shibli J, Feres M, Barāo VAR, Bertolini M, Souza JGS. Underestimated microbial infection of resorbable membranes on guided regeneration. Colloids Surf B Biointerfaces 2023; 226:113318. [PMID: 37075523 DOI: 10.1016/j.colsurfb.2023.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Barrier membranes are critical in creating tissuecompartmentalization for guided tissue (GTR) and bone regeneration (GBR) therapies. More recently, resorbable membranes have been widely used for tissue and bone regeneration due to their improved properties and the dispensable re-entry surgery for membrane removal. However, in cases with membrane exposure, this may lead to microbial contamination that will compromise the integrity of the membrane, surrounding tissue, and bone regeneration, resulting in treatment failure. Although the microbial infection can negatively influence the clinical outcomes of regenerative therapy, such as GBR and GTR, there is a lack of clinical investigations in this field, especially concerning the microbial colonization of different types of membranes. Importantly, a deeper understanding of the mechanisms of biofilm growth and composition and pathogenesis on exposed membranes is still missing, explaining the mechanisms by which bone regeneration is reduced during membrane exposure. This scoping review comprehensively screened and discussed the current in vivo evidence and possible new perspectives on the microbial contamination of resorbable membranes. Results from eligible in vivo studies suggested that different bacterial species colonized exposed membranes according to their composition (collagen, expanded polytetrafluoroethylene (non-resorbable), and polylactic acid), but in all cases, it negatively affected the attachment level and amount of bone gain. However, limited models and techniques have evaluated the newly developed materials, and evidence is scarce. Finally, new approaches to enhance the antimicrobial effect should consider changing the membrane surface or incorporating long-term released antimicrobials in an effort to achieve better clinical success.
Collapse
Affiliation(s)
- Victoria L Abdo
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Lina J Suarez
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Cra 45 # 26-85, Bogotá 11001, Colombia
| | - Lucca Gomes de Paula
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Av. Waldomiro Marcondes Oliveira, 20 - Ibituruna, Montes Claros, Minas Gerais 39401-303, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Jamil Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, 3501 Terrace St, Pittsburgh, PA 15213, USA
| | - Joāo Gabriel Silva Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Av. Waldomiro Marcondes Oliveira, 20 - Ibituruna, Montes Claros, Minas Gerais 39401-303, Brazil.
| |
Collapse
|
12
|
Kumari V, Mukhopadhyay S, Gupta B. Evaluation of
Terminalia arjuna
loaded in surfactant modified polycaprolactone nanofiber as an infection resistant matrix. J Appl Polym Sci 2023. [DOI: 10.1002/app.53735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Vandana Kumari
- Bioengineering Lab, Department of Textile and Fiber Engineering Indian Institute of Technology Delhi New Delhi India
| | - Samrat Mukhopadhyay
- Bioengineering Lab, Department of Textile and Fiber Engineering Indian Institute of Technology Delhi New Delhi India
| | - Bhuvanesh Gupta
- Bioengineering Lab, Department of Textile and Fiber Engineering Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
13
|
Nanosilica-Anchored Polycaprolactone/Chitosan Nanofibrous Bioscaffold to Boost Osteogenesis for Bone Tissue Engineering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248832. [PMID: 36557965 PMCID: PMC9786850 DOI: 10.3390/molecules27248832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The strategy of incorporating bioactive inorganic nanomaterials without side effects as osteoinductive supplements is promising for bone regeneration. In this work, a novel biomass nanofibrous scaffold synthesized by electrospinning silica (SiO2) nanoparticles into polycaprolactone/chitosan (PCL/CS) nanofibers was reported for bone tissue engineering. The nanosilica-anchored PCL/CS nanofibrous bioscaffold (PCL/CS/SiO2) exhibited an interlinked continuous fibers framework with SiO2 nanoparticles embedded in the fibers. Compact bone-derived cells (CBDCs), the stem cells derived from the bone cortex of the mouse, were seeded to the nanofibrous bioscaffolds. Scanning electron microscopy and cell counting were used to observe the cell adhesion. The Counting Kit-8 (CCK-8) assay was used. Alkaline phosphatase (ALP), Alizarin red staining, real-time Polymerase Chain Reaction and Western blot tests were performed to confirm the osteogenesis of the CBDCs on the bioscaffolds. The research results demonstrated that the mechanical property of the PCL together with the antibacterial and hydrophilic properties of the CS are conducive to promoting cell adhesion, growth, migration, proliferation and differentiation. SiO2 nanoparticles, serving as bone induction factors, effectively promote the osteoblast differentiation and bone regeneration. This novel SiO2-anchored nanofibrous bioscaffold with superior bone induction activity provides a better way for bone tissue regeneration.
Collapse
|
14
|
Talimi R, Shahsavari Z, Dadashzadeh S, Ten Hagen TLM, Haeri A. Sirolimus-exuding core-shell nanofibers as an implantable carrier for breast cancer therapy: preparation, characterization, in vitro cell studies, and in vivo anti-tumor activity. Drug Dev Ind Pharm 2022; 48:694-707. [PMID: 36594256 DOI: 10.1080/03639045.2022.2161559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Breast cancer accounts for significant mortality worldwide. Here, we develop a localized, sustained-release delivery system for breast cancer therapy. METHODS Sirolimus (SIR) core-shell nanofibers (NFs) are fabricated by coaxial electrospinning with poly(ε-caprolactone) (PCL) for the core and chitosan and PCL for the shell. The NFs were characterized by SEM, AFM, TEM, XRD, FTIR, water uptake, water contact angle, mechanical properties, drug content, and in vitro release. In vitro and in vivo anticancer effects were investigated. RESULTS A sustained release behavior is observed during 480 h that is more extended compared to monoaxial NFs. In vitro cytotoxicity and Annexin V/propidium iodide assays indicate that SIR-loaded coaxial NFs are effective in inhibiting proliferation of 4T1 and MCF-7 cells. Implantation of SIR NFs in 4T1 breast tumor-bearing mice inhibits tumor growth significantly compared to free drug. Histopathological examination shows that suppression of tumor growth by SIR NFs is associated with apoptotic cell death. Furthermore, anti-cancer effects are also confirmed by decreased expression levels of Ki-67, MMP-2, and MMP-9. Histological observation of organs, serological analyses, and the lack of body weight changes indicate in vivo safety of SIR NFs. CONCLUSIONS Altogether, we show here that incorporation of SIR into core-shell NFs could act as an effective drug release depot and induce a sustained antitumor response.
Collapse
Affiliation(s)
- Rozhin Talimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shahsavari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Sci Rep 2022; 12:12359. [PMID: 35859093 PMCID: PMC9300684 DOI: 10.1038/s41598-022-15602-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Bone tissue engineering uses various methods and materials to find suitable scaffolds that regenerate lost bone due to disease or injury. Poly(ε-caprolactone) (PCL) can be used in 3D printing for producing biodegradable scaffolds by fused deposition modeling (FDM). However, the hydrophobic surfaces of PCL and its non-osteogenic nature reduces adhesion and cell bioactivity at the time of implantation. This work aims to enhance bone formation, osteogenic differentiation, and in vitro biocompatibility via PCL scaffolds modification with Hydroxyapatite (HA) and Collagen type I (COL). This study evaluated the osteosupportive capacity, biological behavior, and physicochemical properties of 3D-printed PCL, PCL/HA, PCL/COL, and PCL/HA/COL scaffolds. Biocompatibility and cells proliferation were investigated by seeding human adipose tissue-derived mesenchymal stem cells (hADSCs) onto the scaffolds, which were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and 6-diamidino-2-phenylindole (DAPI) staining. In addition, the bone differentiation potential of the hADSCs was assessed using calcium deposition, alkaline phosphatase (ALP) activity, and bone-related protein and genes. Although all constructed scaffolds support hADSCs proliferation and differentiation, the results showed that scaffold coating with HA and COL can boost these capacities in a synergistic manner. According to the findings, the tricomponent 3D-printed scaffold can be considered as a promising choice for bone tissue regeneration and rebuilding.
Collapse
|
16
|
Nano-hydroxyapatite-incorporated polycaprolactone nanofibrous scaffold as a dentin tissue engineering-based strategy for vital pulp therapy. Dent Mater 2022; 38:960-977. [PMID: 35331551 DOI: 10.1016/j.dental.2022.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/14/2022] [Accepted: 03/12/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Targeting a tissue engineering-based vital pulp therapy (VPT), this study investigated the incorporation of nano-hydroxyapatite (nHA) into polycaprolactone (PCL) nanofibers, and the metabolism of human dental pulp cells (HDPCs) seeded on the scaffolds. METHODS PCL-based solutions (10% w/v) containing nHA (0 - control; 0.5; 1.0; or 2.0% w/v) were electrospun into nanofibrous scaffolds. The scaffolds were characterized for morphology and composition (MEV/EDS), solubility, the release of calcium/phosphate (C/P), and modulation of medium pH. Then, HDPCs were seeded on the scaffolds and evaluated for cell viability (alamarBlue and live/dead), adhesion and spreading (F-actin), total protein (TP; Lowry), alkaline phosphatase activity (ALP; thymolphthalein assay), expression of odontogenic genes (RT-qPCR), and formation of a mineralized matrix (Alizarin Red). Data were analyzed with ANOVA and post-hocs (α = 5%). RESULTS Higher nHA concentrations roughened fiber surfaces, whereas PCL+ 2%nHA increased the interfibrillar spaces. PCL+ 1%nHA or PCL+ 2%nHA significantly released more C/P but the medium pH was maintained below 8.0. HDPCs viability was not affected by nHA, while cell adhesion/spreading was favored, especially for PCL+ 2%nHA. Higher protein content and ALP activity were seen for scaffolds incorporated with nHA, after 21 days. PCL+ 1%nHA and PCL+ 2%nHA upregulated the expression of DSPP and DMP1 in 14 days, and COL1A1, ALPL, and DMP1 in 21 days. The formation of a mineralized matrix was nHA concentration-dependent, and it was about 9 × higher for PCL+ 2%nHA. SIGNIFICANCE nHA-incorporated PCL nanofibrous scaffolds are cytocompatible and can stimulate the adhesion and odontogenic potential of HDPCs. PCL+ 2%nHA formulation is a bioactive tissue engineering-based cell-homing strategy for VPT.
Collapse
|
17
|
Nazir F, Abbas L, Iqbal M. A comparative insight into the mechanical properties, antibacterial potential, and cytotoxicity profile of nano-hydroxyapatite and nano-whitlockite-incorporated poly-L-lactic acid for bone tissue engineering. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02223-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Bujok S, Peter J, Halecký M, Ecorchard P, Machálková A, Santos Medeiros G, Hodan J, Pavlova E, Beneš H. Sustainable microwave synthesis of biodegradable active packaging films based on polycaprolactone and layered ZnO nanoparticles. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Banimohamad-Shotorbani B, Rahmani Del Bakhshayesh A, Mehdipour A, Jarolmasjed S, Shafaei H. The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: a review. J Med Eng Technol 2021; 45:511-531. [PMID: 34251971 DOI: 10.1080/03091902.2021.1893396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrospinning is a method which produces various nanofiber scaffolds for different tissues was attractive for researchers. Nanofiber scaffolds could be made from several biomaterials and polymers. Quality and virtues of final scaffolds depend on used biomaterials (even about single substance, the origin is effective), additives (such as some molecules, ions, drugs, and inorganic materials), electrospinning parameter (voltage, injection speed, temperature, …), etc. In addition to its benefits, which makes it more attractive is the possibility of modifications. Common biomaterials in bone tissue engineering such as poly-caprolactone (PCL), hydroxyapatite (HAp), and their important features, electrospinning nanofibers were widely studied. Related investigations indicate the critical role of even small parameters (like the concentration of PCL or HAp) in final product properties. These changes also, cause deference in cell proliferation, adhesion, differentiation, and in vivo repair process. In this review was focussed on PCL/HAp based nanofibers and additives that researchers used for scaffold improvement. Then, reviewing properties of gained nanofibers, their effect on cell behaviour, and finally, their valency in bone tissue engineering studies (in vitro and in vivo).
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Song H, Zhang Y, Zhang Z, Xiong S, Ma X, Li Y. Hydroxyapatite/NELL-1 Nanoparticles Electrospun Fibers for Osteoinduction in Bone Tissue Engineering Application. Int J Nanomedicine 2021; 16:4321-4332. [PMID: 34211273 PMCID: PMC8241815 DOI: 10.2147/ijn.s309567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Background As commonly bone defect is a disease of jaw that can seriously affect implant restoration, the bioactive scaffold can be used as potential systems to provide effective repair for bone defect. Purpose A osteoinductive bone tissue engineering scaffold has been prepared in order to explore the effect of bioactive materials on bone tissue engineering. Methods In this study, NELL-1 nanoparticles (Chi/NNP) and nano hydroxyapatite were incorporated in composite scaffolds by electrospinning and characterized using TEM, SEM, contact angle, tensile tests and in vitro drug release. In vitro biological activities such as MC3T3-E1 cell attachment, proliferation and osteogenic activity were studied. Results With the addition of nHA and nanoparticles, the fiber diameter of PCL/BNPs group, PCL/NNPs group and PCL/nHA/NNPs group was significantly increased. Moreover, the hydrophilic hydroxyl group and amino group presented in nHA and nanoparticles had improved the hydrophilicity of the composite fibers. The composite electrospun containing Chi/NNPs can form a double protective barrier which can effectively prolong the release time of NELL-1 growth factor. In addition, the hydroxyapatite/NELL-1 nanoparticles electrospun fibers can promote attachment, proliferation, differentiation of MC3T3-E1 cells and good cytocompatibility, indicating better ability of inducing osteogenic differentiation. Conclusion A multi-functional PCL/nHA/NNPs composite fiber with long-term bioactivity and osteoinductivity was successfully prepared by electrospinning. This potential composite could be used as scaffolds in bone tissue engineering application after in vivo studies.
Collapse
Affiliation(s)
- Hualei Song
- Department of Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Yuntao Zhang
- Department of Stomatology, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Zihan Zhang
- Department of Stomatology, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Shijiang Xiong
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People's Republic of China
| | - Xiangrui Ma
- Department of Stomatology, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Yourui Li
- Department of Stomatology, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| |
Collapse
|
21
|
Liu W, Walker G, Price S, Yang X, Li J, Bunt C. Electrospun Membranes as a Porous Barrier for Molecular Transport: Membrane Characterization and Release Assessment. Pharmaceutics 2021; 13:916. [PMID: 34205650 PMCID: PMC8235673 DOI: 10.3390/pharmaceutics13060916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Electrospun nanofibers have been extensively studied for encapsulated drugs releasing from the inside of the fiber matrix, but have been barely looked at for their potential to control release as a semi-permeable membrane. This study investigated molecular transport behaviors across nanofiber membranes with different micro-structure sizes and compositions. Four types of membranes were made by 5% and 10% poly (ε-caprolactone) (PCL) solutions electro-spun with or without 50 nm calcium carbonate (CaCO3) nanoparticles. The membranes were tested for thickness, fiber diameter, pore size, porosity, tensile strength and elongation, contact angle of water and their impacts on molecular transport behaviors. The presence of the CaCO3 nanoparticles made the 5% membranes stronger and stiffer but the 10% membranes weaker and less stiff due to the different (covering or embedded) locations of the nanoparticles with the corresponding fibers. Solute transport studies using caffeine as the model drug found the 5% membranes further retarded release from the 10% membranes, regardless of only half the amount of material being used for synthesis. The addition of CaCO3 nanoparticles aided the water permeation process and accelerated initial transports. The difference in release profiles between 5% and 10% membranes suggests different release mechanisms, with membrane-permeability dominated release for 5% PCL membranes and solute-concentration-gradient dominated release for 10% PCL membranes.
Collapse
Affiliation(s)
- Weiyi Liu
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7608, New Zealand; (W.L.); (S.P.)
| | - Greg Walker
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand;
| | - Sally Price
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7608, New Zealand; (W.L.); (S.P.)
| | - Xiangdong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertiliser, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (X.Y.); (J.L.)
| | - Juan Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertiliser, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (X.Y.); (J.L.)
| | - Craig Bunt
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7608, New Zealand; (W.L.); (S.P.)
| |
Collapse
|
22
|
Esenturk I, Gumrukcu S, Özdabak Sert AB, Kök FN, Döşler S, Gungor S, Erdal MS, Sarac AS. Silk-fibroin-containing nanofibers for topical sertaconazole delivery: preparation, characterization, and antifungal activity. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1740992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Imren Esenturk
- Department of Pharmaceutical Technology, University of Health Sciences Turkey, Istanbul, Turkey
| | - Selin Gumrukcu
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ayşe Buse Özdabak Sert
- Molecular Biology-Genetics and Biotechnology Program, MOBGAM, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Fatma Neşe Kök
- Molecular Biology-Genetics and Biotechnology Program, MOBGAM, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Sibel Döşler
- Department of Pharmaceutical Microbiology, Istanbul University, Istanbul, Turkey
| | - Sevgi Gungor
- Department of Pharmaceutical Technology, Istanbul University, Istanbul, Turkey
| | - M. Sedef Erdal
- Department of Pharmaceutical Technology, Istanbul University, Istanbul, Turkey
| | - A. Sezai Sarac
- Polymer Science and Technology, Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
23
|
Pedrosa MCG, dos Anjos SA, Mavropoulos E, Bernardo PL, Granjeiro JM, Rossi AM, Dias ML. Structure and biological compatibility of polycaprolactone/zinc-hydroxyapatite electrospun nanofibers for tissue regeneration. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211022448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although guided tissue regeneration (GTR) is a useful tool for regenerating lost tissue as bone and periodontal tissue, a biocompatible membrane capable of regenerating large defects has yet to be discovered. This study aimed to characterize the physicochemical properties and biological compatibility of polycaprolactone (PCL) membranes associated with or without nanostructured hydroxyapatite (HA) (PCL/HA) and Zn-doped HA (PCL/ZnHA), produced by electrospinning. PCL, PCL/HA, and PCL/ZnHA were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Nanoparticles of HA or ZnHA were homogeneously distributed and dispersed inside the PCL fibers, which decreased the fiber thickness. At 1 wt% of HA or ZnHA, these nanoparticles acted as nucleating agents. Moreover, HA and ZnHA increased the onset of the degradation temperature and thermal stability of the electrospun membrane. All tested membranes showed no cytotoxicity and allowed murine pre-osteoblast adhesion and spreading; however, higher concentrations of PCL/ZnHA showed less cells and an irregular cell morphology compared to PCL and PCL/HA. This article presents a cytocompatible, electrospun, nanocomposite membrane with a novel morphology and physicochemical properties that make it eligible as a scaffold for GTR.
Collapse
Affiliation(s)
- Maria Clara Guimaraes Pedrosa
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Elena Mavropoulos
- Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
| | | | - José Mauro Granjeiro
- Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, Brazil
| | | | - Marcos Lopes Dias
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Opálková Šišková A, Bučková M, Kroneková Z, Kleinová A, Nagy Š, Rydz J, Opálek A, Sláviková M, Eckstein Andicsová A. The Drug-Loaded Electrospun Poly(ε-Caprolactone) Mats for Therapeutic Application. NANOMATERIALS 2021; 11:nano11040922. [PMID: 33916638 PMCID: PMC8066245 DOI: 10.3390/nano11040922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Diclofenac sodium salt (DSS)-loaded electrospun nanofiber mats on the base of poly(ε-caprolactone) (PCL) were investigated as biocompatible nanofibrous mats for medical applications with the ability to inhibit bacterial infections. The paper presents the characteristics of fibrous mats made by electrospinning and determines the effect of medicament on the fiber morphology, chemical, mechanical and thermal properties, as well as wettability. PCL and DSS-loaded PCL nanofibrous mats were characterized using scanning electron microscopy, transmission electron microscopy, attenuated total reflectance-Fourier transform infrared spectrometry, dynamic mechanical analysis, and contact angle measurements. Electron paramagnetic resonance measurements confirmed the lifetime of DSS before and after application of high voltage during the electrospinning process. In vitro biocompatibility was studied, and it was proved to be of good viability with ~92% of the diploid human cells culture line composed of lung fibroblast (MRC 5) after 48 h of incubation. Moreover, the significant activity of DSS-loaded nanofibers against cancer cells, Ca Ski and HeLa, was established as well. It was shown that 12.5% (m/V) is the minimal concentration for antibacterial activity when more than 99% of Escherichia coli (Gram-negative) and 99% of Staphylococcus aureus (Gram-positive) have been exterminated.
Collapse
Affiliation(s)
- Alena Opálková Šišková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
- Correspondence: (A.O.S.); (A.E.A.); Tel.: +421-2-3229-4301 (A.O.S.); +421-2-3229-4357 (A.E.A.)
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 51 Bratislava, Slovakia;
| | - Zuzana Kroneková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
| | - Angela Kleinová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
| | - Štefan Nagy
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 13 Bratislava, Slovakia; (Š.N.); (A.O.)
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland;
| | - Andrej Opálek
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 13 Bratislava, Slovakia; (Š.N.); (A.O.)
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia;
| | - Anita Eckstein Andicsová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
- Correspondence: (A.O.S.); (A.E.A.); Tel.: +421-2-3229-4301 (A.O.S.); +421-2-3229-4357 (A.E.A.)
| |
Collapse
|
25
|
Doostmohammadi M, Forootanfar H, Shakibaie M, Torkzadeh-Mahani M, Rahimi HR, Jafari E, Ameri A, Amirheidari B. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing applications. J Biomater Appl 2021; 36:193-209. [PMID: 33722085 DOI: 10.1177/08853282211001359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, polycaprolactone/gelatin (PCL/GEL) electrospun nanofibers containing biogenic selenium nanoparticles (Se NPs) and Se NPs/vitamin E (VE) with average diameters of 397.8 nm and 279.5 nm, respectively (as determined by SEM inspection) were prepared and their effect on wound healing was evaluated using in-vivo studies. The energy dispersive X-ray (EDX) mapping, TEM micrograph, and FTIR spectra of the prepared nanofibers strongly demonstrated well entrapment of Se NPs and VE into scaffolds. An amount of 57% Se NPs and 43% VE were gradually released from PCL/GEL/Se NPs/VE scaffold after 4 days immersion in PBS solution (pH 7.4). The both PCL/GEL/Se NPs and PCL/GEL/Se NPs/VE scaffolds supported 3T3 cell proliferation and attachment as confirmed by MTT assay and SEM imaging. Complete re-epithelialization, low level of edema and inflammatory cells in coordination with high level of oriented collagens demonstrated the wound healing activity of PCL/GEL/Se NPs/VE. Besides, significant antioxidant efficacy of PCL/GEL/Se NPs and PCL/GEL/Se NPs/VE scaffolds was demonstrated according to GSH and MDA assays. To sum up, the prepared PCL/GEL/Se NPs/VE scaffold in the present study represented suitable healing effect on animal model which candidate it for further studies.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Hamid-Reza Rahimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
26
|
Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage. Polymers (Basel) 2021; 13:polym13040662. [PMID: 33672211 PMCID: PMC7926916 DOI: 10.3390/polym13040662] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this work is to investigate the effect of the applied voltage on the morphological and mechanical properties of electrospun polycaprolactone (PCL) scaffolds for potential use in tissue engineering. The morphology of the scaffolds was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and the BET techniques for measuring the surface area and pore volume. Stress-strain curves from tensile tests were obtained for estimating the mechanical properties. Additional studies for detecting changes in the chemical structure of the electrospun PCL scaffolds by Fourier transform infrared were performed, while contact angle and X-ray diffraction analysis were realized for determining the wettability and crystallinity, respectively. The SEM, AFM and BET results demonstrate that the electrospun PCL fibers exhibit morphological changes with the applied voltage. By increasing the applied voltage (10 to 25 kV) a significate influence was observed on the fiber diameter, surface roughness, and pore volume. In addition, tensile strength, elongation, and elastic modulus increase with the applied voltage, the crystalline structure of the fibers remains constant, and the surface area and wetting of the scaffolds diminish. The morphological and mechanical properties show a clear correlation with the applied voltage and can be of great relevance for tissue engineering.
Collapse
|
27
|
The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111787. [PMID: 33545913 DOI: 10.1016/j.msec.2020.111787] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Electrospun fiber scaffolds, due to their mimicry of bone extracellular matrix (ECM), have become an important biomaterial widely applied in bone tissue engineering in recent years. While topographic cues of electrospun membranes such as alignment and diameter played vital roles in determining cellular behaviors. Yet few researches about the effects of these two significant parameters on osteogenesis have been reported. Thus, the present work explored the influence of aligned and random poly (L-lactic acid) (PLLA) fiber matrices with diameters of nanoscale (0.6 μm) and microscale (1.2 μm), respectively, on cellular responses of bone marrow mesenchymal stem cells (BMSCs), such as cell adhesion, migration, proliferation and osteogenesis. Our results revealed that aligned nanofibers (AN) could affect cell morphology and promote the migration of BMSCs after 24 h of cell culturing. Besides, AN group was observed to possess excellent biocompatibility and have significantly improved cell growth comparing with random nanofibers. More importantly, in vitro osteogenesis researches including ALP and Alizarin Red S staining, qRT-PCR and immunofluorescence staining demonstrated that BMSCs culturing on AN group exhibited higher osteogenic induction proficiency than that on aligned microfibers (AM) and random fiber substrates (RN and RM). Accordingly, aligned nanofiber scaffolds have greater application potential in bone tissue engineering.
Collapse
|
28
|
Darwesh AY, El-Dahhan MS, Meshali MM. New Oral Coaxial Nanofibers for Gadodiamide-Prospective Intestinal Magnetic Resonance Imaging and Theranostic. Int J Nanomedicine 2020; 15:8933-8943. [PMID: 33223828 PMCID: PMC7671466 DOI: 10.2147/ijn.s281158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/27/2020] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Gadodiamide (GDD) is a widely used magnetic resonance imaging (MRI) contrast agent. It is available only as intravenous injection. Unfortunately, it exhibits a high renal toxicity. In this respect, the author investigated the possibility of developing nanofibers (NFs, one-dimensional (1D) nanostructures) of GDD that would be promising for oral administration in intestinal imaging. NFs are prepared by electrospinning technique in which a strong electrostatic field is applied on a polymer solution. METHODS NFs were prepared by coaxial electrospinning technique using Eudragit S100 (ES 100) as a shell layer and GDD loaded with polyvinylpyrrolidone K90 (PVP K90) and hydroxypropyl-beta-cyclodextrin (HP-β-CyD) as core fibers. Compatibility study of the NFs ingredients was attested through ATR and DSC investigations. Thermogravimetric analysis of NFs was done to insure its stability. In vitro release of GDD in the intestinal medium with different pH values was measured. In vitro cytotoxicity test was done to prove its safety. Additionally, stability of NFs to perform its function was examined by X-ray. RESULTS NFs experienced high entrapment efficiency of about 94.3% ± 3.1%. The ingredients of NFs were compatible through FT-IR and DSC study. The in vitro release data of GDD from coaxial NFs were slow (˂14%) in pH 1.2 till 2 h, while at pH 7.4 it showed burst release of about 12% in the first 2 min. Thermogravimetric analysis proved the NFs are stable. The in vitro cytotoxicity study proved the safety of NFs. Using mammography, the coaxial NFs behaved the same as GDD plain indicating its ability to be a contrasting agent. CONCLUSION Coaxial NFs of GDD as a core with PVP K90 and HP-β-CyD and ES 100 as a shell were stable and efficient as oral imaging dosage form for the intestine. It might be a prospective theranostic.
Collapse
Affiliation(s)
- Alaa Yaser Darwesh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Marwa Salah El-Dahhan
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | | |
Collapse
|
29
|
Awasthi GP, Kaliannagounder VK, Maharjan B, Lee JY, Park CH, Kim CS. Albumin-induced exfoliation of molybdenum disulfide nanosheets incorporated polycaprolactone/zein composite nanofibers for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111162. [DOI: 10.1016/j.msec.2020.111162] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
|
30
|
Qasim M, Duong DD, Lee JY, Lee NY. Fabrication of polycaprolactone nanofibrous membrane‐embedded microfluidic device for water filtration. J Appl Polym Sci 2020. [DOI: 10.1002/app.49207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Muhammad Qasim
- Department of BioNano TechnologyGachon University Seongnam‐si Gyeonggi‐do, Republic of Korea
| | - Duong Duy Duong
- Department of BioNano TechnologyGachon University Seongnam‐si Gyeonggi‐do, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and EngineeringEwha Womans University Seoul Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano TechnologyGachon University Seongnam‐si Gyeonggi‐do, Republic of Korea
| |
Collapse
|
31
|
Abid S, Hussain T, Nazir A, Zahir A, Ramakrishna S, Hameed M, Khenoussi N. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int J Biol Macromol 2019; 135:1222-1236. [DOI: 10.1016/j.ijbiomac.2019.06.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
|
32
|
Engineering Biomimetic Gelatin Based Nanostructures as Synthetic Substrates for Cell Culture. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a need for synthetic substrates that replicate the natural environment for in vitro intestinal models. Electrospinning is one of the most versatile and cost-effective techniques to produce nanofibrous scaffolds mimicking the basement membrane topography. In this study, three different novel electrospun nanofibrous scaffolds made of a polycaprolactone (PCL), gelatin, and poloxamer 188 (P188) blend were produced and compared with PCL and PCL/gelatin fibers produced using the same solvent system and electrospinning parameters. Each polymer solution used in this experiment was electrospun at four different voltages to study its influence on fiber diameter. The morphology and physical characteristics of the fibers were studied using scanning electron microscopy and atomic force microscopy. The average fiber diameter of all scaffolds was within 200–600 nm and no significant decrease in diameter with an increase in voltage was observed. Attenuated total reflection Fourier transform infrared spectroscopy was used to determine the chemical characteristics of the nanofibrous scaffold. The conductivity of the polymer solutions was also analyzed. Biocompatibility of the scaffolds was determined by a cell proliferation study performed using colorectal carcinoma (Caco-2) cells. PCL/gelatin/P188 scaffolds exhibited higher cell proliferation compared to PCL, PCL/gelatin scaffolds, and the control (tissue culture multi-well plate) with PCL/gelatin/P188 80:10:10 sample showing the highest cell proliferation.
Collapse
|
33
|
Ninago MD, Ciolino AE, Villar MA. Improvement in poly(ε-caprolactone) bio-activity. Structural characterization and in vitro assessment. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1552864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mario D. Ninago
- Facultad de Ciencias Aplicadas a la Industria (FCAI), Universidad Nacional de Cuyo (UNCuyo), San Rafael, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Andrés E. Ciolino
- Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Marcelo A. Villar
- Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
34
|
|
35
|
Ou Q, Miao Y, Yang F, Lin X, Zhang LM, Wang Y. Zein/gelatin/nanohydroxyapatite nanofibrous scaffolds are biocompatible and promote osteogenic differentiation of human periodontal ligament stem cells. Biomater Sci 2019; 7:1973-1983. [DOI: 10.1039/c8bm01653d] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In bone tissue engineering, it is important for biomaterials to promote the osteogenic differentiation of stem cells to achieve tissue regeneration.
Collapse
Affiliation(s)
- Qianmin Ou
- Guanghua School of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510080
- China
| | - Yingling Miao
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Fanqiao Yang
- Shunde hospital of Southern Medical University
- Southern Medical University
- Shunde
- China
| | - Xuefeng Lin
- Guanghua School of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510080
- China
| | - Li-Ming Zhang
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yan Wang
- Guanghua School of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510080
- China
| |
Collapse
|
36
|
De Paula MMM, Bassous NJ, Afewerki S, Harb SV, Ghannadian P, Marciano FR, Viana BC, Tim CR, Webster TJ, Lobo AO. Understanding the impact of crosslinked PCL/PEG/GelMA electrospun nanofibers on bactericidal activity. PLoS One 2018; 13:e0209386. [PMID: 30571704 PMCID: PMC6301679 DOI: 10.1371/journal.pone.0209386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
Herein, we report the design of electrospun ultrathin fibers based on the combination of three different polymers polycaprolactone (PCL), polyethylene glycol (PEG), and gelatin methacryloyl (GelMA), and their potential bactericidal activity against three different bacteria Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Methicillin-resistant Staphylococcus aureus (MRSA). We evaluated the morphology, chemical structure and wettability before and after UV photocrosslinking of the produced scaffolds. Results showed that the developed scaffolds presented hydrophilic properties after PEG and GelMA incorporation. Moreover, they were able to significantly reduce gram-positive, negative, and MRSA bacteria mainly after UV photocrosslinking (PCL:PEG:GelMa-UV). Furthermore, we performed a series of study for gaining a better mechanistic understanding of the scaffolds bactericidal activity through protein adsorption study and analysis of the reactive oxygen species (ROS) levels. Furthermore, the in vivo subcutaneous implantation performed in rats confirmed the biocompatibility of our designed scaffolds.
Collapse
Affiliation(s)
- Mirian Michelle Machado De Paula
- Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Nicole Joy Bassous
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Samson Afewerki
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Division of Gastroenterology, Brigham and Women´s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samarah Vargas Harb
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Institute of Chemistry, UNESP-São Paulo State University, Araraquara, São Paulo, Brazil
| | - Paria Ghannadian
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Fernanda Roberta Marciano
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Institute of Science and Technology, Brasil University, São Paulo, SP, Brazil
| | - Bartolomeu Cruz Viana
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, PPGCM-Materials Science and Engineering graduate program, UFPI-Federal University of Piauí, Teresina, PI, Brazil
- Department of Physics, UFPI-Federal University of Piauí, Teresina, PI, Brazil
| | - Carla Roberta Tim
- Institute of Science and Technology, Brasil University, São Paulo, SP, Brazil
| | - Thomas Jay Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Anderson Oliveira Lobo
- Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
- Institute of Science and Technology, Brasil University, São Paulo, SP, Brazil
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, PPGCM-Materials Science and Engineering graduate program, UFPI-Federal University of Piauí, Teresina, PI, Brazil
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: ,
| |
Collapse
|
37
|
Janmohammadi M, Nourbakhsh MS. Electrospun polycaprolactone scaffolds for tissue engineering: a review. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1466139] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- M. Janmohammadi
- Biomedical Engineering – Biomaterials, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - M. S. Nourbakhsh
- Biomedical Engineering – Biomaterials, Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
38
|
Batool F, Morand DN, Thomas L, Bugueno IM, Aragon J, Irusta S, Keller L, Benkirane-Jessel N, Tenenbaum H, Huck O. Synthesis of a Novel Electrospun Polycaprolactone Scaffold Functionalized with Ibuprofen for Periodontal Regeneration: An In Vitro andIn Vivo Study. MATERIALS 2018; 11:ma11040580. [PMID: 29642582 PMCID: PMC5951464 DOI: 10.3390/ma11040580] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/23/2022]
Abstract
Ibuprofen (IBU) has been shown to improve periodontal treatment outcomes. The aim of this study was to develop a new anti-inflammatory scaffold by functionalizing an electrospun nanofibrous poly-ε-caprolactone membrane with IBU (IBU-PCL) and to evaluate its impact on periodontal inflammation, wound healing and regeneration in vitro and in vivo. IBU-PCL was synthesized through electrospinning. The effects of IBU-PCL on the proliferation and migration of epithelial cells (EC) and fibroblasts (FB) exposed to Porphyromonas gingivlais lipopolysaccharide (Pg-LPS) were evaluated through the AlamarBlue test and scratch assay, respectively. Anti-inflammatory and remodeling properties were investigated through Real time qPCR. Finally, the in vivo efficacy of the IBU-PCL membrane was assessed in an experimental periodontitis mouse model through histomorphometric analysis. The results showed that the anti-inflammatory effects of IBU on gingival cells were effectively amplified using the functionalized membrane. IBU-PCL reduced the proliferation and migration of cells challenged by Pg-LPS, as well as the expression of fibronectin-1, collagen-IV, integrin α3β1 and laminin-5. In vivo, the membranes significantly improved the clinical attachment and IBU-PCL also reduced inflammation-induced bone destruction. These data showed that the IBU-PCL membrane could efficiently and differentially control inflammatory and migratory gingival cell responses and potentially promote periodontal regeneration.
Collapse
Affiliation(s)
- Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - David-Nicolas Morand
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Lionel Thomas
- Institute Pluridisciplinaire Hubert CURIEN (IPHC), Strasbourg 67000, France.
| | - Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Javier Aragon
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
| | - Silvia Irusta
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Henri Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
- Hopitaux Universitaires de Strasbourg, Pôle de médecine et chirurgie bucco-dentaire, Department of Periodontology, 67000 Strasbourg, France.
| |
Collapse
|