1
|
Biochemical characterization of a thermally stable, acidophilic and surfactant-tolerant xylanase from Aspergillus awamori AFE1 and hydrolytic efficiency of its immobilized form. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
2
|
Ellatif SA, Abdel Razik ES, AL-surhanee AA, Al-Sarraj F, Daigham GE, Mahfouz AY. Enhanced Production, Cloning, and Expression of a Xylanase Gene from Endophytic Fungal Strain Trichoderma harzianum kj831197.1: Unveiling the In Vitro Anti-Fungal Activity against Phytopathogenic Fungi. J Fungi (Basel) 2022; 8:jof8050447. [PMID: 35628703 PMCID: PMC9144407 DOI: 10.3390/jof8050447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 11/25/2022] Open
Abstract
Trichoderma sp. is extensively applied as a beneficial fungus for the management of plant diseases, plant growth promotion, induced resistance, and plays an important role in global sustainable agriculture. This study aimed to enhance the production of microbial xylanase in high titer from the endophytic fungus Trichoderma harzianum kj831197.1, and the cloning of xylanase genes in E. coli DH5α using a pUC19 vector. A combination of glucose, 0.1 mM, Tween 80 with lactose, and 2 mM galactose combined with malt extract boostedthe enzyme production. Xylanase production was maximized at a pH of 5.0, temp. of 30 °C, and agitation of 150 rpm in the presence of malt extract and bagasse as the best nitrogen source and waste, respectively, using submerged fermentation. The molecular weight of highly purified xylanase was 32 KDa, identified using SDS-PAGE. The xylanase gene of T. harzianum kj831197.1 was screened in fungal DNA using definite primers specified in the gene bank database. The identified region was excised using restriction enzymes HindIII and EcoRI and cloned into a pUC19 plasmid vector. Optimization of fermentation conditions improved xylanase production about 23.9-fold.The antifungal efficacy of xylanase toward different phytopathogenic fungi was determined. The highest inhibition was against Corynespora cassiicola, Alternaria sp., Fusarium oxysporum, and Botrytis fabae. This study offered an economical, simple, and efficient method using Trichoderma harzianum kj831197.1 for the production of the xylanase enzyme via the submerged fermentation method.
Collapse
Affiliation(s)
- Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab 21934, Egypt
- Correspondence:
| | - Elsayed S. Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab 21934, Egypt;
| | | | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ghadir E. Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11435, Egypt; (G.E.D.); (A.Y.M.)
| | - Amira Y. Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11435, Egypt; (G.E.D.); (A.Y.M.)
| |
Collapse
|
3
|
Immerzeel P, Fiskari J. Synergism of enzymes in chemical pulp bleaching from an industrial point of view‐A critical review. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter Immerzeel
- Mid Sweden University, Fibre Science and Communication Network Sundsvall Sweden
| | - Juha Fiskari
- Mid Sweden University, Fibre Science and Communication Network Sundsvall Sweden
| |
Collapse
|
4
|
Bilal M, Ji L, Xu Y, Xu S, Lin Y, Iqbal HMN, Cheng H. Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. Front Bioeng Biotechnol 2022; 10:851768. [PMID: 35519613 PMCID: PMC9065261 DOI: 10.3389/fbioe.2022.851768] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Kluyveromyces marxianus is an emerging non-conventional food-grade yeast that is generally isolated from diverse habitats, like kefir grain, fermented dairy products, sugar industry sewage, plants, and sisal leaves. A unique set of beneficial traits, such as fastest growth, thermotolerance, and broad substrate spectrum (i.e., hemi-cellulose hydrolysates, xylose, l-arabinose, d-mannose, galactose, maltose, sugar syrup molasses, cellobiose, and dairy industry) makes this yeast a particularly attractive host for applications in a variety of food and biotechnology industries. In contrast to Saccharomyces cerevisiae, most of the K. marxianus strains are apparently Crabtree-negative or having aerobic-respiring characteristics, and unlikely to endure aerobic alcoholic fermentation. This is a desirable phenotype for the large-scale biosynthesis of products associated with biomass formation because the formation of ethanol as an undesirable byproduct can be evaded under aerobic conditions. Herein, we discuss the current insight into the potential applications of K. marxianus as a robust yeast cell factory to produce various industrially pertinent enzymes, bioethanol, cell proteins, probiotic, fructose, and fructo-oligosaccharides, and vaccines, with excellent natural features. Moreover, the biotechnological improvement and development of new biotechnological tools, particularly CRISPR-Cas9-assisted precise genome editing in K. marxianus are delineated. Lastly, the ongoing challenges, concluding remarks, and future prospects for expanding the scope of K. marxianus utilization in modern biotechnology, food, feed, and pharmaceutical industries are also thoroughly vetted. In conclusion, it is critical to apprehend knowledge gaps around genes, metabolic pathways, key enzymes, and regulation for gaining a complete insight into the mechanism for producing relevant metabolites by K. marxianus.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- *Correspondence: Hairong Cheng, ; Muhammad Bilal,
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuping Lin
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hairong Cheng, ; Muhammad Bilal,
| |
Collapse
|
5
|
Biochemical and Biotechnological Studies on Xylanase and β‐xylosidase Enzymes Produced by Trichoderma viride Under Solid State Fermentation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current study concerns with enhancement of xylanase and β-xylosidase activities from lignocellulosic materials by soil derived fungi Trichoderma viride under solid state fermentation (SSF). Xylanase and β-xylosidase activities were found to affected by variety of factors. In this study, some agricultural wastes were selected and used as sources for carbon. Sugar beet pulp (SBP) was at the forefront of these types. Also, various sources for nitrogen were selected to determine the best one. Yeast extract was the best organic source. Maximum xylanase activity took place by using inoculum size 1.8 × 105 spores / ml at 30°C when the pH was 5.5 for eight days of incubation with the addition of 0.1 % of Tween 40. Moreover, spores of Trichoderma viride were irradiated with gamma–rays. The maximum activity was observed upon using 0.7 kilo-gray (kGy). Furthermore, mixed cultures of Trichoderma viride and Penicillium janthenellum (wt / wt) were enhanced xylanase degrading capability. From another standpoint, ammonium sulphate and gel filtration chromatography were the best methods for xylanase purification. Characterizations of the purified enzyme were also selected and studied. It was found that, β-xylosidase enzyme exhibited its maximum activity and stability when the pH was 6 at 40°C by the addition of CaCl2 metal ion. On the other hand, total protein contents and volatile constituents of Trichoderma viride and Penicillium janthenellum were separated and investigated using high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS) techniques. It was found that, total protein contents for Trichoderma viride and Penicillium janthenellum were represented by fifteen and sixteen amino acids respectively. Also,29 compounds of the total volatile compounds for both Trichoderma viride and Penicillium janthenellum were identified. On the practical and applied field, crude enzyme was a good analyzer for agricultural residues as well showed antifungal and antibacterial effects.
Collapse
|
6
|
Rashid R, Ejaz U, Ali FI, Hashmi IA, Bari A, Liu J, Wang L, Fu P, Sohail M. Combined pretreatment of sugarcane bagasse using alkali and ionic liquid to increase hemicellulose content and xylanase production. BMC Biotechnol 2020; 20:64. [PMID: 33298027 PMCID: PMC7724814 DOI: 10.1186/s12896-020-00657-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Lignin in sugarcane bagasse (SB) hinders its utilization by microorganism, therefore, pretreatment methods are employed to make fermentable components accessible to the microbes. Multivariate analysis of different chemical pretreatment methods can aid to select the most appropriate strategy to valorize a particular biomass. RESULTS Amongst methods tested, the pretreatment by using sodium hydroxide in combination with methyltrioctylammonium chloride, an ionic liquid, (NaOH+IL) was the most significant for xylanase production by Bacillus aestuarii UE25. Investigation of optimal levels of five significant variables by adopting Box-Behnken design (BBD) predicted 20 IU mL- 1 of xylanase and experimentally, a titer of 17.77 IU mL- 1 was obtained which indicated the validity of the model. The production kinetics showed that volumetric productivity of xylanase was much higher after 24 h (833.33 IU L- 1 h- 1) than after 48 h (567.08 IU L- 1 h- 1). The extracted xylan from SB induced more xylanase in the fermentation medium than pretreated SB or commercially purified xylan. Nuclear Magnetic Resonance, Fourier transform infrared spectroscopy and scanning electron microscopy of SB indicated removal of lignin and changes in the structure of SB after NaOH+IL pretreatment and fermentation. CONCLUSION Combined pretreatment of SB with alkali and methyltrioctylammonium chloride appeared better than other chemical methods for bacterial xylanase production and for the extraction of xylan form SB.
Collapse
Affiliation(s)
- Rozina Rashid
- Department of Microbiology, University of Karachi, 75270, Karachi, Pakistan.,Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Uroosa Ejaz
- Department of Microbiology, University of Karachi, 75270, Karachi, Pakistan
| | - Firdous Imran Ali
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Imran Ali Hashmi
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Li Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, 75270, Karachi, Pakistan.
| |
Collapse
|
7
|
Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 2020; 19:173. [PMID: 32883293 PMCID: PMC7650271 DOI: 10.1186/s12934-020-01436-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Due to its clear inherited backgrounds as well as simple and diverse genetic manipulation systems, Bacillus subtilis is the key Gram-positive model bacterium for studies on physiology and metabolism. Furthermore, due to its highly efficient protein secretion system and adaptable metabolism, it has been widely used as a cell factory for microbial production of chemicals, enzymes, and antimicrobial materials for industry, agriculture, and medicine. In this mini-review, we first summarize the basic genetic manipulation tools and expression systems for this bacterium, including traditional methods and novel engineering systems. Secondly, we briefly introduce its applications in the production of chemicals and enzymes, and summarize its advantages, mainly focusing on some noteworthy products and recent progress in the engineering of B. subtilis. Finally, this review also covers applications such as microbial additives and antimicrobials, as well as biofilm systems and spore formation. We hope to provide an overview for novice researchers in this area, offering them a better understanding of B. subtilis and its applications.
Collapse
Affiliation(s)
- Yuan Su
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chuan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Sunkar B, Kannoju B, Bhukya B. Optimized Production of Xylanase by Penicillium purpurogenum and Ultrasound Impact on Enzyme Kinetics for the Production of Monomeric Sugars From Pretreated Corn Cobs. Front Microbiol 2020; 11:772. [PMID: 32390996 PMCID: PMC7193903 DOI: 10.3389/fmicb.2020.00772] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
Corn cob is an abundant organic source with significant potential in sustainable energy development. For the effective conversion of the feedstocks to valued commodities, effective biocatalysts are highly desired. The present study aims at optimizing the critical parameters required for xylanase production by Penicillium purpurogenum isolated from rotten wood sample using the Taguchi orthogonal array layout of L25 (5∧6). The optimized conditions like temperature 40°C, pH 3, size of inoculum 1.2 × 108 spores/ml, moisture 70%, peptone 0.8%, and 5 days of incubation resulted in 1,097 ± 6.76 U/gram dry substrate (gds) xylanase which was 65.72% more when compared to un-optimized production of xylanase. The xylanase thus produced, effectively carried out pretreated corn cob saccharification and the reaction was further improved with ultrasound assistance which has increased the saccharification yield to 12.02% along with significant reduction in reaction time. The saccharification efficiency of pretreated corn cob was found to be 80.29% more compared to the raw corn cob, reflecting its recalcitrance to digestion. Indeed, xylan being the second most abundant polymer in lignocellulosic biomass, considerable attention is being paid for its effective conversion to valued products.
Collapse
Affiliation(s)
- Bindu Sunkar
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - Balakrishna Kannoju
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
9
|
Gautério GV, da Silva LGG, Hübner T, da Rosa Ribeiro T, Kalil SJ. Maximization of xylanase production by Aureobasidium pullulans using a by-product of rice grain milling as xylan source. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|