1
|
Sheoran P, Yadav MK, Kumari I, Tiwari SK. Enterocin LD3 from Enterococcus hirae LD3 Inhibits the Growth of Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311 in Fruit Juice. Probiotics Antimicrob Proteins 2024; 16:1205-1213. [PMID: 37330452 DOI: 10.1007/s12602-023-10108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
In order to prevent the growth of pathogens in food, bacteriocins produced by various probiotic lactic acid bacteria have been recognized as potential substitutes of chemical preservatives. In this study, enterocin LD3 was purified from the cell-free supernatant of a food isolate, Enterococcus hirae LD3 using multistep chromatography. In the fruit juice, lethal concentration (LC50) of enterocin LD3 was found to be 260 µg/mL against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The cells treated with enterocin LD3 were red colour indicating dead cells after propidium iodide staining, while untreated cells were found blue after staining with 4', 6-diamidino-2-phenylindole. The mechanism of cell killing was analyzed using infrared spectrum of cells treated with enterocin LD3 which was found altered in the range of 1,094.30 and 1,451.82 cm-1 corresponding to nucleic acids and phospholipids, respectively. The morphology of target cells were severely ruptured and lysed as observed under electron microscopy. Thus, the present study suggested that enterocin LD3 showed bactericidal activity against Salm. enterica subsp. enterica serovar Typhimurium ATCC 13311 and may be applied as a bio-preservative for the safety of fruit juices.
Collapse
Affiliation(s)
- Poonam Sheoran
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Manoj Kumar Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Indu Kumari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
2
|
Li H, Yang Y, Li L, Zheng H, Xiong Z, Hou J, Wang L. Genome-Based Identification and Characterization of Bacteriocins Selectively Inhibiting Staphylococcus aureus in Fermented Sausages. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10240-4. [PMID: 38451405 DOI: 10.1007/s12602-024-10240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
The bacteriocin-producing Lactiplantibacillus plantarum SL47 was isolated from conventional fermented sausages, and the bacteriocin SL47 was purified using ethyl acetate, Sephadex G-25 gel chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Bacteriocin SL47 was identified by HPLC-MS/MS combined with whole-genome sequencing, and the results showed it consisted of plantaricin A, J, K, and N. Further characterization analysis showed that the bacteriocin SL47 was highly thermostable (30 min, 121 °C), pH stable (2-10), sensitive to protease and exhibited broad-spectrum antibacterial ability against Gram-positive and Gram-negative bacteria. The mechanism of action showed that the bacteriocin SL47 increased cell membrane permeability, and 2 × minimum inhibitory concentration (MIC) treatment for 40 min caused apoptosis of Staphylococcus aureus F2. The count of S. aureus in the sausage that was inoculated with L. plantarum SL47 and bacteriocin SL47 decreased by about 64% and 53% of that in the initial stage, respectively. These results indicated the potential of L. plantarum SL47 and bacteriocin SL47 as a bio-preservative in meat products.
Collapse
Affiliation(s)
- Hongbiao Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongqi Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lanxin Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Huojian Zheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiguo Xiong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Junjie Hou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Liping Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products On Storage and Preservation, Shanghai, 201306, China.
| |
Collapse
|
3
|
Apostolakos I, Skarlatoudi T, Vatavali K, Giannouli A, Bosnea L, Mataragas M. Genomic and Phenotypic Characterization of Mastitis-Causing Staphylococci and Probiotic Lactic Acid Bacteria Isolated from Raw Sheep's Milk. Int J Mol Sci 2023; 24:13883. [PMID: 37762186 PMCID: PMC10530712 DOI: 10.3390/ijms241813883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Dairy products play a crucial role in human nutrition as they provide essential nutrients. However, the presence of diverse microorganisms in these products can pose challenges to food safety and quality. Here, we provide a comprehensive molecular characterization of a diverse collection of lactic acid bacteria (LAB) and staphylococci isolated from raw sheep's milk. Whole-genome sequencing, phenotypic characterization, and bioinformatics were employed to gain insight into the genetic composition and functional attributes of these bacteria. Bioinformatics analysis revealed the presence of various genetic elements. Important toxin-related genes in staphylococci that contribute to their pathogenic potential were identified and confirmed using phenotypic assays, while adherence-related genes, which are essential for attachment to host tissues, surfaces in the dairy environment, and the creation of biofilms, were also present. Interestingly, the Staphylococcus aureus isolates belonged to sequence type 5, which largely consists of methicillin-susceptible isolates that have been involved in severe nosocomial infections. Although genes encoding methicillin resistance were not identified, multiple resistance genes (RGs) conferring resistance to aminoglycosides, macrolides, and fluroquinolones were found. In contrast, LAB had few inherently present RGs and no virulence genes, suggesting their likely safe status as food additives in dairy products. LAB were also richer in bacteriocins and carbohydrate-active enzymes, indicating their potential to suppress pathogens and effectively utilize carbohydrate substrates, respectively. Additionally, mobile genetic elements, present in both LAB and staphylococci, may facilitate the acquisition and dissemination of genetic traits, including RGs, virulence genes, and metabolic factors, with implications for food quality and public health. The molecular and phenotypic characterization presented herein contributes to the effort to mitigate risks and infections (e.g., mastitis) and enhance the safety and quality of milk and products thereof.
Collapse
Affiliation(s)
| | | | | | | | | | - Marios Mataragas
- Department of Dairy Research, Institution of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, 3rd Ethnikis Antistaseos St., 45221 Ioannina, Greece; (I.A.); (T.S.); (K.V.); (A.G.); (L.B.)
| |
Collapse
|
4
|
Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2021; 36:e24093. [PMID: 34851542 PMCID: PMC8761470 DOI: 10.1002/jcla.24093] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
A variety of bacteriocins originate from lactic acid bacteria, which have recently been modified by scientists. Many strains of lactic acid bacteria related to food groups could produce bacteriocins or antibacterial proteins highly effective against foodborne pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, P. aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, and Clostridium botulinum. A wide range of bacteria belonging primarily to the genera Bifidobacterium and Lactobacillus have been characterized with different health‐promoting attributes. Extensive studies and in‐depth understanding of these antimicrobials mechanisms of action could enable scientists to determine their production in specific probiotic lactic acid bacteria, as they are potentially crucial for the final preservation of functional foods or for medicinal applications. In this review study, the structure, classification, mode of operation, safety, and antibacterial properties of bacteriocins as well as their effect on foodborne pathogens and antibiotic‐resistant bacteria were extensively studied.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoume Halaj Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Kakanj
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| |
Collapse
|
5
|
Polydiacetylene vesicles acting as colorimetric sensor for the detection of plantaricin LD1. Anal Biochem 2021; 631:114368. [PMID: 34499898 DOI: 10.1016/j.ab.2021.114368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/14/2023]
Abstract
The interaction of antimicrobial peptides with membrane lipids plays a major role in numerous physiological processes. In this study, polydiacetylene (PDA) vesicles were synthesized using 10, 12-tricosadiynoic acid (TRCDA) and 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). These vesicles were applied as artificial membrane biosensor for the detection of plantaricin LD1 purified from Lactobacillus plantarum LD1. Plantaricin LD1 (200 μg/mL) was able to interact with PDA vesicles by changing the color from blue to red with colorimetric response 30.26 ± 0.59. Nisin (200 μg/mL), used as control, also changed the color of the vesicles with CR% 50.56 ± 0.98 validating the assay. The vesicles treated with nisin and plantaricin LD1 showed increased infrared absorbance at 1411.46 and 1000-1150 cm-1 indicated the interaction of bacteriocins with phospholipids and fatty acids, respectively suggesting membrane-acting nature of these bacteriocins. Further, microscopic observation of bacteriocin-treated vesicles showed several damages indicating the interaction of bacteriocins. These findings suggest that the PDA vesicles may be used as bio-mimetic sensor for the detection of bacteriocins produced by several probiotics in food and therapeutic applications.
Collapse
|
6
|
Meng F, Zhu X, Zhao H, Nie T, Lu F, Lu Z, Lu Y. A class Ⅲ bacteriocin with broad-spectrum antibacterial activity from Lactobacillus acidophilus NX2-6 and its preservation in milk and cheese. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Sheoran P, Tiwari SK. Synergistically-acting Enterocin LD3 and Plantaricin LD4 Against Gram-Positive and Gram-Negative Pathogenic Bacteria. Probiotics Antimicrob Proteins 2020; 13:542-554. [PMID: 32918678 PMCID: PMC7486809 DOI: 10.1007/s12602-020-09708-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 01/16/2023]
Abstract
The efficacy of antimicrobials is an important aspect during their applications in food and therapeutics. In this study, combination of two bacteriocins, enterocin LD3 and plantaricin LD4, was studied against two pathogenic bacteria, Staphylococcus aureus subsp. aureus ATCC25923 and Salmonella enterica subsp. enterica serovar Typhimurium ATCC13311 for increasing their potency and bactericidal activity. The minimal inhibitory concentrations (MICs) of enterocin LD3 and plantaricin LD4 against Staph. aureus subsp. aureus ATCC25923 were 180 and 220 μg/mL, whereas in combination, reduced to 115 μg/mL, respectively. The MICs of enterocin LD3 and plantaricin LD4 against Salm. enterica subsp. enterica serovar Typhimurium ATCC13311 were 240 and 320 μg/mL, respectively, whereas in combination, these were found to be 130 μg/mL, respectively. The fractional inhibitory concentration (FIC) indices calculated as 0.50 against Staph. aureus subsp. aureus ATCC25923 and 0.43 against Salm. enterica subsp. enterica serovar Typhimurium ATCC13311 were found to be ≤ 0.5 indicating the synergy. The isobologram showed MIC of combined bacteriocins falls below the plotted straight line further signifies synergy. The growth response of Staph. aureus subsp. aureus ATCC25923 and Salm. enterica subsp. enterica serovar Typhimurium ATCC13311 was significantly reduced in the presence of combined bacteriocins in comparison with their individual effects. The number of dead cells was higher as a result of combined effect as compared with their independent effect evidenced by fluorescent microscopy. Transmission electron microscopy (TEM) revealed the higher disruption of cell membrane in the combined bacteriocin-treated cells as compared with alone effects. The FTIR spectra of enterocin LD3-treated cells showed alteration at ~ 1,451.82 and ~ 1,094.30/cm corresponding to nucleic acids and phospholipids suggesting its interaction with cell membrane and nucleic acids. In contrast, plantaricin LD4-treated cells did not show such alterations suggesting plantaricin LD4 may kill target cells using other mechanism. Our data suggest that different mode of action of both bacteriocins results in division of labour and may be responsible for their synergistic activity against target cells. Similarly, the synergistic effect of bacteriocins was also observed against other pathogenic bacteria such as Proteus mirabilis ATCC43071, Pseudomonas aeruginosa ATCC27853 and Escherichia coli ATCC25922. These bacteriocins, therefore, act synergistically against target pathogens and may be applied in appropriate combinations for food safety and medical applications.
Collapse
Affiliation(s)
- Poonam Sheoran
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
8
|
Wei M, Gu E, Luo J, Zhang Z, Xu D, Tao X, Shah NP, Wei H. Enterococcus hirae WEHI01 isolated from a healthy Chinese infant ameliorates the symptoms of type 2 diabetes by elevating the abundance of Lactobacillales in rats. J Dairy Sci 2020; 103:2969-2981. [PMID: 32059859 DOI: 10.3168/jds.2019-17185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
Enterococcus hirae WEHI01 is a potential probiotic strain isolated from a healthy Chinese infant. This strain has previously been characterized as having cholesterol-lowering potential and good dairy fermentation performance. In this study, we used rat models with obesity and type 2 diabetes mellitus (T2DM) induced by a high fat and sucrose diet and low-dose streptozotocin, respectively, and we evaluated the effect of E. hirae WEHI01 on glycolipid metabolism, glycolipid-related gene expression, organ histopathology, and intestinal flora changes in the 2 models. Our results showed that administration of 5.0 × 109 cfu of E. hirae WEHI01 for 4 wk decreased serum lipid levels and regulated glycolipid metabolism in the liver of obese rats. Following continuous administration of the same concentration of E. hirae WEHI01 to a T2DM rat model for another 5 wk, E. hirae WEHI01 improved glucose tolerance, recovered body weight loss, and led to significant decreases in tumor necrosis factor-α, IL-6, IL-10, and total bile acid in serum. We also found that E. hirae WEHI01 restored the morphology of the pancreas, kidney, and liver, and changed the composition of the gut microbiota (i.e., decreased the Shannon index, increased the Simpson index, and substantially increased the abundance of Lactobacillales). Combining the results for the obese model and the T2DM model, we speculated that beneficial effects of E. hirae WEHI01 on T2DM could be due to (1) a significant increase in PPARA expression and a tendency for increased CYP7A1 expression in the liver of obese rats, promoting the conversion of cholesterol into bile acid and reducing serum total bile acid levels in T2DM model rats; or (2) a change in gut microbial diversity, especially elevated Lactobacillales abundance, which reduced the total bile acid in T2DM model rats. These results demonstrated that E. hirae WEHI01 has the potential to ameliorate type 2 diabetes in rats and provide a promising rationale for further research into the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Min Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Enyu Gu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jie Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Di Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Science, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|