1
|
Mora-Gamboa MPC, Ferrucho-Calle MC, Ardila-Leal LD, Rojas-Ojeda LM, Galindo JF, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. Statistical Improvement of rGILCC 1 and rPOXA 1B Laccases Activity Assay Conditions Supported by Molecular Dynamics. Molecules 2023; 28:7263. [PMID: 37959683 PMCID: PMC10648076 DOI: 10.3390/molecules28217263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Laccases (E.C. 1.10.3.2) are glycoproteins widely distributed in nature. Their structural conformation includes three copper sites in their catalytic center, which are responsible for facilitating substrate oxidation, leading to the generation of H2O instead of H2O2. The measurement of laccase activity (UL-1) results may vary depending on the type of laccase, buffer, redox mediators, and substrates employed. The aim was to select the best conditions for rGILCC 1 and rPOXA 1B laccases activity assay. After sequential statistical assays, the molecular dynamics proved to support this process, and we aimed to accumulate valuable insights into the potential application of these enzymes for the degradation of novel substrates with negative environmental implications. Citrate buffer treatment T2 (CB T2) (pH 3.0 ± 0.2; λ420nm, 2 mM ABTS) had the most favorable results, with 7.315 ± 0.131 UL-1 for rGILCC 1 and 5291.665 ± 45.83 UL-1 for rPOXA 1B. The use of citrate buffer increased the enzyme affinity for ABTS since lower Km values occurred for both enzymes (1.49 × 10-2 mM for rGILCC 1 and 3.72 × 10-2 mM for rPOXA 1B) compared to those obtained in acetate buffer (5.36 × 10-2 mM for rGILCC 1 and 1.72 mM for rPOXA 1B). The molecular dynamics of GILCC 1-ABTS and POXA 1B-ABTS showed stable behavior, with root mean square deviation (RMSD) values not exceeding 2.0 Å. Enzyme activities (rGILCC 1 and rPOXA 1B) and 3D model-ABTS interactions (GILCC 1-ABTS and POXA 1B-ABTS) were under the strong influence of pH, wavelength, ions, and ABTS concentration, supported by computational studies identifying the stabilizing residues and interactions. Integration of the experimental and computational approaches yielded a comprehensive understanding of enzyme-substrate interactions, offering potential applications in environmental substrate treatments.
Collapse
Affiliation(s)
- María P. C. Mora-Gamboa
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia (M.C.F.-C.); (L.D.A.-L.)
| | - María C. Ferrucho-Calle
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia (M.C.F.-C.); (L.D.A.-L.)
| | - Leidy D. Ardila-Leal
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia (M.C.F.-C.); (L.D.A.-L.)
- Laboratorio de Biotecnología Vegetal, Grupo de Investigación en Asuntos Ambientales y Desarrollo Sostenible (MINDALA), Departamento de Ciencias Agrarias y del Ambiente, Universidad Francisco de Paula Santander, Ocaña 546552, Colombia
| | - Lina M. Rojas-Ojeda
- Departamento de Química, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Johan F. Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Raúl A. Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia (M.C.F.-C.); (L.D.A.-L.)
| | - Aura M. Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Balkys E. Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| |
Collapse
|
2
|
Mutanda I, Sethupathy S, Xu Q, Zhu B, Shah SWA, Zhuang Z, Zhu D. Optimization of heterologous production of Bacillus ligniniphilus L1 laccase in Escherichia coli through statistical design of experiments. Microbiol Res 2023; 274:127416. [PMID: 37290170 DOI: 10.1016/j.micres.2023.127416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Laccases are powerful multi-copper oxidoreductases that have wide applicability as "green" biocatalysts in biotechnological, bioremediation, and industrial applications. Sustainable production of large amounts of functional laccases from original sources is limited by low yields, difficulties in purification, slow growth of the organisms, and high cost of production. Harnessing the full potential of these versatile biocatalysts will require the development of efficient heterologous systems that allow high-yield, scalable, and cost-effective production. We previously cloned a temperature- and pH-stable laccase from Bacillus ligniniphilus L1 (L1-lacc) that demonstrated remarkable activity in the oxidation of lignin and delignification for bioethanol production. However, L1-lacc is limited by low enzyme yields in both the source organism and heterologous systems. Here, to improve production yields and lower the cost of production, we optimized the recombinant E. coli BL21 strain for high-level production of L1-lacc. Several culture medium components and fermentation parameters were optimized using one-factor-at-a-time (OFAT) and Plackett-Burman design (PBD) to screen for important factors that were then optimized using response surface methodology (RSM) and an orthogonal design. The optimized medium composition had compound nitrogen (15.6 g/L), glucose (21.5 g/L), K2HPO4 (0.15 g/L), MgSO4 (1 g/L), and NaCl (7.5 g/L), which allowed a 3.3-fold yield improvement while subsequent optimization of eight fermentation parameters achieved further improvements to a final volumetric activity titer of 5.94 U/mL in 24 h. This represents a 7-fold yield increase compared to the initial medium and fermentation conditions. This work presents statistically guided optimization strategies for improving heterologous production of a bacterial laccase that resulted in a high-yielding, cost-efficient production system for an enzyme with promising applications in lignin valorization, biomass processing, and generation of novel composite thermoplastics.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qi Xu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sayed Waqas Ali Shah
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhipeng Zhuang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Brugnari T, Braga DM, Dos Santos CSA, Torres BHC, Modkovski TA, Haminiuk CWI, Maciel GM. Laccases as green and versatile biocatalysts: from lab to enzyme market-an overview. BIORESOUR BIOPROCESS 2021; 8:131. [PMID: 38650295 PMCID: PMC10991308 DOI: 10.1186/s40643-021-00484-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Laccases are multi-copper oxidase enzymes that catalyze the oxidation of different compounds (phenolics and non-phenolics). The scientific literature on laccases is quite extensive, including many basic and applied research about the structure, functions, mechanism of action and a variety of biotechnological applications of these versatile enzymes. Laccases can be used in various industries/sectors, from the environmental field to the cosmetics industry, including food processing and the textile industry (dyes biodegradation and synthesis). Known as eco-friendly or green enzymes, the application of laccases in biocatalytic processes represents a promising sustainable alternative to conventional methods. Due to the advantages granted by enzyme immobilization, publications on immobilized laccases increased substantially in recent years. Many patents related to the use of laccases are available, however, the real industrial or environmental use of laccases is still challenged by cost-benefit, especially concerning the feasibility of producing this enzyme on a large scale. Although this is a compelling point and the enzyme market is heated, articles on the production and application of laccases usually neglect the economic assessment of the processes. In this review, we present a description of laccases structure and mechanisms of action including the different sources (fungi, bacteria, and plants) for laccases production and tools for laccases evolution and prediction of potential substrates. In addition, we both compare approaches for scaling-up processes with an emphasis on cost reduction and productivity and critically review several immobilization methods for laccases. Following the critical view on production and immobilization, we provide a set of applications for free and immobilized laccases based on articles published within the last five years and patents which may guide future strategies for laccase use and commercialization.
Collapse
Affiliation(s)
- Tatiane Brugnari
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil.
| | - Dayane Moreira Braga
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Camila Souza Almeida Dos Santos
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Bruno Henrique Czelusniak Torres
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Tatiani Andressa Modkovski
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Charles Windson Isidoro Haminiuk
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Giselle Maria Maciel
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| |
Collapse
|
4
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|
5
|
Ardila-Leal LD, Monterey-Gutiérrez PA, Poutou-Piñales RA, Quevedo-Hidalgo BE, Galindo JF, Pedroza-Rodríguez AM. Recombinant laccase rPOXA 1B real-time, accelerated and molecular dynamics stability study. BMC Biotechnol 2021; 21:37. [PMID: 34088291 PMCID: PMC8178886 DOI: 10.1186/s12896-021-00698-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Laccases (EC 1.10.3.2) are multi-copper oxidoreductases with great biotechnological importance due to their high oxidative potential and utility for removing synthetic dyes, oxidizing phenolic compounds, and degrading pesticides, among others. Methods A real-time stability study (RTS) was conducted for a year, by using enzyme concentrates from 3 batches (L1, L3, and L4). For which, five temperatures 243.15, 277.15, 298.15, 303.15, 308.15, and 313.15 K were assayed. Using RTS data and the Arrhenius equation, we calculated the rPOXA 1B accelerated stability (AS). Molecular dynamics (MD) computational study results were very close to those obtained experimentally at four different temperatures 241, 278, 298, and 314 K. Results In the RTS, 101.16, 115.81, 75.23, 46.09, 5.81, and 4.83% of the relative enzyme activity were recovered, at respective assayed temperatures. AS study, showed that rPOXA 1B is stable at 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K; with t1/2 values of 230.8, 46.2, and 12.6 months, respectively. Kinetic and thermodynamic parameters supported the high stability of rPOXA 1B, with an Ed value of 41.40 KJ mol− 1, a low variation of KM and Vmax, at 240.98 ± 5.38, and 297.53 ± 3.88 K, and ∆G values showing deactivation reaction does not occur. The MD indicates that fluctuations in loop, coils or loops with hydrophilic or intermediate polarity amino acids as well as in some residues of POXA 1B 3D structure, increases with temperature; changing from three fluctuating residues at 278 K to six residues at 298 K, and nine residues at 314 K. Conclusions Laccase rPOXA 1B demonstrated experimentally and computationally to be a stable enzyme, with t1/2 of 230.8, 46.2 or 12.6 months, if it is preserved impure without preservatives at temperatures of 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K respectively; this study could be of great utility for large scale producers. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00698-3.
Collapse
Affiliation(s)
- Leidy D Ardila-Leal
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia
| | - Pedro A Monterey-Gutiérrez
- Vicerrectoría Académica. Universidad Antonio Nariño, Programa de Maestría y Doctorado en Educación Matemática, Bogotá, D.C, Colombia
| | - Raúl A Poutou-Piñales
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia.
| | - Balkys E Quevedo-Hidalgo
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ), Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia.
| | - Johan F Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C, Colombia.
| | - Aura M Pedroza-Rodríguez
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia
| |
Collapse
|
6
|
Ardila-Leal LD, Poutou-Piñales RA, Morales-Álvarez ED, Rivera-Hoyos CM, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE, Pérez-Flórez A. Methanol addition after glucose depletion improves rPOXA 1B production under the pGap in P. pastoris X33: breaking the habit. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04093-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractThe purpose of this study was to demonstrate that methanol addition after glucose depletion has a positive effect on improving rPOXA 1B production under the control of pGap in P. pastoris. Four different culture media (A, B, C and D) were used to culture P. pastoris X33/pGapZαA-LaccPost-Stop (clone 1), containing a previously optimized POXA 1B synthetic gene coding for P. ostreatus laccase, which after glucose depletion was supplemented or not with methanol. Enzyme activity in culture media without methanol (A, B, C and D) was influenced by media components, presenting activity of 1254.30 ± 182.44, 1373.70 ± 182.44, 1343.50 ± 40.30 and 8771.61 ± 218.79 U L−1, respectively. In contrast, the same culture media (A, B, C and D) with methanol addition 24 h after glucose depletion attained activity of 4280.43 ± 148.82, 3339.02 ± 64.36, 3569.39 ± 68.38 and 14,868.06 ± 461.58 U L−1 at 192 h, respectively, representing an increase of approximately 3.9-, 2.4-, 3.3- and 1.6-fold compared with culture media without methanol. Methanol supplementation had a greater impact on volumetric enzyme activity in comparison with biomass production. We demonstrated what was theoretically and biochemically expected: recombinant protein production under pGap control by methanol supplementation after glucose depletion was successful, as a feasible laboratory production strategy of sequential carbon source addition, breaking the habit of utilizing pGap with glucose.
Collapse
|
7
|
Tertiary treatment ( Chlorella sp.) of a mixed effluent from two secondary treatments (immobilized recombinant P. pastori and rPOXA 1B concentrate) of coloured laboratory wastewater (CLWW). 3 Biotech 2020; 10:233. [PMID: 32399383 DOI: 10.1007/s13205-020-02232-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/26/2020] [Indexed: 11/27/2022] Open
Abstract
Industrial development has increased wastewater (WW) volume; generating contamination and disturbing ecosystems, because of breeching disposal parameters. In this work, Coloured Laboratory Wastewater (CLWW), (1500.00 colour units, CU) was separately submitted to two secondary treatments. For the first one CLWW was treated for three cycles C1, C2 and C3 with P. pastoris X33/pGAPZαA-LaccPost-Stop producing rPOXA 1B laccase, immobilized in calcium alginate beads. For the second-one, rPOXA 1B enzyme concentrate was used (three processes: P1, P2, and P3). Both treatments were carried out in a 15 L reactor with 10 L effective work volume (EWV) with 72 h hydraulic retention time. C1, C2, and C3 effluents were flocculated and filtered through quartzite sand, while P1, P2, and P3 effluents were only filtered through quartzite sand. The mixture of secondary effluents was submitted to a tertiary treatment with Chlorella sp. For C1, C2, C3, P1, P2, and P3, CU removal was of 99.16, 99.58, 99.53, 96.72, 97.05 and 96.47%, respectively. Discharge parameters, total organic carbon (TOC), inorganic carbon (IC), chemical oxygen demand (COD) and biological oxygen demand (BOD5) decreased, although they reached different final values. After the tertiary treatment (144 h) effluent discharge parameters were reduced to 34 ± 4 CU, TOC to 6.6 ± 0.9 mg L-1 and COD to 155 ± 4 mg L-1. It was demonstrated that secondary treatments (immobilized recombined cells or recombinant enzyme concentrate) combined with Chlorella sp., (tertiary treatment) attained a considerable removal of discharge parameters, demonstrating a promissory alternative for CLWW sequential treatment.
Collapse
|
8
|
Ardila-Leal LD, Alvarado-Ramírez MF, Gutiérrez-Rojas IS, Poutou-Piñales RA, Quevedo-Hidalgo B, Pérez-Flórez A, Pedroza-Rodríguez AM. Low-cost media statistical design for laccase rPOXA 1B production in P. pastoris. Heliyon 2020; 6:e03852. [PMID: 32368658 PMCID: PMC7184261 DOI: 10.1016/j.heliyon.2020.e03852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
Laccases (E.C. 1.10.3.2) are multicopper oxidases of great importance in the industry due to their non-specificity and high oxidative potential. Laccases are useful to bleach synthetic dyes, oxidize phenolic compounds and degrade pesticides, among others. Hence, the objective of this work was to optimize low cost culture media for recombinant (rPOXA 1B) laccase production from Pleurotus ostreatus in Pichia pastoris. To this end, low cost nitrogen sources were studied, such as malt extract, isolated soy protein and milk serum. Following, two central composite designs (CCD) were performed. In CCD-1 different concentrations of glucose USP (0–13.35 gL-1), protein isolated soy protein (5–25 gL-1), malt extract (3.5–17.5 gL-1) and (NH4)2SO4 (1.3–6.5 gL-1) were evaluated. In CCD-2 only different concentrations of glucose USP (7.9–22 gL-1) and isolated soy protein (15.9–44.9 gL-1) were evaluated. CCD-2 results led to a One Factor Experimental design (OFED) to evaluate higher isolated soy protein (20–80 gL-1) concentrations. In all designs, (CCD-1, CCD-2 and OFED) CuSO4 (0.16 gL-1) and chloramphenicol (0.1 gL-1) concentrations remained unchanged. For the OFED after sequential statistical optimization, an enzyme activity of 12,877.3 ± 481.2 UL−1 at 168 h was observed. rPOXA 1B activity increased 30.54 % in comparison with CCD-2 results. Final composition of optimized media was: 20 gL-1 glucose USP, 50 gL-1 isolated soy protein 90 % (w/w), 11.74 gL-1 malt extract, and 4.91 gL-1 (NH4)2SO4. With this culture media, it was possible to reduce culture media costs by 89.84 % in comparison with improved culture media previously described by our group.
Collapse
Affiliation(s)
- Leidy D Ardila-Leal
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - María F Alvarado-Ramírez
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Ivonne S Gutiérrez-Rojas
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Balkys Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Alejandro Pérez-Flórez
- Grupo de Fitoquímica de la PUJ (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Aura M Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| |
Collapse
|