1
|
Vaish S, Parveen R, Singh N, Gupta D, Basantani MK. Computational insights into diverse aspects of glutathione S-transferase gene family in Papaver somniferum. JOURNAL OF PLANT RESEARCH 2022; 135:823-852. [PMID: 36066757 DOI: 10.1007/s10265-022-01408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Plant glutathione S-transferases are an ancient protein superfamily having antioxidant activity. These proteins are primarily involved in diverse plant functions such as plant growth and development, secondary metabolism, signaling pathways and defense against biotic and abiotic stresses. The current study aimed to comprehensively identify and characterize the GST gene family in the medicinally important crop Papaver somniferum. A total of 93 GST proteins were identified belonging to eight GST classes and found to be majorly localized in the cytoplasm. All GST genes were found on eleven opium chromosomes. Gene duplication analysis showed segmental duplication as a key factor for opium GST gene family expansion under strong purifying selection. Phylogenetic analysis with gymnosperm, angiosperm and bryophyte revealed the evolution of GSTs earlier than their division into separate groups and also prior to the divergence of monocot and dicot. The secondary structure prediction showed the dominance of α-helices indicative of PsomGSTs as structurally stable and elastic proteins. Gene architecture showed the conservation of number of exons across the classes. MEME analysis revealed only a few class specific and many across class conserved motifs. Ser was found to be the active site residue of tau, phi, theta and zeta class and Cys was catalytic residue of DHAR, lambda and GHR class. Promoter analyses identified many cis-acting regulatory elements related to hormonal, cellular, stress and light response functions. Ser was the key phosphorylation site. Only three glycosylation sites were found across the 93 PsomGSTs. 3D structure prediction was also performed and was validated. Interactome analyses revealed the correlation of PsomGSTs with glutathione metabolizing proteins. Gene enrichment analysis and KEGG pathway analyzed the involvement of PsomGSTs in three major pathways i.e. glutathione metabolism, tyrosine metabolism and ascorbate metabolism. The outcome revealed high model quality of PsomGSTs. The results of the current study will be of potential significance to understand the functional and structural importance of the GST gene family in opium, a medicinally important crop.
Collapse
Affiliation(s)
- Swati Vaish
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Reshma Parveen
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Nootan Singh
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Divya Gupta
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Mahesh Kumar Basantani
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India.
| |
Collapse
|
2
|
Yang Y, Zhang ZW, Liu RX, Ju HY, Bian XK, Zhang WZ, Zhang CB, Yang T, Guo B, Xiao CL, Bai H, Lu WY. Research progress in bioremediation of petroleum pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46877-46893. [PMID: 34254241 DOI: 10.1007/s11356-021-15310-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
With the enhancement of environmental protection awareness, research on the bioremediation of petroleum hydrocarbon environmental pollution has intensified. Bioremediation has received more attention due to its high efficiency, environmentally friendly by-products, and low cost compared with the commonly used physical and chemical restoration methods. In recent years, bacterium engineered by systems biology strategies have achieved biodegrading of many types of petroleum pollutants. Those successful cases show that systems biology has great potential in strengthening petroleum pollutant degradation bacterium and accelerating bioremediation. Systems biology represented by metabolic engineering, enzyme engineering, omics technology, etc., developed rapidly in the twentieth century. Optimizing the metabolic network of petroleum hydrocarbon degrading bacterium could achieve more concise and precise bioremediation by metabolic engineering strategies; biocatalysts with more stable and excellent catalytic activity could accelerate the process of biodegradation by enzyme engineering; omics technology not only could provide more optional components for constructions of engineered bacterium, but also could obtain the structure and composition of the microbial community in polluted environments. Comprehensive microbial community information lays a certain theoretical foundation for the construction of artificial mixed microbial communities for bioremediation of petroleum pollution. This article reviews the application of systems biology in the enforce of petroleum hydrocarbon degradation bacteria and the construction of a hybrid-microbial degradation system. Then the challenges encountered in the process and the application prospects of bioremediation are discussed. Finally, we provide certain guidance for the bioremediation of petroleum hydrocarbon-polluted environment.
Collapse
Affiliation(s)
- Yong Yang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - Zhan-Wei Zhang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Rui-Xia Liu
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Hai-Yan Ju
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Xue-Ke Bian
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Wan-Ze Zhang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Chuan-Bo Zhang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Ting Yang
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - Bing Guo
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - Chen-Lei Xiao
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - He Bai
- China Offshore Environmental Service Ltd., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China.
- Tianjin Huakan Environmental Protection Technology Co. Ltd., No. 67 Guangrui West Rd, Hedong District, Tianjin, 300170, China.
| | - Wen-Yu Lu
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|