Jaffur BN, Kumar G, Khadoo P. Production and functionalization strategies for superior polyhydroxybutyrate blend performance.
Int J Biol Macromol 2024;
278:134907. [PMID:
39173809 DOI:
10.1016/j.ijbiomac.2024.134907]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
This study investigates the effects of blending poly(3-hydroxybutyrate) (PHB) with microcrystalline cellulose (MCC), polylactic acid (PLA), lignin, and polyethylene glycol (PEG) on the properties of the resulting composite materials. Using a melt blending method, the composites were characterized by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The results reveal that blending PHB with MCC, PLA, lignin, and PEG significantly enhances the thermal stability, mechanical strength, and biodegradability of the composites compared to pure PHB. Specifically, the tensile strength of PHB-PLA blends increased by up to 47.77 MPa, compared to 27.16 MPa for pure PHB. The blend with 50 % cellulose content showed the highest tensile strength of 54.91 MPa. TGA results show that the PHB-MCC and PHB-lignin blends exhibit improved thermal stability, with onset degradation temperatures rising to 294.8 °C, compared to 275 °C for pure PHB. Moreover, the PHB-lignin blend demonstrated a gradual weight loss starting at 200 °C and continuing until about 350 °C. SEM images of the blends indicate a uniform microstructure, contributing to the improved mechanical properties. The PHB-PEG blend demonstrated an elongation at break of 4.34 %, significantly higher than the 2.15 % for pure PHB, highlighting its suitability for applications requiring pliable materials. The biodegradability tests showed that PHB-PLA blends maintained consistent degradation rates, making them advantageous for applications needing controlled biodegradability. These findings suggest that blending PHB with MCC, PLA, lignin, and PEG can produce materials with enhanced properties suitable for applications in packaging, biomedical devices, and other areas where both performance and sustainability are essential.
Collapse