1
|
Pal A, Kaswan K, Barman SR, Lin YZ, Chung JH, Sharma MK, Liu KL, Chen BH, Wu CC, Lee S, Choi D, Lin ZH. Microfluidic nanodevices for drug sensing and screening applications. Biosens Bioelectron 2023; 219:114783. [PMID: 36257116 PMCID: PMC9533638 DOI: 10.1016/j.bios.2022.114783] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.
Collapse
Affiliation(s)
- Arnab Pal
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuldeep Kaswan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Snigdha Roy Barman
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Zih Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jun-Hsuan Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Manish Kumar Sharma
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuei-Lin Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bo-Huan Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, 333, Taiwan
| | - Chih-Cheng Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Center of Quality Management, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, 30059, Taiwan; College of Medicine, National Taiwan University, Taipei, 10051, Taiwan; Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, 35053, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Gyeonggi, 17104, South Korea.
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Gyeonggi, 17104, South Korea.
| |
Collapse
|
2
|
Magnetic Nanochain-Based Smart Drug Delivery System with Remote Tunable Drug Release by a Magnetic Field. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Xing J, Zhang Y, Xu S, Zeng X. Nanomaterial assisted diagnosis of dopamine to determine attention deficit hyperactivity disorder - ‘An issue with Chinese children’. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Rabiee N, Ahmadi S, Fatahi Y, Rabiee M, Bagherzadeh M, Dinarvand R, Bagheri B, Zarrintaj P, Saeb MR, Webster TJ. Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine (Lond) 2021; 16:237-258. [PMID: 33501839 DOI: 10.2217/nnm-2020-0353] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With significant advancements in research technologies, and an increasing global population, microfluidic and nanofluidic systems (such as point-of-care, lab-on-a-chip, organ-on-a-chip, etc) have started to revolutionize medicine. Devices that combine micron and nanotechnologies have increased sensitivity, precision and versatility for numerous medical applications. However, while there has been extensive research on microfluidic and nanofluidic systems, very few have experienced wide-spread commercialization which is puzzling and deserves our collective attention. For the above reasons, in this article, we review research advances that combine micro and nanotechnologies to create the next generation of nanomaterial-based microfluidic systems, the latest in their commercialization success and failure and highlight the value of these devices both in industry and in the laboratory.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Bagheri
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Immobilization of synthesized phenyl-enriched magnetic nanoparticles in a fabricated Y-Y shaped micro-channel containing microscaled hedges as a microextraction platform. Anal Chim Acta 2020; 1136:51-61. [PMID: 33081949 DOI: 10.1016/j.aca.2020.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
Abstract
In this survey, a reliable and applicable Y-Y shaped micro-channel in a microfluidic device was designed and manufactured. A number of micro-scaled hedges were precisely fabricated inside the micro-channel to facilitate the immobilization of synthesized core-shell Fe3O4@SiO2 magnetic nanoparticles (MNPs), functionalized by triethoxyphenylsilane (TEPS) by sol-gel technique. Both sample and reagents were introduced into the microfluidic device by a syringe pump to perform the extraction and desorption steps. The functionalized MNPs were characterized by transmission electron microscopy, X-ray diffraction spectroscopy and Fourier transform infrared spectroscopy. By adopting the strategy of extraction-on-chip using this microfluidic device, we were benefited from implementing the entire analyses with the minimum amount of desorbing solvent, MNPs, and aqueous/fruit juice samples. In contrast to dispersive solid phase extraction, dispersion of MNPs during experiment is prevented by fabrication of micro-scaled hedges in the micro-channel. Consequently the stabilized MNPs are reused for the entire runs. The microfluidic device was successfully exploited as an efficient extracting plateau to evaluate the extraction/desorption capability in analysis of some organophosphorus pesticides (OPPs) as model compounds. Our results indicate that the functionalization of Fe3O4@SiO2 with TEPS, improved their extraction capability due to the existence of phenyl and hydroxyl groups for more efficient π-π and hydrogen bonding interactions. Eventually, μL-scale of the organic solvent was injected into a gas chromatography-mass spectrometry system. The limits of detection (3Sb) and quantification (10Sb) for the OPPs were 0.03-0.1 and 0.1-0.35 ng mL-1, respectively. In addition, the interday and intraday precisions were lower than 5.3% (n = 3). The obtained recovery was 95-99% for water samples and 88-96% for fruit juice samples while satisfactory regression coefficients of 0.9949-0.9991, could be achieved.
Collapse
|
6
|
Hashemi Hedeshi M, Rezvani O, Bagheri H. Silane–based modified papers and their extractive phase roles in a microfluidic platform. Anal Chim Acta 2020; 1128:31-41. [DOI: 10.1016/j.aca.2020.05.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
|
7
|
Song HW, Yoo G, Bong JH, Kang MJ, Lee SS, Pyun JC. Surface display of sialyltransferase on the outer membrane of Escherichia coli and ClearColi. Enzyme Microb Technol 2019; 128:1-8. [PMID: 31186105 DOI: 10.1016/j.enzmictec.2019.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
α2,3-Sialyltransferase from Pasteurella multocida (PmST1) is an enzyme that transfers a sialyl group of donor substrates to an acceptor substrate called N-acetyl-d-lactosamine (LacNAc). In this study PmST1 was expressed on the outer membrane of wildtype Escherichia coli (BL21) with lipopolysaccharide (LPS) and ClearColi with no LPS, and then the enzyme activity and expression level of PmST1 were compared. As the first step, the expression levels of PmST1 on the outer membranes of wildtype E. coli (BL21) and ClearColi were compared according to the IPTG induction time, and the absolute amount of surface-displayed PmST1 was calculated using densitometry of SDS-PAGE. As the next step, the influence of LPS on the PmST1 activity was estimated by analyzing Michaelis-Menten plot. The enzyme activity of PmST1 was analyzed by measuring the concentration of CMP, which was a by-product after the transfer of the sialyl group of donor compounds to the acceptor compounds. From a Michaelis-Menten plot, the enzyme activity of the surface-displayed PmST1 and the maximum rate (Vmax) of ClearColi were higher than those of wildtype E. coli (BL21). However, the KM value, which represented the concentration of substrate to reach half the maximum rate (Vmax), was similar for both enzymes. These results represented such a difference in enzyme activity was occurred from the interference of LPS on the mass transport of the donor and acceptor to PmST1 for the sialyl group transfer.
Collapse
Affiliation(s)
- Hyun-Woo Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seo-dae-mun-gu, Seoul, 03722, Republic of Korea
| | - Gu Yoo
- School of Chemistry & Institute for Life Sciences, FNES, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seo-dae-mun-gu, Seoul, 03722, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seung Seo Lee
- School of Chemistry & Institute for Life Sciences, FNES, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seo-dae-mun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
8
|
Wongkaew N. Nanofiber-integrated miniaturized systems: an intelligent platform for cancer diagnosis. Anal Bioanal Chem 2019; 411:4251-4264. [PMID: 30706075 DOI: 10.1007/s00216-019-01589-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
Cancer diagnostic tools enabling screening, diagnosis, and effective disease management are essential elements to increase the survival rate of diagnosed patients. Low abundance of cancer markers present in large amounts of interferences remains the major issue. Moreover, current diagnostic technologies are restricted to high-resourced settings only. Integrating nanofibers into miniaturized analytical systems holds a significant promise to address these challenges as demonstrated by recent publications. A large surface area, three-dimensional porous network, and diverse range of functional chemistries make nanofibers an excellent candidate as immobilization support and/or transduction elements, enabling high capture yield and ultrasensitive detection in miniaturized devices. Functional nanofibers have thus been used to isolate and detect various cancer-related biomarkers with a high degree of success in both on-chip and off-chip platforms. In fact, the chemical and functional adaptability of nanofibers has been exploited to address the technical challenges unique to each of the cancer markers in body fluids, where circulating tumor cells are prominently investigated among others (proteins, nucleic acids, and exosomes). So far, none of the work has exploited the nanofibers for cancer-derived exosomes, opening an avenue for further research effort. The trend and future prospects signal possibilities to strengthen the implementation of nanofiber-miniaturized system hybrid for a next generation of cancer diagnostic platforms both in clinical and point-of-care testing.
Collapse
Affiliation(s)
- Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Samson AAS, Park S, Kim SY, Min DH, Jeon NL, Song JM. Liposomal co-delivery-based quantitative evaluation of chemosensitivity enhancement in breast cancer stem cells by knockdown of GRP78/CLU. J Liposome Res 2018; 29:44-52. [PMID: 29262741 DOI: 10.1080/08982104.2017.1420081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resistance to chemotherapy is a key factor in the inefficacy of various forms of treatments for cancer. In the present study, chemo-resistant proteins, including glucose-regulated protein 78 (GRP78)/clusterin (CLU) targeted 1,2-dioleoyloxy-3-trimethylammoniumpropane (DOTAP) liposomes, were developed as a delivery system for co-delivery of camptothecin (CPT) and GRP78 siRNA/CLU siRNA. Their drug/gene co-deliveries were quantitatively assessed in cancer stem cells (CSC) and MCF-7 cells. DOTAP-CPT/siRNA were prepared via electrostatic interaction on GRP78 siRNA or CLU siRNA. The size and ζ-potential of liposomes and lipoplexes were measured by dynamic light scattering techniques and electrophoretic light scattering spectrophotometry. The lipoplexes formation was tested by using gel electrophoresis. Immunofluorescence analysis showed that the expression level of CLU and GRP78 were significantly elevated in CSC compared to MCF-7 cells. Transfection and drug-delivery efficiency of DOTAP-CPT/siRNA were quantitatively compared with Lipofectamine 2000. Compared to free CPT, DOTAP-CPT-siCLU delivery in CSC and MCF-7 cells increased transfection efficiency and chemo-sensitivity by 4.1- and 5.9-fold, respectively. On the other hand, DOTAP-CPT-siGRP78 delivery increased transfection efficiency and chemo sensitivity by 4.4- and 6.2-fold in CSC and MCF-7 cells, respectively, compared to free CPT. It is significant that 3 ± 1.2-fold increase in transfection efficiency was achieved by lipofectamine. Consequently, an increase in anti-cancer/gene silencing efficacy was quantitatively observed as an effect of DOTAP-CPT/siRNA treatment, which was relatively higher than lipofectamine treatment. Conclusively, our experimental data quantitatively demonstrate that using DOTAP-CPT-siRNA specifically targeting (CSCs) chemo-resistant protein in vitro offers substantial potential for synergistic anti-cancer therapy.
Collapse
Affiliation(s)
| | - Solji Park
- a College of Pharmacy , Seoul National University , Seoul , Korea
| | - Sung-Yon Kim
- b Department of Biophysics and Chemical Biology , Seoul National University , Seoul , Korea
| | - Dal-Hee Min
- c Department of Chemistry , Seoul National University , Seoul , Korea
| | - Noo Li Jeon
- d School of Mechanical and Aerospace Engineering , Seoul National University , Seoul , Korea
| | - Joon Myong Song
- a College of Pharmacy , Seoul National University , Seoul , Korea
| |
Collapse
|
10
|
Chudy M, Tokarska K, Jastrzębska E, Bułka M, Drozdek S, Lamch Ł, Wilk KA, Brzózka Z. Lab-on-a-chip systems for photodynamic therapy investigations. Biosens Bioelectron 2017; 101:37-51. [PMID: 29035761 DOI: 10.1016/j.bios.2017.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023]
Abstract
In recent years photodynamic therapy (PDT) has received widespread attention in cancer treatment due to its smaller surgical trauma, better selectivity towards tumor cells, reduced side effects and possibility of repeatable treatment. Since cancer is the second cause of death worldwide, scientists constantly seek for new potential therapeutic agents including nanotechnology-based photosensitizers used in PDT. The new-designed nanostructures must be carefully studied and well characterized what require analytically useful and powerful tools that enable real progress in nanoscience development. This review describes the current status of PDT investigations using microfluidic Lab-on-a-Chip systems, including recent developments of nanoparticle-based PDT agents, their combinations with different drugs, designs and examples of in vitro applications. This review mainly lays emphasis on biological evaluation of FDA approved photosensitizing agents as well as newly designed nanophotosensitizers. It also highlights the analytical performances of various microfluidic Lab-on-a-chip systems for PDT efficacy analysis on 3D culture and discusses microsystems designs in detail.
Collapse
Affiliation(s)
- Michał Chudy
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Jastrzębska
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bułka
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sławomir Drozdek
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Zbigniew Brzózka
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
11
|
Lee GY, Park JH, Chang YW, Cho S, Kang MJ, Pyun JC. Redox cycling-based immunoassay for detection of carcinogenic embryonic antigen. Anal Chim Acta 2017; 971:33-39. [PMID: 28456281 DOI: 10.1016/j.aca.2017.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
Redox cycling based on an interdigitated electrode (IDE) was used as a highly sensitive immunoassay for carcinogenic embryonic antigen (CEA) through the quantification of 3,3',5,5'-tetramethylbenzidine (TMB). For the redox cycling process, one pair of interdigitated finger electrodes was used as the first working electrode (generator) for cyclic voltammetry of TMB, and another pair of interdigitated finger electrodes was used as the second working electrode (collector) for sequential application of potentials for reduction and oxidation of TMB. The reduction (and oxidation) products of TMB at the collector were supplied to the generator, and following sequential oxidization (and reduction) at the generator, again supplied to the collector. Such redox recycling processes between the generator and collector allowed signal amplification. In this work, the influences of the following factors on the redox cycling of TMB were analyzed: (1) the redox potential at the collector, (2) the gap between the interdigitated finger electrodes, and (3) the scan rate of the generator. The redox potential and electrode gap influences were simulated with COMSOL software and compared with empirical results. At the optimum redox potentials and electrode gap, redox cycling was estimated to be five-fold more sensitive for the quantification of TMB than conventional cyclic voltammetry using one pair of interdigitated finger electrodes as the working electrode. Finally, redox cycling was applied to a commercial immunoassay for CEA, and the sensitivity of redox cycling was three-fold higher than that of conventional cyclic voltammetry using a single set of interdigitated finger electrodes as the working electrode.
Collapse
Affiliation(s)
- Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Young Wook Chang
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Sungbo Cho
- Department of Biomedical Engineering, Gachon University, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea.
| |
Collapse
|