1
|
Kang X, Ma J, Cha H, Hansen HHWB, Chen X, Ta HT, Tian F, Nguyen NT, Klimenko A, Zhang J, Yuan D. Ultra-Stretchable Microfluidic Devices for Optimizing Particle Manipulation in Viscoelastic Fluids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61765-61773. [PMID: 39496575 DOI: 10.1021/acsami.4c15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Viscoelastic microfluidics leverages the unique properties of non-Newtonian fluids to manipulate and separate micro- or submicron particles. Channel geometry and dimension are crucial for device performance. Traditional rigid microfluidic devices require numerous iterations of fabrication and testing to optimize these parameters, which is time-consuming and costly. In this work, we developed a flexible microfluidic device using ultra-stretchable and biocompatible Flexdym material to overcome this issue. Our device allows for simultaneous modification of channel dimensions by external stretching. We fabricated a stretchable device with an initial square microchannel (30 μm × 30 μm), and the channel aspect ratio can be adjusted from 1 to 5 by external stretching. Next, the effects of aspect ratio, particle size, flow rate, and poly(ethylene oxide) (PEO) concentration that make the fluid viscoelastic on particle migration were investigated. Finally, we demonstrated the feasibility of our approach by testing channels with an aspect ratio of 3 for the separation of both particles and cells.
Collapse
Affiliation(s)
- Xiaoyue Kang
- School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia
| | - Jingtao Ma
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Xiangxun Chen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Hang T Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Fangbao Tian
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Alexander Klimenko
- School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| | - Dan Yuan
- School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
2
|
Petruzzellis I, Martínez Vázquez R, Caragnano S, Gaudiuso C, Osellame R, Ancona A, Volpe A. Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels. MICROMACHINES 2024; 15:1135. [PMID: 39337795 PMCID: PMC11434521 DOI: 10.3390/mi15091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Inertial focusing-based Lab-on-Chip systems represent a promising technology for cell sorting in various applications, thanks to their alignment with the ASSURED criteria recommended by the World Health Organization: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Delivered. Inertial focusing techniques using spiral microchannels offer a rapid, portable, and easy-to-prototype solution for cell sorting. Various microfluidic devices have been investigated in the literature to understand how hydrodynamic forces influence particle focusing in spiral microchannels. This is crucial for the effective prototyping of devices that allow for high-throughput and efficient filtration of particles of different sizes. However, a clear, comprehensive, and organized overview of current research in this area is lacking. This review aims to fill this gap by offering a thorough summary of the existing literature, thereby guiding future experimentation and facilitating the selection of spiral geometries and materials for cell sorting in microchannels. To this end, we begin with a detailed theoretical introduction to the physical mechanisms underlying particle separation in spiral microfluidic channels. We also dedicate a section to the materials and prototyping techniques most commonly used for spiral microchannels, highlighting and discussing their respective advantages and disadvantages. Subsequently, we provide a critical examination of the key details of inertial focusing across various cross-sections (rectangular, trapezoidal, triangular, hybrid) in spiral devices as reported in the literature.
Collapse
Affiliation(s)
- Isabella Petruzzellis
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
| | - Rebeca Martínez Vázquez
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | - Stefania Caragnano
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
| | - Caterina Gaudiuso
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | - Antonio Ancona
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| | - Annalisa Volpe
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| |
Collapse
|
3
|
Zhao H, Zhang Y, Hua D. A Review of Research Progress in Microfluidic Bioseparation and Bioassay. MICROMACHINES 2024; 15:893. [PMID: 39064404 PMCID: PMC11278910 DOI: 10.3390/mi15070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
With the rapid development of biotechnology, the importance of microfluidic bioseparation and bioassay in biomedicine, clinical diagnosis, and other fields has become increasingly prominent. Microfluidic technology, with its significant advantages of high throughput, automated operation, and low sample consumption, has brought new breakthroughs in the field of biological separation and bioassay. In this paper, the latest research progress in microfluidic technology in the field of bioseparation and bioassay is reviewed. Then, we focus on the methods of bioseparation including active separation, passive separation, and hybrid separation. At the same time, the latest research results of our group in particle separation are introduced. Finally, some application examples or methods for bioassay after particle separation are listed, and the current challenges and future prospects of bioseparation and bioassay are discussed.
Collapse
Affiliation(s)
| | | | - Dengxin Hua
- Center for Lidar Remote Sensing Research, School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China.; (H.Z.); (Y.Z.)
| |
Collapse
|
4
|
Wong YC, Yang S, Wen W. Prednisolone Nanoprecipitation with Dean Instability Microfluidics Mixer. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:652. [PMID: 38668146 PMCID: PMC11054107 DOI: 10.3390/nano14080652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Dean flow and Dean instability play an important role in inertial microfluidics, with a wide application in mixing and sorting. However, most studies are limited to Dean flow in the microscale. This work first reports the application of Dean instability on organic nanoparticles synthesis at De up to 198. The channel geometry (the tortuous channel) is optimized by simulation, in which the mixing efficiency is considered. With the optimized design, prednisolone nanoparticles are synthesized, and the size of the most abundant prednisolone nanoparticles is down to 100 nm with an increase in the Re and De and smallest size down to 46 nm. This work serves as an ice-breaker to the real application of Dean instability by demonstrating its ability in mixing and nanomaterials like nanoparticle synthesis.
Collapse
Affiliation(s)
- Yu Ching Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China; (Y.C.W.); (S.Y.)
| | - Siyu Yang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China; (Y.C.W.); (S.Y.)
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China; (Y.C.W.); (S.Y.)
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 510630, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518000, China
| |
Collapse
|
5
|
Saxena A, Kumar M, Mishra D, Singh K. Optimization of Newtonian fluid pressure in microcantilever integrated flexible microfluidic channel for healthcare application. Biomed Phys Eng Express 2024; 10:035015. [PMID: 38452735 DOI: 10.1088/2057-1976/ad3187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The demand for microfluidic pressure sensors is ever-increasing in various industries due to their crucial role in controlling fluid pressure within microchannels. While syringe pump setups have been traditionally used to regulate fluid pressure in microfluidic devices, they often result in larger setups that increase the cost of the device. To address this challenge and miniaturize the syringe pump setup, the researcher introduced integrated T-microcantilever-based microfluidic devices. In these devices, microcantilevers are incorporated, and their deflections correlate with the microchannel's pressure. When the relative pressure of fluid (plasma) changes, the T-microcantilever deflects, and the extent of this deflection provides information on fluid pressure within the microchannel. In this work, finite element method (FEM) based simulation was carried out to investigate the role of material, and geometric parameters of the cantilever, and the fluid viscosity on the pressure sensing capability of the T-microcantilever integrated microfluidic channel. The T-microcantilever achieves a maximum deflection of 127μm at a 5000μm/s velocity for Young's modulus(E) of 360 kPa of PDMS by employing a hinged structure. On the other hand, a minimum deflection of 4.05 × 10-5μm was attained at 5000μm/s for Young's modulus of 1 TPa for silicon. The maximum deflected angle of the T-cantilever is 20.46° for a 360 kPa Young's modulus while the minimum deflection angle of the T-cantilever is measured at 13.77° for 900 KPa at a fluid velocity of 5000μm s-1. The T-cantilever functions as a built-in microchannel that gauges the fluid pressure within the microchannel. The peak pressure, set at 8.86 Pa on the surface of the cantilever leads to a maximum deflection of 0.096μm (approximately 1μm) in the T-cantilever at a 1:1 velocity ratio. An optimized microfluidic device embedded with microchannels can optimize fluid pressure in a microchannel support cell separation.
Collapse
Affiliation(s)
- Ankur Saxena
- Department of Electronics and Communication Engineering, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
- FlexMEMS Research Centre (FMRC), Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| | - Mahesh Kumar
- Department of Computer Science and Engineering, Graphic Era Deemed to be University Dehradun, Dehradun-248001, Uttarakhand, India
| | - Dhaneshwar Mishra
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
- Multiscale Simulation Research Center (MSRC), Manipal University Jaipur, Jaipur--303007, Rajasthan, India
| | - Kulwant Singh
- Department of Electronics and Communication Engineering, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
- FlexMEMS Research Centre (FMRC), Manipal University Jaipur, Jaipur-303007, Rajasthan, India
- Skill Faculty of Engineering & Technology, Shri Vishwakarma Skill University, Palwal, Haryana 121102, India
| |
Collapse
|
6
|
Torres-Castro K, Acuña-Umaña K, Lesser-Rojas L, Reyes DR. Microfluidic Blood Separation: Key Technologies and Critical Figures of Merit. MICROMACHINES 2023; 14:2117. [PMID: 38004974 PMCID: PMC10672873 DOI: 10.3390/mi14112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Blood is a complex sample comprised mostly of plasma, red blood cells (RBCs), and other cells whose concentrations correlate to physiological or pathological health conditions. There are also many blood-circulating biomarkers, such as circulating tumor cells (CTCs) and various pathogens, that can be used as measurands to diagnose certain diseases. Microfluidic devices are attractive analytical tools for separating blood components in point-of-care (POC) applications. These platforms have the potential advantage of, among other features, being compact and portable. These features can eventually be exploited in clinics and rapid tests performed in households and low-income scenarios. Microfluidic systems have the added benefit of only needing small volumes of blood drawn from patients (from nanoliters to milliliters) while integrating (within the devices) the steps required before detecting analytes. Hence, these systems will reduce the associated costs of purifying blood components of interest (e.g., specific groups of cells or blood biomarkers) for studying and quantifying collected blood fractions. The microfluidic blood separation field has grown since the 2000s, and important advances have been reported in the last few years. Nonetheless, real POC microfluidic blood separation platforms are still elusive. A widespread consensus on what key figures of merit should be reported to assess the quality and yield of these platforms has not been achieved. Knowing what parameters should be reported for microfluidic blood separations will help achieve that consensus and establish a clear road map to promote further commercialization of these devices and attain real POC applications. This review provides an overview of the separation techniques currently used to separate blood components for higher throughput separations (number of cells or particles per minute). We present a summary of the critical parameters that should be considered when designing such devices and the figures of merit that should be explicitly reported when presenting a device's separation capabilities. Ultimately, reporting the relevant figures of merit will benefit this growing community and help pave the road toward commercialization of these microfluidic systems.
Collapse
Affiliation(s)
- Karina Torres-Castro
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
- Theiss Research, La Jolla, CA 92037, USA
| | - Katherine Acuña-Umaña
- Medical Devices Master’s Program, Instituto Tecnológico de Costa Rica (ITCR), Cartago 30101, Costa Rica
| | - Leonardo Lesser-Rojas
- Research Center in Atomic, Nuclear and Molecular Sciences (CICANUM), San José 11501, Costa Rica;
- School of Physics, Universidad de Costa Rica (UCR), San José 11501, Costa Rica
| | - Darwin R. Reyes
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| |
Collapse
|
7
|
Song J, Jang J, Kim T, Cho Y. Particle Separation in a Microchannel with a T-Shaped Cross-Section Using Co-Flow of Newtonian and Viscoelastic Fluids. MICROMACHINES 2023; 14:1863. [PMID: 37893300 PMCID: PMC10608855 DOI: 10.3390/mi14101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
In this study, we investigated the particle separation phenomenon in a microchannel with a T-shaped cross-section, a unique design detailed in our previous study. Utilizing a co-flow system within this T-shaped microchannel, we examined two types of flow configuration: one where a Newtonian fluid served as the inner fluid and a viscoelastic fluid as the outer fluid (Newtonian/viscoelastic), and another where both the inner and outer fluids were Newtonian fluids (Newtonian/Newtonian). We introduced a mixture of three differently sized particles into the microchannel through the outer fluid and observed that the co-flow of Newtonian/viscoelastic fluids effectively separated particles based on their size compared with Newtonian/Newtonian fluids. In this context, we evaluated and compared the particle separation efficiency, recovery rate, and enrichment factor across both co-flow configurations. The Newtonian/viscoelastic co-flow system demonstrated a superior efficiency and recovery ratio when compared with the Newtonian/Newtonian system. Additionally, we assessed the influence of the flow rate ratio between the inner and outer fluids on particle separation within each co-flow system. Our results indicated that increasing the flow rate ratio enhanced the separation efficiency, particularly in the Newtonian/viscoelastic co-flow configuration. Consequently, this study substantiates the potential of utilizing a Newtonian/viscoelastic co-flow system in a T-shaped straight microchannel for the simultaneous separation of three differently sized particles.
Collapse
Affiliation(s)
- Jinhyeuk Song
- Department of Mechanical System Design Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea;
| | - Jaekyeong Jang
- Department of Mechanical Design and Robot Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea;
| | - Taehoon Kim
- Department of Mechanical System Design Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea;
- Department of Mechanical Design and Robot Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea;
| | - Younghak Cho
- Department of Mechanical System Design Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea;
- Department of Mechanical Design and Robot Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea;
| |
Collapse
|
8
|
Aghaamoo M, Cardenas-Benitez B, Lee AP. A High-Throughput Microfluidic Cell Sorter Using a Three-Dimensional Coupled Hydrodynamic-Dielectrophoretic Pre-Focusing Module. MICROMACHINES 2023; 14:1813. [PMID: 37893250 PMCID: PMC10609158 DOI: 10.3390/mi14101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/29/2023]
Abstract
Dielectrophoresis (DEP) is a powerful tool for label-free sorting of cells, even those with subtle differences in morphological and dielectric properties. Nevertheless, a major limitation is that most existing DEP techniques can efficiently sort cells only at low throughputs (<1 mL h-1). Here, we demonstrate that the integration of a three-dimensional (3D) coupled hydrodynamic-DEP cell pre-focusing module upstream of the main DEP sorting region enables cell sorting with a 10-fold increase in throughput compared to conventional DEP approaches. To better understand the key principles and requirements for high-throughput cell separation, we present a comprehensive theoretical model to study the scaling of hydrodynamic and electrostatic forces on cells at high flow rate regimes. Based on the model, we show that the critical cell-to-electrode distance needs to be ≤10 µm for efficient cell sorting in our proposed microfluidic platform, especially at flow rates ≥ 1 mL h-1. Based on those findings, a computational fluid dynamics model and particle tracking analysis were developed to find optimum operation parameters (e.g., flow rate ratios and electric fields) of the coupled hydrodynamic-DEP 3D focusing module. Using these optimum parameters, we experimentally demonstrate live/dead K562 cell sorting at rates as high as 10 mL h-1 (>150,000 cells min-1) with 90% separation purity, 85% cell recovery, and no negative impact on cell viability.
Collapse
Affiliation(s)
- Mohammad Aghaamoo
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA; (M.A.); (B.C.-B.)
- Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM), University of California Irvine, Irvine, CA 92697, USA
| | - Braulio Cardenas-Benitez
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA; (M.A.); (B.C.-B.)
- Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM), University of California Irvine, Irvine, CA 92697, USA
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA; (M.A.); (B.C.-B.)
- Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM), University of California Irvine, Irvine, CA 92697, USA
- Department of Mechanical & Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Esan A, Vanholsbeeck F, Swift S, McGoverin CM. Continuous separation of bacterial cells from large debris using a spiral microfluidic device. BIOMICROFLUIDICS 2023; 17:044104. [PMID: 37576440 PMCID: PMC10415021 DOI: 10.1063/5.0159254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
With the global increase in food exchange, rapid identification and enumeration of bacteria has become crucial for protecting consumers from bacterial contamination. Efficient analysis requires the separation of target particles (e.g., bacterial cells) from food and/or sampling matrices to prevent matrix interference with the detection and analysis of target cells. However, studies on the separation of bacteria-sized particles and defined particles, such as bacterial cells, from heterogeneous debris, such as meat swab suspensions, are limited. In this study, we explore the use of passive-based inertial microfluidics to separate bacterial cells from debris, such as fascia, muscle tissues, and cotton fibers, extracted from ground meat and meat swabs-a novel approach demonstrated for the first time. Our objective is to evaluate the recovery efficiency of bacterial cells from large debris obtained from ground meat and meat swab suspensions using a spiral microfluidic device. In this study, we establish the optimal flow rates and Dean number for continuous bacterial cell and debris separation and a methodology to determine the percentage of debris removed from the sample suspension. Our findings demonstrate an average recovery efficiency of ∼ 80% for bacterial cells separated from debris in meat swab suspensions, while the average recovery efficiency from ground beef suspensions was ∼ 70%. Furthermore, approximately 50% of the debris in the ground meat suspension were separated from bacterial cells.
Collapse
Affiliation(s)
| | | | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
10
|
Hettiarachchi S, Cha H, Ouyang L, Mudugamuwa A, An H, Kijanka G, Kashaninejad N, Nguyen NT, Zhang J. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. LAB ON A CHIP 2023; 23:982-1010. [PMID: 36367456 DOI: 10.1039/d2lc00793b] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Gregor Kijanka
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
11
|
High-throughput isolation of cancer cells in spiral microchannel by changing the direction, magnitude and location of the maximum velocity. Sci Rep 2023; 13:3213. [PMID: 36828913 PMCID: PMC9958115 DOI: 10.1038/s41598-023-30275-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Circulating tumor cells (CTCs) are scarce cancer cells that rarely spread from primary or metastatic tumors inside the patient's bloodstream. Determining the genetic characteristics of these paranormal cells provides significant data to guide cancer staging and treatment. Cell focusing using microfluidic chips has been implemented as an effective method for enriching CTCs. The distinct equilibrium positions of particles with different diameters across the microchannel width in the simulation showed that it was possible to isolate and concentrate breast cancer cells (BCCs) from WBCs at a moderate Reynolds number. Therefore we demonstrate high throughput isolation of BCCs using a passive, size-based, label-free microfluidic method based on hydrodynamic forces by an unconventional (combination of long loops and U-turn) spiral microfluidic device for isolating both CTCs and WBCs with high efficiency and purity (more than 90%) at a flow rate about 1.7 mL/min, which has a high throughput compared to similar ones. At this golden flow rate, up to 92% of CTCs were separated from the cell suspension. Its rapid processing time, simplicity, and potential ability to collect CTCs from large volumes of patient blood allow the practical use of this method in many applications.
Collapse
|
12
|
Recent advances in non-optical microfluidic platforms for bioparticle detection. Biosens Bioelectron 2023; 222:114944. [PMID: 36470061 DOI: 10.1016/j.bios.2022.114944] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The effective analysis of the basic structure and functional information of bioparticles are of great significance for the early diagnosis of diseases. The synergism between microfluidics and particle manipulation/detection technologies offers enhanced system integration capability and test accuracy for the detection of various bioparticles. Most microfluidic detection platforms are based on optical strategies such as fluorescence, absorbance, and image recognition. Although optical microfluidic platforms have proven their capabilities in the practical clinical detection of bioparticles, shortcomings such as expensive components and whole bulky devices have limited their practicality in the development of point-of-care testing (POCT) systems to be used in remote and underdeveloped areas. Therefore, there is an urgent need to develop cost-effective non-optical microfluidic platforms for bioparticle detection that can act as alternatives to optical counterparts. In this review, we first briefly summarise passive and active methods for bioparticle manipulation in microfluidics. Then, we survey the latest progress in non-optical microfluidic strategies based on electrical, magnetic, and acoustic techniques for bioparticle detection. Finally, a perspective is offered, clarifying challenges faced by current non-optical platforms in developing practical POCT devices and clinical applications.
Collapse
|
13
|
Zhang N, Liang K, Liu Z, Sun T, Wang J. ANN-Based Instantaneous Simulation of Particle Trajectories in Microfluidics. MICROMACHINES 2022; 13:2100. [PMID: 36557399 PMCID: PMC9781979 DOI: 10.3390/mi13122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Microfluidics has shown great potential in cell analysis, where the flowing path in the microfluidic device is important for the final study results. However, the design process is time-consuming and labor-intensive. Therefore, we proposed an ANN method with three dense layers to analyze particle trajectories at the critical intersections and then put them together with the particle trajectories in straight channels. The results showed that the ANN prediction results are highly consistent with COMSOL simulation results, indicating the applicability of the proposed ANN method. In addition, this method not only shortened the simulation time but also lowered the computational expense, providing a useful tool for researchers who want to receive instant simulation results of particle trajectories.
Collapse
Affiliation(s)
- Naiyin Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kaicong Liang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhenya Liu
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Taotao Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junchao Wang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
14
|
Zhang S, Deng J, Li J, Tian F, Liu C, Fang L, Sun J. Advanced microfluidic technologies for isolating extracellular vesicles. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Iakovlev AP, Erofeev AS, Gorelkin PV. Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review. BIOSENSORS 2022; 12:956. [PMID: 36354465 PMCID: PMC9688261 DOI: 10.3390/bios12110956] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/02/2023]
Abstract
This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.
Collapse
Affiliation(s)
| | | | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia
| |
Collapse
|
16
|
Alteration of Inertial Focusing Positions in Triangular Channels Using Flexible PDMS Microfluidics. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Ji M, Liu Y, Duan J, Zang W, Wang Y, Qu Z, Zhang B. A Novel Perturbed Spiral Sheathless Chip for Particle Separation Based on Traveling Surface Acoustic Waves (TSAW). BIOSENSORS 2022; 12:bios12050325. [PMID: 35624627 PMCID: PMC9138558 DOI: 10.3390/bios12050325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/01/2023]
Abstract
The combination of the new perturbed spiral channel and a slanted gold interfingered transducer (IDT) is designed to achieve precise dynamic separation of target particles (20 μm). The offset micropillar array solves the defect that the high-width flow (avoiding the occurrence of channel blockage) channel cannot realize the focusing of small particles (5 μm, 10 μm). The relationship between the maximum design gap of the micropillar (Smax) and the particle radius (a) is given: Smax = 4a, which not only ensures that small particles will not pass through the micropillar gap, but also is compatible with the appropriate flow rates. A non-offset micropillar array was used to remove 20 μm particles in the corner area. The innovation of a spiral channel structure greatly improves the separation efficiency and purity of the separation chip. The separation chip designed by us achieves deflection separation of 20 μm particles at 24.95-41.58 MHz (κ = 1.09-1.81), at a flow rate of 1.2 mL per hour. When f = 33.7 MHz (κ = 1.47), the transverse migration distance of 20 μm particles is the smallest, and the separation purity and efficiency are as high as 92% and 100%, respectively.
Collapse
Affiliation(s)
- Miaomiao Ji
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (M.J.); (J.D.); (W.Z.); (Y.W.); (Z.Q.)
| | - Yukai Liu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China;
| | - Junping Duan
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (M.J.); (J.D.); (W.Z.); (Y.W.); (Z.Q.)
| | - Wenxuan Zang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (M.J.); (J.D.); (W.Z.); (Y.W.); (Z.Q.)
| | - Yongsheng Wang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (M.J.); (J.D.); (W.Z.); (Y.W.); (Z.Q.)
| | - Zeng Qu
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (M.J.); (J.D.); (W.Z.); (Y.W.); (Z.Q.)
| | - Binzhen Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (M.J.); (J.D.); (W.Z.); (Y.W.); (Z.Q.)
| |
Collapse
|
18
|
Ezrre S, Reyna MA, Anguiano C, Avitia RL, Márquez H. Lab-on-a-Chip Platforms for Airborne Particulate Matter Applications: A Review of Current Perspectives. BIOSENSORS 2022; 12:191. [PMID: 35448251 PMCID: PMC9024784 DOI: 10.3390/bios12040191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Lab-on-a-Chip (LoC) devices are described as versatile, fast, accurate, and low-cost platforms for the handling, detection, characterization, and analysis of a wide range of suspended particles in water-based environments. However, for gas-based applications, particularly in atmospheric aerosols science, LoC platforms are rarely developed. This review summarizes emerging LoC devices for the classification, measurement, and identification of airborne particles, especially those known as Particulate Matter (PM), which are linked to increased morbidity and mortality levels from cardiovascular and respiratory diseases. For these devices, their operating principles and performance parameters are introduced and compared while highlighting their advantages and disadvantages. Discussing the current applications will allow us to identify challenges and determine future directions for developing more robust LoC devices to monitor and analyze airborne PM.
Collapse
Affiliation(s)
- Sharon Ezrre
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Marco A. Reyna
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Citlalli Anguiano
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Roberto L. Avitia
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Heriberto Márquez
- Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico;
| |
Collapse
|
19
|
Abreu CM, Costa-Silva B, Reis RL, Kundu SC, Caballero D. Microfluidic platforms for extracellular vesicle isolation, analysis and therapy in cancer. LAB ON A CHIP 2022; 22:1093-1125. [PMID: 35253032 DOI: 10.1039/d2lc00006g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are small lipidic particles packed with proteins, DNA, messenger RNA and microRNAs of their cell of origin that act as critical players in cell-cell communication. These vesicles have been identified as pivotal mediators in cancer progression and the formation of metastatic niches. Hence, their isolation and analysis from circulating biofluids is envisioned as the next big thing in the field of liquid biopsies for early non-invasive diagnosis and patient follow-up. Despite the promise, current benchtop isolation strategies are not compatible with point-of-care testing in a clinical setting. Microfluidic platforms are disruptive technologies capable of recovering, analyzing, and quantifying EVs within clinical samples with limited volume, in a high-throughput manner with elevated sensitivity and multiplexing capabilities. Moreover, they can also be employed for the controlled production of synthetic EVs and effective drug loading to produce EV-based therapies. In this review, we explore the use of microfluidic platforms for the isolation, characterization, and quantification of EVs in cancer, and compare these platforms with the conventional methodologies. We also highlight the state-of-the-art in microfluidic approaches for EV-based cancer therapeutics. Finally, we analyze the currently active or recently completed clinical trials involving EVs for cancer diagnosis, treatment or therapy monitoring and examine the future of EV-based point-of-care testing platforms in the clinic and EV-based therapy production by the industry.
Collapse
Affiliation(s)
- Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, Av. Brasília, 1400-038, Lisbon, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
20
|
Jing W, Han HS. Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows. Anal Chem 2022; 94:3978-3986. [PMID: 35195992 DOI: 10.1021/acs.analchem.1c05116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The multiphase flow of droplets is widespread and used for both biological and nonbiological applications alike. However, the ensemble interactions of such systems are inherently nonlinear and complex, compounded by interfacial effects, making it a difficult many-body problem. In comparison, the self-assembly dynamics of solid particles in flow have long been studied and exploited in the field of inertial microfluidics. Here, we report novel self-assembly dynamics of liquid drops in microfluidic channels that contrast starkly with the established paradigm of inertial microfluidics, which stipulates that higher inertia leads to better spatial ordering. Instead, we find that ordering can be negatively correlated with inertia, while Dean flow can achieve long-range spatial periodicity on length scales at least 3 orders of magnitude greater than the drop diameter. Experimentally, we decouple droplet generation from ordering, enabling independent and systematic variation of key parameters, especially in ranges practical to droplet microfluidics. We find the inertia-dependent emergence of preferred drop separations and show that surfactant effects can influence the longitudinal ordering of multidrop arrays. The dynamics we describe have immediate utility to droplet microfluidics, where the ability to order drops is key to the streamlined integration of on-chip incubation with deterministic drop manipulation downstream─two important functions for biological assays. To this end, we demonstrate the use of passive inertial drop self-assembly to combine a delay line with picoinjection. These results not only present a largely unexplored direction for inertial microfluidics but also show the practical benefit of its unification with the versatile field of droplet microfluidics.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana─Champaign, 1206 W. Gregory Dr, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Bordhan P, Razavi Bazaz S, Jin D, Ebrahimi Warkiani M. Advances and enabling technologies for phase-specific cell cycle synchronisation. LAB ON A CHIP 2022; 22:445-462. [PMID: 35076046 DOI: 10.1039/d1lc00724f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell cycle synchronisation is the process of isolating cell populations at specific phases of the cell cycle from heterogeneous, asynchronous cell cultures. The process has important implications in targeted gene-editing and drug efficacy of cells and in studying cell cycle events and regulatory mechanisms involved in the cell cycle progression of multiple cell species. Ideally, cell cycle synchrony techniques should be applicable for all cell types, maintain synchrony across multiple cell cycle events, maintain cell viability and be robust against metabolic and physiological perturbations. In this review, we categorize cell cycle synchronisation approaches and discuss their operational principles and performance efficiencies. We highlight the advances and technological development trends from conventional methods to the more recent microfluidics-based systems. Furthermore, we discuss the opportunities and challenges for implementing high throughput cell synchronisation and provide future perspectives on synchronisation platforms, specifically hybrid cell synchrony modalities, to allow the highest level of phase-specific synchrony possible with minimal alterations in diverse types of cell cultures.
Collapse
Affiliation(s)
- Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
22
|
A Thermohydraulic Performance of Internal Spiral Finned Tube Based on the Inner Tube Secondary Flow. ENERGIES 2022. [DOI: 10.3390/en15020648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this article, the BSL k-ω model was chosen as the turbulence model to simulate the heat transfer and flow characteristics of the proposed tubes inserted with internal spiral fins when the Re was set as 3000 to 17,000. The numerical results agreed well with the empirical formula. The average deviations of Nu and f between the simulation results and empirical formula results were 5.11% and 8.45%, respectively. By means of numerical simulation, the impact of three configurational parameters on the thermal performance was studied, namely the pitch P, the height H, and the number N of the internal spiral fins. The results showed that the Nu and f of the internal spiral finned tube were 1.77–3.74 and 3.04–10.62 times higher than those of smooth tube, respectively. PEC was also taken into account, ranging from 1.038 to 1.652. When the Re was set as 3000, the PEC achieved the peak value of 1.652 under the height H of the fins at 5 mm, the number N was 8, and the pitch P was 75 mm. However, with the increase of Re, the effect of pressure drop on the comprehensive performance in the tube was stronger than that of thermal enhancement. However, the PEC gradually decreased as the Re increased from 3000 to 17,000. In addition, the velocity and temperature fields were obtained to investigate the mechanisms of heat transfer enhancement.
Collapse
|
23
|
Li X, Duan J, Qu Z, Wang J, Ji M, Zhang B. Continuous Particle Separation Driven by 3D Ag-PDMS Electrodes with Dielectric Electrophoretic Force Coupled with Inertia Force. MICROMACHINES 2022; 13:mi13010117. [PMID: 35056282 PMCID: PMC8780234 DOI: 10.3390/mi13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023]
Abstract
Cell separation has become @important in biological and medical applications. Dielectrophoresis (DEP) is widely used due to the advantages it offers, such as the lack of a requirement for biological markers and the fact that it involves no damage to cells or particles. This study aimed to report a novel approach combining 3D sidewall electrodes and contraction/expansion (CEA) structures to separate three kinds of particles with different sizes or dielectric properties continuously. The separation was achieved through the interaction between electrophoretic forces and inertia forces. The CEA channel was capable of sorting particles with different sizes due to inertial forces, and also enhanced the nonuniformity of the electric field. The 3D electrodes generated a non-uniform electric field at the same height as the channels, which increased the action range of the DEP force. Finite element simulations using the commercial software, COMSOL Multiphysics 5.4, were performed to determine the flow field distributions, electric field distributions, and particle trajectories. The separation experiments were assessed by separating 4 µm polystyrene (PS) particles from 20 µm PS particles at different flow rates by experiencing positive and negative DEP. Subsequently, the sorting performances of the 4 µm PS particles, 20 µm PS particles, and 4 µm silica particles with different solution conductivities were observed. Both the numerical simulations and the practical particle separation displayed high separating efficiency (separation of 4 µm PS particles, 94.2%; separation of 20 µm PS particles, 92.1%; separation of 4 µm Silica particles, 95.3%). The proposed approach is expected to open a new approach to cell sorting and separating.
Collapse
Affiliation(s)
- Xiaohong Li
- Key Laboratory of Instrumentation Science & Dynamic Measurement Ministry of Education, Micro Nano Technology Research Center, North University of China, Taiyuan 030051, China; (X.L.); (J.D.); (Z.Q.); (J.W.); (M.J.)
- Taiyuan Institute of Technology, Taiyuan 030051, China
| | - Junping Duan
- Key Laboratory of Instrumentation Science & Dynamic Measurement Ministry of Education, Micro Nano Technology Research Center, North University of China, Taiyuan 030051, China; (X.L.); (J.D.); (Z.Q.); (J.W.); (M.J.)
| | - Zeng Qu
- Key Laboratory of Instrumentation Science & Dynamic Measurement Ministry of Education, Micro Nano Technology Research Center, North University of China, Taiyuan 030051, China; (X.L.); (J.D.); (Z.Q.); (J.W.); (M.J.)
| | - Jiayun Wang
- Key Laboratory of Instrumentation Science & Dynamic Measurement Ministry of Education, Micro Nano Technology Research Center, North University of China, Taiyuan 030051, China; (X.L.); (J.D.); (Z.Q.); (J.W.); (M.J.)
| | - Miaomiao Ji
- Key Laboratory of Instrumentation Science & Dynamic Measurement Ministry of Education, Micro Nano Technology Research Center, North University of China, Taiyuan 030051, China; (X.L.); (J.D.); (Z.Q.); (J.W.); (M.J.)
| | - Binzhen Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement Ministry of Education, Micro Nano Technology Research Center, North University of China, Taiyuan 030051, China; (X.L.); (J.D.); (Z.Q.); (J.W.); (M.J.)
- Correspondence:
| |
Collapse
|
24
|
Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-Free Isolation of Exosomes Using Microfluidic Technologies. ACS NANO 2021; 15:17047-17079. [PMID: 34723478 DOI: 10.1021/acsnano.1c03469] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exosomes are cell-derived structures packaged with lipids, proteins, and nucleic acids. They exist in diverse bodily fluids and are involved in physiological and pathological processes. Although their potential for clinical application as diagnostic and therapeutic tools has been revealed, a huge bottleneck impeding the development of applications in the rapidly burgeoning field of exosome research is an inability to efficiently isolate pure exosomes from other unwanted components present in bodily fluids. To date, several approaches have been proposed and investigated for exosome separation, with the leading candidate being microfluidic technology due to its relative simplicity, cost-effectiveness, precise and fast processing at the microscale, and amenability to automation. Notably, avoiding the need for exosome labeling represents a significant advance in terms of process simplicity, time, and cost as well as protecting the biological activities of exosomes. Despite the exciting progress in microfluidic strategies for exosome isolation and the countless benefits of label-free approaches for clinical applications, current microfluidic platforms for isolation of exosomes are still facing a series of problems and challenges that prevent their use for clinical sample processing. This review focuses on the recent microfluidic platforms developed for label-free isolation of exosomes including those based on sieving, deterministic lateral displacement, field flow, and pinched flow fractionation as well as viscoelastic, acoustic, inertial, electrical, and centrifugal forces. Further, we discuss advantages and disadvantages of these strategies with highlights of current challenges and outlook of label-free microfluidics toward the clinical utility of exosomes.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
25
|
Xu X, Huang X, Sun J, Wang R, Yao J, Han W, Wei M, Chen J, Guo J, Sun L, Yin M. Recent progress of inertial microfluidic-based cell separation. Analyst 2021; 146:7070-7086. [PMID: 34761757 DOI: 10.1039/d1an01160j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation has consistently been a pivotal technology of sample preparation in biomedical research. Compared with conventional bulky cell separation technologies applied in the clinic, cell separation based on microfluidics can accurately manipulate the displacement of liquid or cells at the microscale, which has great potential in point-of-care testing (POCT) applications due to small device size, low cost, low sample consumption, and high operating accuracy. Among various microfluidic cell separation technologies, inertial microfluidics has attracted great attention due to its simple structure and high throughput. In recent years, many researchers have explored the principles and applications of inertial microfluidics and developed different channel structures, including straight channels, curved channels, and multistage channels. However, the recently developed multistage channels have not been discussed and classified in detail compared with more widely discussed straight and curved channels. Therefore, in this review, a comprehensive and detailed review of recent progress in the multistage channel is presented. According to the channel structure, the inertial microfluidic separation technology is divided into (i) straight channel, (ii) curved channel, (iii) composite channel, and (iv) integrated device. The structural development of straight and curved channels is discussed in detail. And based on straight and curved channels, the multistage cell separation structures are reviewed, with a special focus on a variety of latest structures and related innovations of composite and integrated channels. Finally, the future prospects for the existing challenges in the development of inertial microfluidic cell separation technology are presented.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Xiwei Huang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jingjing Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Renjie Wang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jiangfan Yao
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Wentao Han
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Maoyu Wei
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jin Chen
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jinhong Guo
- School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lingling Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Ming Yin
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
26
|
Ghadiri MM, Hosseini SA, Sadatsakkak SA, Rajabpour A. Inertial microfluidics: Determining the effect of geometric key parameters on capture efficiency along with a feasibility evaluation for bone marrow cells sorting. Biomed Microdevices 2021; 23:41. [PMID: 34379212 DOI: 10.1007/s10544-021-00577-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
Despite great developments in inertial microfluidics, there is still a lack of knowledge to precisely define the particles' behavior in the microchannels. In the present study, as a prerequisite to experimental studies, numerical simulations have been used to study the capture efficiency of target particles in the contraction-expansion microchannel, aiming to provide an estimation of the conditions at which the channel performs best. Fluid analysis based on Navier-Stokes equations is conducted using the finite element method to determine the streamlines and vortices. The highest capture efficiency for 10, 15, and 19-micron particles occurs when the center of the vortex is approximately in the middle of the wide section (at the flow rate of 0.35 ml/min). In addition to investigating the effect of particle diameter and input flow rate, the effect of channel geometry parameters (channel height and initial length of the channel) on particle trapping has also been studied. Also, to consider great interest in separating different-sized bioparticles from a sample, a three-stage platform has been designed to separate four types of bone marrow cells and evaluate the possibility of using contraction-expansion channels in this application.
Collapse
Affiliation(s)
- Mohammad Mahdi Ghadiri
- Department of Mechanical Engineering, Imam Khomeini International University, Qazvin, Iran
| | - Seied Ali Hosseini
- Department of Electrical Engineering, Imam Khomeini International University, Qazvin, Iran.
| | | | - Ali Rajabpour
- Department of Mechanical Engineering, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
27
|
Kwizera EA, Sun M, White AM, Li J, He X. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. ACS Biomater Sci Eng 2021; 7:2043-2063. [PMID: 33871975 PMCID: PMC8205986 DOI: 10.1021/acsbiomaterials.1c00083] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Manipulation of microscale bioparticles including living cells is of great significance to the broad bioengineering and biotechnology fields. Dielectrophoresis (DEP), which is defined as the interactions between dielectric particles and the electric field, is one of the most widely used techniques for the manipulation of bioparticles including cell separation, sorting, and trapping. Bioparticles experience a DEP force if they have a different polarization from the surrounding media in an electric field that is nonuniform in terms of the intensity and/or phase of the electric field. A comprehensive literature survey shows that the DEP-based microfluidic devices for manipulating bioparticles can be categorized according to the methods of creating the nonuniformity via patterned microchannels, electrodes, and media to generate the DEP force. These methods together with the theory of DEP force generation are described in this review, to provide a summary of the methods and materials that have been used to manipulate various bioparticles for various specific biological outcomes. Further developments of DEP-based technologies include identifying materials that better integrate with electrodes than current popular materials (silicone/glass) and improving the performance of DEP manipulation of bioparticles by combining it with other methods of handling bioparticles. Collectively, DEP-based microfluidic manipulation of bioparticles holds great potential for various biomedical applications.
Collapse
Affiliation(s)
- Elyahb A. Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Mingrui Sun
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alisa M. White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Chen Y, Li Z, Bai X, Feng Y, Feng L, Zhang D, Chen H, Chen H. Reduction of Erythrocyte Fluid Adaptability Due to Cell Membrane Hardening Based on Single-Cell Analysis. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Tavassoli H, Rorimpandey P, Kang YC, Carnell M, Brownlee C, Pimanda JE, Chan PPY, Chandrakanthan V. Label-Free Isolation and Single Cell Biophysical Phenotyping Analysis of Primary Cardiomyocytes Using Inertial Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006176. [PMID: 33369875 DOI: 10.1002/smll.202006176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To advance the understanding of cardiomyocyte (CM) identity and function, appropriate tools to isolate pure primary CMs are needed. A label-free method to purify viable CMs from mouse neonatal hearts is developed using a simple particle size-based inertial microfluidics biochip achieving purities of over 90%. Purified CMs are viable and retained their identity and function as depicted by the expression of cardiac-specific markers and contractility. The physico-mechanical properties of sorted cells are evaluated using downstream real-time deformability cytometry. CMs exhibited different physico-mechanical properties when compared with non-CMs. Taken together, this CM isolation and phenotyping method could serve as a valuable tool to progress the understanding of CM identity and function, and ultimately benefit cell therapy and diagnostic applications.
Collapse
Affiliation(s)
- Hossein Tavassoli
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prunella Rorimpandey
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Young Chan Kang
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chris Brownlee
- Flow Cytometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John E Pimanda
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, 2052, Australia
| | - Peggy P Y Chan
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Vashe Chandrakanthan
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
30
|
Inertial Microfluidics-Based Separation of Microalgae Using a Contraction-Expansion Array Microchannel. MICROMACHINES 2021; 12:mi12010097. [PMID: 33477950 PMCID: PMC7833403 DOI: 10.3390/mi12010097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/21/2022]
Abstract
Microalgae separation technology is essential for both executing laboratory-based fundamental studies and ensuring the quality of the final algal products. However, the conventional microalgae separation technology of micropipetting requires highly skilled operators and several months of repeated separation to obtain a microalgal single strain. This study therefore aimed at utilizing microfluidic cell sorting technology for the simple and effective separation of microalgae. Microalgae are characterized by their various morphologies with a wide range of sizes. In this study, a contraction-expansion array microchannel, which utilizes these unique properties of microalgae, was specifically employed for the size-based separation of microalgae. At Reynolds number of 9, two model algal cells, Chlorella vulgaris (C. vulgaris) and Haematococcus pluvialis (H. pluvialis), were successfully separated without showing any sign of cell damage, yielding a purity of 97.9% for C. vulgaris and 94.9% for H. pluvialis. The result supported that the inertia-based separation technology could be a powerful alternative to the labor-intensive and time-consuming conventional microalgae separation technologies.
Collapse
|
31
|
Huang D, Man J, Jiang D, Zhao J, Xiang N. Inertial microfluidics: Recent advances. Electrophoresis 2020; 41:2166-2187. [PMID: 33027533 DOI: 10.1002/elps.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 02/24/2024]
Abstract
Inertial microfluidics has attracted significant attentions in last decade due to its superior advantages of high throughput, label- and external field-free operation, simplicity, and low cost. A wide variety of channel geometry designs were demonstrated for focusing, concentrating, isolating, or separating of various bioparticles such as blood components, circulating tumor cells, bacteria, and microalgae. In this review, we first briefly introduce the physics of inertial migration and Dean flow for allowing the readers with diverse backgrounds to have a better understanding of the fundamental mechanisms of inertial microfluidics. Then, we present a comprehensive review of the recent advances and applications of inertial microfluidic devices according to different channel geometries ranging from straight channels, curved channels to contraction-expansion-array channels. Finally, the challenges and future perspective of inertial microfluidics are discussed. Owing to its superior benefit for particle manipulation, the inertial microfluidics will play a more important role in biology and medicine applications.
Collapse
Affiliation(s)
- Di Huang
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Jiaxiang Man
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jiyun Zhao
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
32
|
Lu X, Chow JJM, Koo SH, Tan TY, Jiang B, Ai Y. Enhanced Molecular Diagnosis of Bloodstream Candida Infection with Size-Based Inertial Sorting at Submicron Resolution. Anal Chem 2020; 92:15579-15586. [DOI: 10.1021/acs.analchem.0c03718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoguang Lu
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 487372 Singapore
| | - Joycelyn Jia Ming Chow
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 487372 Singapore
| | - Seok Hwee Koo
- Clinical Trials & Research Unit, Changi General Hospital, 529889 Singapore
| | - Thean Yen Tan
- Clinical Trials & Research Unit, Changi General Hospital, 529889 Singapore
| | - Boran Jiang
- Department of Laboratory Medicine, Changi General Hospital, 529889 Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 487372 Singapore
| |
Collapse
|
33
|
Tang W, Zhu S, Jiang D, Zhu L, Yang J, Xiang N. Channel innovations for inertial microfluidics. LAB ON A CHIP 2020; 20:3485-3502. [PMID: 32910129 DOI: 10.1039/d0lc00714e] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inertial microfluidics has gained significant attention since first being proposed in 2007 owing to the advantages of simplicity, high throughput, precise manipulation, and freedom from an external field. Superior performance in particle focusing, filtering, concentrating, and separating has been demonstrated. As a passive technology, inertial microfluidics technology relies on the unconventional use of fluid inertia in an intermediate Reynolds number range to induce inertial migration and secondary flow, which depend directly on the channel structure, leading to particle migration to the lateral equilibrium position or trapping in a specific cavity. With the advances in micromachining technology, many channel structures have been designed and fabricated in the past decade to explore the fundamentals and applications of inertial microfluidics. However, the channel innovations for inertial microfluidics have not been discussed comprehensively. In this review, the inertial particle manipulations and underlying physics in conventional channels, including straight, spiral, sinusoidal, and expansion-contraction channels, are briefly described. Then, recent innovations in channel structure for inertial microfluidics, especially channel pattern modification and unconventional cross-sectional shape, are reviewed. Finally, the prospects for future channel innovations in inertial microfluidic chips are also discussed. The purpose of this review is to provide guidance for the continued study of innovative channel designs to improve further the accuracy and throughput of inertial microfluidics.
Collapse
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, 210023, China.
| | | | | | | | | | | |
Collapse
|
34
|
A Review of Secondary Flow in Inertial Microfluidics. MICROMACHINES 2020; 11:mi11050461. [PMID: 32354106 PMCID: PMC7280964 DOI: 10.3390/mi11050461] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
Inertial microfluidic technology, which can manipulate the target particle entirely relying on the microchannel characteristic geometry and intrinsic hydrodynamic effect, has attracted great attention due to its fascinating advantages of high throughput, simplicity, high resolution and low cost. As a passive microfluidic technology, inertial microfluidics can precisely focus, separate, mix or trap target particles in a continuous and high-flow-speed manner without any extra external force field. Therefore, it is promising and has great potential for a wide range of industrial, biomedical and clinical applications. In the regime of inertial microfluidics, particle migration due to inertial effects forms multiple equilibrium positions in straight channels. However, this is not promising for particle detection and separation. Secondary flow, which is a relatively minor flow perpendicular to the primary flow, may reduce the number of equilibrium positions as well as modify the location of particles focusing within channel cross sections by applying an additional hydrodynamic drag. For secondary flow, the pattern and magnitude can be controlled by the well-designed channel structure, such as curvature or disturbance obstacle. The magnitude and form of generated secondary flow are greatly dependent on the disturbing microstructure. Therefore, many inventive and delicate applications of secondary flow in inertial microfluidics have been reported. In this review, we comprehensively summarize the usage of the secondary flow in inertial microfluidics.
Collapse
|
35
|
Kang G, Carlson DW, Kang TH, Lee S, Haward SJ, Choi I, Shen AQ, Chung AJ. Intracellular Nanomaterial Delivery via Spiral Hydroporation. ACS NANO 2020; 14:3048-3058. [PMID: 32069037 DOI: 10.1021/acsnano.9b07930] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent nanobiotechnology developments, a wide variety of functional nanomaterials and engineered biomolecules have been created, and these have numerous applications in cell biology. For these nanomaterials to fulfill their promises completely, they must be able to reach their biological targets at the subcellular level and with a high level of specificity. Traditionally, either nanocarrier- or membrane disruption-based method has been used to deliver nanomaterials inside cells; however, these methods are suboptimal due to their toxicity, inconsistent delivery, and low throughput, and they are also labor intensive and time-consuming, highlighting the need for development of a next-generation, intracellular delivery system. This study reports on the development of an intracellular nanomaterial delivery platform, based on unexpected cell-deformation phenomena via spiral vortex and vortex breakdown exerted in the cross- and T-junctions at moderate Reynolds numbers. These vortex-induced cell deformation and sequential restoration processes open cell membranes transiently, allowing effective and robust intracellular delivery of nanomaterials in a single step without the aid of carriers or external apparatus. By using the platform described here (termed spiral hydroporator), we demonstrate the delivery of different nanomaterials, including gold nanoparticles (200 nm diameter), functional mesoporous silica nanoparticles (150 nm diameter), dextran (hydrodynamic diameters between 2-55 nm), and mRNA, into different cell types. We demonstrate here that the system is highly efficient (up to 96.5%) with high throughput (up to 1 × 106 cells/min) and rapid delivery (∼1 min) while maintaining high levels of cell viability (up to 94%).
Collapse
Affiliation(s)
- GeoumYoung Kang
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel W Carlson
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Tae Ho Kang
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Simon J Haward
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Aram J Chung
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
36
|
Hydrophoresis — A Microfluidic Principle for Directed Particle Migration in Flow. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4107-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Ahmed H, Ramesan S, Lee L, Rezk AR, Yeo LY. On-Chip Generation of Vortical Flows for Microfluidic Centrifugation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903605. [PMID: 31535785 DOI: 10.1002/smll.201903605] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/20/2019] [Indexed: 05/21/2023]
Abstract
Microcentrifugation constitutes an important part of the microfluidic toolkit in a similar way that centrifugation is crucial to many macroscopic procedures, given that micromixing, sample preconcentration, particle separation, component fractionation, and cell agglomeration are essential operations in small scale processes. Yet, the dominance of capillary and viscous effects, which typically tend to retard flow, over inertial and gravitational forces, which are often useful for actuating flows and hence centrifugation, at microscopic scales makes it difficult to generate rotational flows at these dimensions, let alone with sufficient vorticity to support efficient mixing, separation, concentration, or aggregation. Herein, the various technologies-both passive and active-that have been developed to date for vortex generation in microfluidic devices are reviewed. Various advantages or limitations associated with each are outlined, in addition to highlighting the challenges that need to be overcome for their incorporation into integrated microfluidic devices.
Collapse
Affiliation(s)
- Heba Ahmed
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Lillian Lee
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
38
|
Kim JA, Kommajosula A, Choi YH, Lee JR, Jeon EC, Ganapathysubramanian B, Lee W. Inertial focusing in triangular microchannels with various apex angles. BIOMICROFLUIDICS 2020; 14:024105. [PMID: 32231759 PMCID: PMC7093208 DOI: 10.1063/1.5133640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/11/2020] [Indexed: 05/29/2023]
Abstract
We consider inertial focusing of particles in channels with triangular cross sections. The number and the location of inertial focusing positions in isosceles triangular channels can change with varying blockage ratios (a/H) and Reynolds numbers (Re). In triangular channels, asymmetric velocity gradient induced by the sloped sidewalls leads to changes in the direction and the strength of the inertial lift forces. Therefore, varying the configuration (specifically, angle) of the triangular cross section is expected to lead to a better understanding of the nature of the inertial lift forces. We fabricated triangular microchannels with various apex angles using channel molds that were shaped by a planing process, which provides precise apex angles and sharp corners. The focusing position shift was found to be affected by the channel cross section, as expected. It was determined that the direction of the focusing position shift can be reversed depending on whether the vertex is acute or obtuse. More interestingly, corner focusing modes and splitting of the corner focusing were observed with increasing Re, which could explain the origin of the inertial focusing position changes in triangular channels. We conducted fluid dynamic simulations to create force maps under various conditions. These force maps were analyzed to identify the basins of attraction of various attractors and pinpoint focusing locations using linear stability analysis. Calculating the relative sizes of the basins of attractions and exhaustively identifying the focusing positions, which are very difficult to investigate experimentally, provided us a better understanding of trends in the focusing mechanism.
Collapse
Affiliation(s)
- Jeong-ah Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Aditya Kommajosula
- Department of Mechanical Engineering, Iowa State University (ISU), Ames, Iowa 50011, USA
| | - Yo-han Choi
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea
| | - Je-Ryung Lee
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, South Korea
| | - Eun-chae Jeon
- School of Materials Science & Engineering, University of Ulsan, Ulsan 44610, South Korea
| | | | - Wonhee Lee
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
39
|
Suwannaphan T, Srituravanich W, Sailasuta A, Piyaviriyakul P, Bhanpattanakul S, Jeamsaksiri W, Sripumkhai W, Pimpin A. Investigation of Leukocyte Viability and Damage in Spiral Microchannel and Contraction-Expansion Array. MICROMACHINES 2019; 10:E772. [PMID: 31726665 PMCID: PMC6915465 DOI: 10.3390/mi10110772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
Inertial separation techniques in a microfluidic system have been widely employed in the field of medical diagnosis for a long time. Despite no requirement of external forces, it requires strong hydrodynamic forces that could potentially cause cell damage or loss during the separation process. This might lead to the wrong interpretation of laboratory results since the change of structures and functional characteristics of cells due to the hydrodynamic forces that occur are not taken into account. Therefore, it is important to investigate the cell viability and damage along with the separation efficacy of the device in the design process. In this study, two inertial separation techniques-spiral microchannel and contraction-expansion array (CEA)-were examined to evaluate cell viability, morphology and intracellular structures using a trypan blue assay (TB), Scanning Electron Microscopy (SEM) and Wright-Giemsa stain. We discovered that cell loss was not significantly found in a feeding system, i.e., syringe, needle and tube, but mostly occurred in the inertial separation devices while the change of cell morphology and intracellular structures were found in the feeding system and inertial separation devices. Furthermore, percentage of cell loss was not significant in both devices (7-10%). However, the change of cell morphology was considerably increased (30%) in spiral microchannel (shear stress dominated) rather than in CEA (12%). In contrast, the disruption of intracellular structures was increased (14%) in CEA (extensional and shear stress dominated equally) rather than spiral microchannel (2%). In these experiments, leukocytes of canine were used as samples because their sizes are varied in a range between 7-12 µm, and they are commonly used as a biomarker in many clinical and medical applications.
Collapse
Affiliation(s)
- Thammawit Suwannaphan
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (T.S.); (W.S.)
| | - Werayut Srituravanich
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (T.S.); (W.S.)
| | - Achariya Sailasuta
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Prapruddee Piyaviriyakul
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (S.B.)
| | - Suchaya Bhanpattanakul
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (S.B.)
| | - Wutthinan Jeamsaksiri
- Thailand Microelectronic Centre, Ministry of Science and Technology, Chachoengsao 24000, Thailand; (W.J.); (W.S.)
| | - Witsaroot Sripumkhai
- Thailand Microelectronic Centre, Ministry of Science and Technology, Chachoengsao 24000, Thailand; (W.J.); (W.S.)
| | - Alongkorn Pimpin
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (T.S.); (W.S.)
| |
Collapse
|
40
|
Kizer ME, Deng Y, Kang G, Mikael PE, Wang X, Chung AJ. Hydroporator: a hydrodynamic cell membrane perforator for high-throughput vector-free nanomaterial intracellular delivery and DNA origami biostability evaluation. LAB ON A CHIP 2019; 19:1747-1754. [PMID: 30964485 DOI: 10.1039/c9lc00041k] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The successful intracellular delivery of exogenous macromolecules is crucial for a variety of applications ranging from basic biology to the clinic. However, traditional intracellular delivery methods such as those relying on viral/non-viral nanocarriers or physical membrane disruptions suffer from low throughput, toxicity, and inconsistent delivery performance and are time-consuming and/or labor-intensive. In this study, we developed a single-step hydrodynamic cell deformation-induced intracellular delivery platform named "hydroporator" without the aid of vectors or a complicated/costly external apparatus. By utilizing only fluid inertia, the platform focuses, guides, and stretches cells robustly without clogging. This rapid hydrodynamic cell deformation leads to both convective and diffusive delivery of external (macro)molecules into the cell through transient plasma membrane discontinuities. Using this hydroporation approach, highly efficient (∼90%), high-throughput (>1 600 000 cells per min), and rapid delivery (∼1 min) of different (macro)molecules into a wide range of cell types was achieved while maintaining high cell viability. Taking advantage of the ability of this platform to rapidly deliver large molecules, we also systematically investigated the temporal biostability of vanilla DNA origami nanostructures in living cells for the first time. Experiments using two DNA origami (tube- and donut-shaped) nanostructures revealed that these nanostructures can maintain their structural integrity in living cells for approximately 1 h after delivery, providing new opportunities for the rapid characterization of intracellular DNA biostability.
Collapse
Affiliation(s)
- Megan E Kizer
- Department of Chemistry and Chemical Biology, Centre for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute (RPI), Troy, NY 12180, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Chung AJ. A Minireview on Inertial Microfluidics Fundamentals: Inertial Particle Focusing and Secondary Flow. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3110-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|