1
|
Zhuang K, Shu X, Xie W. Konjac glucomannan-based composite materials: Construction, biomedical applications, and prospects. Carbohydr Polym 2024; 344:122503. [PMID: 39218541 DOI: 10.1016/j.carbpol.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Konjac glucomannan (KGM) as an emerging natural polymer has attracted increasing interests owing to its film-forming properties, excellent gelation, non-toxic characteristics, strong adhesion, good biocompatibility, and easy biodegradability. Benefiting from these superior performances, KGM has been widely applied in the construction of multiple composite materials to further improve their intrinsic performances (e.g., mechanical strength and properties). Up to now, KGM-based composite materials have obtained widespread applications in diverse fields, especially in the field of biomedical. Therefore, a timely review of relevant research progresses is important for promoting the development of KGM-based composite materials. Innovatively, firstly, this review briefly introduced the structure properties and functions of KGMs based on the unique perspective of the biomedical field. Then, the latest advances on the preparation and properties of KGM-based composite materials (i.e., gels, microspheres, films, nanofibers, nanoparticles, etc.) were comprehensively summarized. Finally, the promising applications of KGM-based composite materials in the field of biomedical are comprehensively summarized and discussed, involving drug delivery, wound healing, tissue engineering, antibacterial, tumor treatment, etc. Impressively, the remaining challenges and opportunities in this promising field were put forward. This review can provide a reference for guiding and promoting the design and biomedical applications of KGM-based composites.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing, China; National Coarse Cereals Engineering Research Center, Daqing, China.
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjing Xie
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
2
|
Tang X, Deng G, Yang L, Wang X, Xiang W, Zou Y, Lu N. Konjac glucomannan-fibrin composite hydrogel as a model for ideal scaffolds for cell-culture meat. Food Res Int 2024; 187:114425. [PMID: 38763673 DOI: 10.1016/j.foodres.2024.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
In this study, composite gel was prepared from konjac glucomannan (KGM) and fibrin (FN). Composite gels with different concentration ratios were compared in terms of their mechanical properties, rheological properties, water retention, degradation rate, microstructure and biocompatibility. The results showed that the composite gels had better gel strength and other properties than non-composite gels. In particular, composite hydrogels with low Young's modulus formed when the KGM concentration was 0.8% and the FN concentration was 1.2%. The two components were cross linked through hydrogen-bond interaction, which formed a more stable gel structure with excellent water retention and in-vitro degradation rates, which were conducive to myogenic differentiation of ectomesenchymal stem cells (EMSCs). KGM-FN composite gel was applied to the preparation of cell-culture meat, which had similar texture properties and main nutrients to animal meat as well as higher content of dry base protein and dry base carbohydrate.
Collapse
Affiliation(s)
- Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Centre for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Guoliang Deng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xinhe Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen Xiang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zou
- Wuxi Children's Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu Province, China
| | - Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Centre for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Liu S, Niu L, Tu J, Xiao J. The alleviative effect of curdlan on the quality deterioration of konjac glucomannan thermo-irreversible gels after commercial sterilization at 121 °C. Int J Biol Macromol 2023; 238:124134. [PMID: 36958457 DOI: 10.1016/j.ijbiomac.2023.124134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
This work employed different curdlan concentrations (0.00 %, 1.00 %, 1.50 %, 2.00 %, and 2.50 %) to alleviate the quality degradation of konjac glucomannan (KGM) gels after commercial sterilization at 121 °C for 15 min. The results showed that all levels of curdlan could retard the deterioration of KGM gels, with the best effect at 2.00 %. After commercial sterilization, incorporating curdlan into KGM gels greatly reduced the Tan σ (G"/ G'), total relaxation time and half-free water from 0.52, 89.85 ms and 98.26 % to 0.27, 38.48 ms and 21.42 %, respectively. Moreover, the addition of curdlan imparted a better texture to KGM gels, as reflected in the increase of hardness, springiness, water-holding capacity and whiteness value from 1400.85 g, 0.42, 87.92 % and 33.33 to 3461.68 g, 0.80, 96.50 % and 49.27, respectively. Furthermore, SEM images revealed that curdlan endowed KGM gels with a tighter structure and smaller pores, and the pore size distribution was reduced from 113.46 μm to17.91 μm, indicating a stronger interaction among molecules, as evidenced by XRD and FTIR results. KGM gels with curdlan possessed less proportion of complete crystallites and crystalline region. These findings suggested that curdlan can be the potently protectant for improving the quality of commercially sterilized KGM gel-based products.
Collapse
Affiliation(s)
- Sha Liu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jin Tu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Carbonised Human Hair Incorporated in Agar/KGM Bioscaffold for Tissue Engineering Application: Fabrication and Characterisation. Polymers (Basel) 2022; 14:polym14245489. [PMID: 36559856 PMCID: PMC9785055 DOI: 10.3390/polym14245489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Carbon derived from biomass waste usage is rising in various fields of application due to its availability, cost-effectiveness, and sustainability, but it remains limited in tissue engineering applications. Carbon derived from human hair waste was selected to fabricate a carbon-based bioscaffold (CHAK) due to its ease of collection and inexpensive synthesis procedure. The CHAK was fabricated via gelation, rapid freezing, and ethanol immersion and characterised based on their morphology, porosity, Fourier transforms infrared (FTIR), tensile strength, swelling ability, degradability, electrical conductivity, and biocompatibility using Wharton’s jelly-derived mesenchymal stem cells (WJMSCs). The addition of carbon reduced the porosity of the bioscaffold. Via FTIR analysis, the combination of carbon, agar, and KGM was compatible. Among the CHAK, the 3HC bioscaffold displayed the highest tensile strength (62.35 ± 29.12 kPa). The CHAK also showed excellent swelling and water uptake capability. All bioscaffolds demonstrated a slow degradability rate (<50%) after 28 days of incubation, while the electrical conductivity analysis showed that the 3AHC bioscaffold had the highest conductivity compared to other CHAK bioscaffolds. Our findings also showed that the CHAK bioscaffolds were biocompatible with WJMSCs. These findings showed that the CHAK bioscaffolds have potential as bioscaffolds for tissue engineering applications.
Collapse
|
5
|
Nezhad-Mokhtari P, Asadi N, Rahmani Del Bakhshayesh A, Milani M, Gama M, Ghorbani M, Akbarzadeh A. Honey-Loaded Reinforced Film Based on Bacterial Nanocellulose/Gelatin/Guar Gum as an Effective Antibacterial Wound Dressing. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, the use of bacterial nanocellulose (BNC) produced by Acetobacter, which has suitable properties for tissue engineering application as a perfect wound dressing, has attracted considerable attention. For this purpose, we successfully developed honey loaded BNC-reinforced gelatin/dialdehyde-modified
guar gum films (H/BNC/Ge/D-GG). Prepared films were studied for their morphological, thermal stability, mechanical, water solubility and degradability properties. The physicochemical properties of the developed films with or without honey loading were studied. The results indicated that by
enhancing the honey content of the film, the degradation behavior, adhesion and proliferation of NIH-3T3 fibroblast cells were improved. The films with 15 wt% of honey revealed inhibition activity against S. aureus (13.0±0.1 mm) and E. coli (15.0±1.0 mm) bacteria.
Cell culture results demonstrated that the prepared films had good cytocompatibility. Based on the results, the prepared H/BNC/Ge/D-GG films appear to have high potential for antibacterial wound dressings.
Collapse
Affiliation(s)
- Parinaz Nezhad-Mokhtari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Miguel Gama
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4715057, Braga, Portugal
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| |
Collapse
|