1
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
2
|
Suryavanshi P, Langton R, Fairhead K, Glykys J. Brief and Diverse Excitotoxic Insults Increase the Neuronal Nuclear Membrane Permeability in the Neonatal Brain, Resulting in Neuronal Dysfunction and Cell Death. J Neurosci 2024; 44:e0350242024. [PMID: 39214703 PMCID: PMC11466074 DOI: 10.1523/jneurosci.0350-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Neuronal cytotoxic edema is implicated in neuronal injury and death, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated, and new treatment approaches are needed. We explored Ca2+-dependent downstream effects after neuronal cytotoxic edema caused by diverse injuries in mice of both sexes using multiphoton Ca2+ imaging in vivo [Postnatal Day (P)12-17] and in acute brain slices (P8-12). After different excitotoxic insults, cytosolic GCaMP6s translocated into the nucleus after a few minutes in a subpopulation of neurons, persisting for hours. We used an automated morphology-detection algorithm to detect neuronal soma and quantified the nuclear translocation of GCaMP6s as the nuclear to cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios occurred concurrently with persistent elevation in Ca2+ loads and could also occur independently from neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with the increased nuclear pore size. The nuclear accumulation of GCaMP6s in neurons led to neocortical circuit dysfunction, mitochondrial pathology, and increased cell death. Inhibiting calpains, a family of Ca2+-activated proteases, prevented elevated N/C ratios and neuronal swelling. In summary, in the developing brain, we identified a calpain-dependent alteration of nuclear transport in a subpopulation of neurons after disease-relevant insults leading to long-term circuit dysfunction and cell death. The nuclear translocation of GCaMP6 and other cytosolic proteins after acute excitotoxicity can be an early biomarker of brain injury in the developing brain.
Collapse
Affiliation(s)
- Pratyush Suryavanshi
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
| | - Rachel Langton
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
| | - Kimberly Fairhead
- Biomedical Sciences, College of Liberal Arts and Sciences, The University of Iowa, Iowa City, Iowa 52242
| | - Joseph Glykys
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
3
|
Carden H, Harper KL, Mottram TJ, Manners O, Allott KL, Dallas ML, Hughes DJ, Lippiat JD, Mankouri J, Whitehouse A. K v1.3-induced hyperpolarization is required for efficient Kaposi's sarcoma-associated herpesvirus lytic replication. Sci Signal 2024; 17:eadg4124. [PMID: 39012937 DOI: 10.1126/scisignal.adg4124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K+ channel Kv1.3 in B cells enhanced KSHV lytic replication. The KSHV replication and transcription activator (RTA) protein increased the abundance of Kv1.3 and led to enhanced K+ channel activity and hyperpolarization of the B cell membrane. Enhanced Kv1.3 activity promoted intracellular Ca2+ influx, leading to the Ca2+-driven nuclear localization of KSHV RTA and host nuclear factor of activated T cells (NFAT) proteins and subsequently increased the expression of NFAT1 target genes. KSHV lytic replication and infectious virion production were inhibited by Kv1.3 blockers or silencing. These findings highlight Kv1.3 as a druggable host factor that is key to the successful completion of KSHV lytic replication.
Collapse
Affiliation(s)
- Holli Carden
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Katherine L Harper
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Timothy J Mottram
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Oliver Manners
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Katie L Allott
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Mark L Dallas
- School of Pharmacy, University of Reading, RG6 6AP Reading, UK
| | - David J Hughes
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, KY16 9ST St Andrews, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
4
|
Suryavanshi P, Langton R, Fairhead K, Glykys J. Brief and diverse excitotoxic insults cause an increase in neuronal nuclear membrane permeability in the neonatal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554167. [PMID: 37662276 PMCID: PMC10473591 DOI: 10.1101/2023.08.22.554167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neuronal swelling after excitotoxic insults is implicated in neuronal injury and death in the developing brain, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated. Using multiphoton Ca2+ imaging in vivo (P12-17) and in acute brain slices (P8-12), we explored Ca2+-dependent downstream effects after neuronal cytotoxic edema. We observed the translocation of cytosolic GCaMP6s into the nucleus of a subpopulation of neurons minutes after various excitotoxic insults. We used automated morphology-detection algorithms for neuronal segmentation and quantified the nuclear translocation of GCaMP6s as the ratio of nuclear and cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios were correlated to higher Ca2+ loads and could occur independently of neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with increased nuclear pore size. Inhibiting calpains prevented elevated N/C ratios and neuronal swelling. Thus, our results indicate altered nuclear transport in a subpopulation of neurons shortly after injury in the developing brain, which can be used as an early biomarker of acute neuronal injury.
Collapse
Affiliation(s)
- P Suryavanshi
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| | - R Langton
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| | - K Fairhead
- Biomedical Sciences, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA
| | - J Glykys
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
- Department of Neurology, University of Iowa, Iowa City, IA
| |
Collapse
|
5
|
Rush C, Jiang Z, Tingey M, Feng F, Yang W. Unveiling the complexity: assessing models describing the structure and function of the nuclear pore complex. Front Cell Dev Biol 2023; 11:1245939. [PMID: 37876551 PMCID: PMC10591098 DOI: 10.3389/fcell.2023.1245939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
The nuclear pore complex (NPC) serves as a pivotal subcellular structure, acting as a gateway that orchestrates nucleocytoplasmic transport through a selectively permeable barrier. Nucleoporins (Nups), particularly those containing phenylalanine-glycine (FG) motifs, play indispensable roles within this barrier. Recent advancements in technology have significantly deepened our understanding of the NPC's architecture and operational intricacies, owing to comprehensive investigations. Nevertheless, the conspicuous presence of intrinsically disordered regions within FG-Nups continues to present a formidable challenge to conventional static characterization techniques. Historically, a multitude of strategies have been employed to unravel the intricate organization and behavior of FG-Nups within the NPC. These endeavors have given rise to multiple models that strive to elucidate the structural layout and functional significance of FG-Nups. Within this exhaustive review, we present a comprehensive overview of these prominent models, underscoring their proposed dynamic and structural attributes, supported by pertinent research. Through a comparative analysis, we endeavor to shed light on the distinct characteristics and contributions inherent in each model. Simultaneously, it remains crucial to acknowledge the scarcity of unequivocal validation for any of these models, as substantiated by empirical evidence.
Collapse
Affiliation(s)
| | | | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Li W, Jiang C, Zhang E. Advances in the phase separation-organized membraneless organelles in cells: a narrative review. Transl Cancer Res 2022; 10:4929-4946. [PMID: 35116344 PMCID: PMC8797891 DOI: 10.21037/tcr-21-1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Membraneless organelles (MLOs) are micro-compartments that lack delimiting membranes, concentrating several macro-molecules with a high local concentration in eukaryotic cells. Recent studies have shown that MLOs have pivotal roles in multiple biological processes, including gene transcription, RNA metabolism, translation, protein modification, and signal transduction. These biological processes in cells have essential functions in many diseases, such as cancer, neurodegenerative diseases, and virus-related diseases. The liquid-liquid phase separation (LLPS) microenvironment within cells is thought to be the driving force for initiating the formation of micro-compartments with a liquid-like property, becoming an important organizing principle for MLOs to mediate organism responses. In this review, we comprehensively elucidated the formation of these MLOs and the relationship between biological functions and associated diseases. The mechanisms underlying the influence of protein concentration and valency on phase separation in cells are also discussed. MLOs undergoing the LLPS process have diverse functions, including stimulation of some adaptive and reversible responses to alter the transcriptional or translational processes, regulation of the concentrations of biomolecules in living cells, and maintenance of cell morphogenesis. Finally, we highlight that the development of this field could pave the way for developing novel therapeutic strategies for the treatment of LLPS-related diseases based on the understanding of phase separation in the coming years.
Collapse
Affiliation(s)
- Weihan Li
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Chenwei Jiang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.,Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
7
|
Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J 2014; 282:445-62. [PMID: 25429850 PMCID: PMC7163960 DOI: 10.1111/febs.13163] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/27/2022]
Abstract
The spatial separation of DNA replication and gene transcription in the nucleus and protein translation in the cytoplasm is a uniform principle of eukaryotic cells. This compartmentalization imposes a requirement for a transport network of macromolecules to shuttle these components in and out of the nucleus. This nucleo‐cytoplasmic transport of macromolecules is critical for both cell physiology and pathology. Consequently, investigating its regulation and disease‐associated alterations can reveal novel therapeutic approaches to fight human diseases, such as cancer or viral infection. The characterization of the nuclear pore complex, the identification of transport signals and transport receptors, as well as the characterization of the Ran system (providing the energy source for efficient cargo transport) has greatly facilitated our understanding of the components, mechanisms and regulation of the nucleo‐cytoplasmic transport of proteins in our cells. Here we review this knowledge with a specific emphasis on the selection of disease‐relevant molecular targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Bastien Cautain
- Fundacion MEDINA Parque tecnológico ciencias de la salud, Granada, Spain
| | | | | | | |
Collapse
|
8
|
Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J Virol 2014; 88:4132-44. [PMID: 24478436 DOI: 10.1128/jvi.02660-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recombinant adeno-associated viral (rAAV) vectors have garnered much promise in gene therapy applications. However, widespread clinical use has been limited by transduction efficiency. Previous studies suggested that the majority of rAAV accumulates in the perinuclear region of cells, presumably unable to traffic into the nucleus. rAAV nuclear translocation remains ill-defined; therefore, we performed microscopy, genetic, and biochemical analyses in vitro in order to understand this mechanism. Lectin blockade of the nuclear pore complex (NPC) resulted in inhibition of nuclear rAAV2. Visualization of fluorescently labeled particles revealed that rAAV2 localized to importin-β-dense regions of cells in late trafficking steps. Additionally, small interfering RNA (siRNA) knockdown of importin-β partially inhibited rAAV2 nuclear translocation and inhibited transduction by 50 to 70%. Furthermore, coimmunopreciptation (co-IP) analysis revealed that capsid proteins from rAAV2 could interact with importin-β and that this interaction was sensitive to the small GTPase Ran. More importantly, mutations to key basic regions in the rAAV2 capsid severely inhibited interactions with importin-β. We tested several other serotypes and found that the extent of importin-β interaction varied, suggesting that different serotypes may utilize alternative import proteins for nuclear translocation. Co-IP and siRNA analyses were used to investigate the role of other karyopherins, and the results suggested that rAAV2 may utilize multiple import proteins for nuclear entry. Taken together, our results suggest that rAAV2 interacts with importin-β alone or in complex with other karyopherins and enters the nucleus via the NPC. These results may lend insight into the design of novel AAV vectors that have an enhanced nuclear entry capability and transduction potential. IMPORTANCE Use of recombinant adeno-associated viral (rAAV) vectors for gene therapy applications is limited by relatively low transduction efficiency, in part due to cellular barriers that hinder successful subcellular trafficking to the nucleus, where uncoating and subsequent gene expression occur. Nuclear translocation of rAAV has been regarded as a limiting step for successful transduction but it remains ill-defined. We explored potential nuclear entry mechanisms for rAAV2 and found that rAAV2 can utilize the classical nuclear import pathway, involving the nuclear pore complex, the small GTPase Ran, and cellular karyopherins. These results could lend insight into the rational design of novel rAAV vectors that can more efficiently translocate to the nucleus, which may lead to more efficient transduction.
Collapse
|
9
|
Sileno S, D'Oria V, Stucchi R, Alessio M, Petrini S, Bonetto V, Maechler P, Bertuzzi F, Grasso V, Paolella K, Barbetti F, Massa O. A possible role of transglutaminase 2 in the nucleus of INS-1E and of cells of human pancreatic islets. J Proteomics 2013; 96:314-27. [PMID: 24291354 PMCID: PMC3919173 DOI: 10.1016/j.jprot.2013.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/16/2013] [Accepted: 11/12/2013] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein with Ca2 +-dependent transamidating and G protein activity. Previously we reported that the role of TG2 in insulin secretion may involve cytoplasmic actin remodeling and a regulative action on other proteins during granule movement. The aim of this study was to gain a better insight into the role of TG2 transamidating activity in mitochondria and in the nucleus of INS-1E rat insulinoma cell line (INS-1E) during insulin secretion. To this end we labeled INS-1E with an artificial donor (biotinylated peptide), in basal condition and after stimulus with glucose for 2, 5, and 8 min. Biotinylated proteins of the nuclear/mitochondrial-enriched fraction were analyzed using two-dimensional electrophoresis and mass spectrometry. Many mitochondrial proteins involved in Ca2 + homeostasis (e.g. voltage-dependent anion-selective channel protein, prohibitin and different ATP synthase subunits) and many nuclear proteins involved in gene regulation (e.g. histone H3, barrier to autointegration factor and various heterogeneous nuclear ribonucleoprotein) were identified among a number of transamidating substrates of TG2 in INS-1E. The combined results provide evidence that a temporal link exists between glucose-stimulation, first phase insulin secretion and the action of TG on histone H3 both in INS-1E and human pancreatic islets. Biological significance Research into the role of transglutaminase 2 during insulin secretion in INS-1E rat insulinoma cellular model is depicting a complex role for this enzyme. Transglutaminase 2 acts in the different INS-1E compartments in the same way: catalyzing a post-translational modification event of its substrates. In this work we identify some mitochondrial and nuclear substrates of INS-1E during first phase insulin secretion. The finding that TG2 interacts with nuclear proteins that include BAF and histone H3 immediately after (2–5 min) glucose stimulus of INS-1E suggests that TG2 may be involved not only in insulin secretion, as suggested by our previous studies in cytoplasmic INS-1E fraction, but also in the regulation of glucose-induced gene transcription. Transglutaminase 2 localizes in the nucleus and in the mitochondrion of INS-1E. TG2 acts as a modifying enzyme in both compartments during FPIS. TG2 may contribute to Ca2 + sensing in mitochondrion through its substrates. TG2 may contribute to chromatin condensation in nucleus through its substrates.
Collapse
Affiliation(s)
- Sara Sileno
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Research Laboratory, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Riccardo Stucchi
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Massimo Alessio
- Proteome Biochemistry Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratory, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Valentina Bonetto
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, Geneva University Medical Centre, Geneva 4, Switzerland
| | | | - Valeria Grasso
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Katia Paolella
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Fabrizio Barbetti
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Experimental Medicine and Surgery, University of Tor Vergata, Rome, Italy
| | - Ornella Massa
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
10
|
Verma KD, Forgács A, Uh H, Beyerlein M, Maier ME, Petoud S, Botta M, Logothetis NK. New calcium-selective smart contrast agents for magnetic resonance imaging. Chemistry 2013; 19:18011-26. [PMID: 24353083 DOI: 10.1002/chem.201300169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 08/25/2013] [Indexed: 11/06/2022]
Abstract
Calcium plays a vital role in the human body and especially in the central nervous system. Precise maintenance of Ca(2+) levels is very crucial for normal cell physiology and health. The deregulation of calcium homeostasis can lead to neuronal cell death and brain damage. To study this functional role played by Ca(2+) in the brain noninvasively by using magnetic resonance imaging, we have synthesized a new set of Ca(2+) -sensitive smart contrast agents (CAs). The agents were found to be highly selective to Ca(2+) in the presence of other competitive anions and cations in buffer and in physiological fluids. The structure of CAs comprises Gd(3+)-DO3A (DO3A=1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane) coupled to a Ca(2+) chelator o-amino phenol-N,N,O-triacetate (APTRA). The agents are designed to sense Ca(2+) present in extracellular fluid of the brain where its concentration is relatively high, that is, 1.2-0.8 mM. The determined dissociation constant of the CAs to Ca(2+) falls in the range required to sense and report changes in extracellular Ca(2+) levels followed by an increase in neural activity. In buffer, with the addition of Ca(2+) the increase in relaxivity ranged from 100-157%, the highest ever known for any T1-based Ca(2+)-sensitive smart CA. The CAs were analyzed extensively by the measurement of luminescence lifetime measurement on Tb(3+) analogues, nuclear magnetic relaxation dispersion (NMRD), and (17)O NMR transverse relaxation and shift experiments. The results obtained confirmed that the large relaxivity enhancement observed upon Ca(2+) addition is due to the increase of the hydration state of the complexes together with the slowing down of the molecular rotation and the retention of a significant contribution of the water molecules of the second sphere of hydration.
Collapse
Affiliation(s)
- Kirti Dhingra Verma
- Max Planck Institute for Biological Cybernetics, Dept. of Physiology of Cognitive Processes, 72076 Tübingen (Germany); Present address: Case NFCR Center for Imaging Research, Dept. of Radiology, Case Western Reserve University, Cleveland, OH (USA).
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Thrasivoulou C, Millar M, Ahmed A. Activation of intracellular calcium by multiple Wnt ligands and translocation of β-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/β-catenin pathways. J Biol Chem 2013; 288:35651-9. [PMID: 24158438 PMCID: PMC3861617 DOI: 10.1074/jbc.m112.437913] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Ca2+ and β-catenin, a 92-kDa negatively charged transcription factor, transduce Wnt signaling via the non-canonical, Wnt/Ca2+ and canonical, Wnt/β-catenin pathways independently. The nuclear envelope is a barrier to large protein entry, and this process is regulated by intracellular calcium [Ca2+]i and trans-nuclear potential. How β-catenin traverses the nuclear envelope is not well known. We hypothesized that Wnt/Ca2+ and Wnt/β-catenin pathways act in a coordinated manner and that [Ca2+]i release facilitates β-catenin entry into the nucleus in mammalian cells. In a live assay using calcium dyes in PC3 prostate cancer cells, six Wnt peptides (3A, 4, 5A, 7A, 9B, and 10B) mobilized [Ca2+]i but Wnt11 did not. Based upon dwell time (range = 15–30 s) of the calcium waveform, these Wnts could be classified into three classes: short, 3A and 5A; long, 7A and 10B; and very long, 4 and 9B. Wnt-activated [Ca2+]i release was followed by an increase in intranuclear calcium and the depolarization of both the cell and nuclear membranes, determined by using FM4-64. In cells treated with Wnts 5A, 9B, and 10B, paradigm substrates for each Wnt class, increased [Ca2+]i was followed by β-catenin translocation into the nucleus in PC3, MCF7, and 253J, prostate, breast, and bladder cancer cell lines; both the increase in Wnt 5A, 9B, and 10B induced [Ca2+]i release and β-catenin translocation are suppressed by thapsigargin in PC3 cell line. We propose a convergent model of Wnt signaling network where Ca2+ and β-catenin pathways may act in a coordinated, interdependent, rather than independent, manner.
Collapse
Affiliation(s)
- Christopher Thrasivoulou
- From the Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, Rockefeller Building, University Street, University College London, London WC1E 6JJ, United Kingdom
| | | | | |
Collapse
|
12
|
Strasser C, Grote P, Schäuble K, Ganz M, Ferrando-May E. Regulation of nuclear envelope permeability in cell death and survival. Nucleus 2012; 3:540-51. [PMID: 22929227 DOI: 10.4161/nucl.21982] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nuclear pore complex (NPC) mediates macromolecular exchange between nucleus and cytoplasm. It is a regulated channel whose functional properties are modulated in response to the physiological status of the cell. Identifying the factors responsible for regulating NPC activity is crucial to understand how intracellular signaling cues are integrated at the level of this channel to control nucleocytoplasmic trafficking. For proteins lacking active translocation signals the NPC acts as a molecular sieve limiting passage across the nuclear envelope (NE) to proteins with a MW below ~40 kD. Here, we investigate how this permeability barrier is altered in paradigms of cell death and cell survival, i.e., apoptosis induction via staurosporine, and enhanced viability via overexpression of Bcl-2. We monitor dynamic changes of the NPC's size-exclusion limit for passive diffusion by confocal time-lapse microscopy of cells undergoing apoptosis, and use different diffusion markers to determine how Bcl-2 expression affects steady-state NE permeability. We show that staurosporine triggers an immediate and gradual leakiness of the NE preceding the appearance of apoptotic hallmarks. Bcl-2 expression leads to a constitutive increase in NE permeability, and its localization at the NE is sufficient for the effect, evincing a functional role for Bcl-2 at the nuclear membrane. In both settings, NPC leakiness correlates with reduced Ca²⁺ in internal stores, as demonstrated by fluorometric measurements of ER/NE Ca²⁺ levels. By comparing two cellular models with opposite outcome these data pinpoint ER/NE Ca²⁺ as a general and physiologically relevant regulator of the permeability barrier function of the NPC.
Collapse
Affiliation(s)
- Christine Strasser
- Bioimaging Center, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | |
Collapse
|
13
|
Apáti Á, Pászty K, Erdei Z, Szebényi K, Homolya L, Sarkadi B. Calcium signaling in pluripotent stem cells. Mol Cell Endocrinol 2012; 353:57-67. [PMID: 21945604 DOI: 10.1016/j.mce.2011.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.
Collapse
Affiliation(s)
- Ágota Apáti
- Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
14
|
Mauger JP. Role of the nuclear envelope in calcium signalling. Biol Cell 2011; 104:70-83. [PMID: 22188206 DOI: 10.1111/boc.201100103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/18/2011] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major Ca(2+) store inside the cell. Its organisation in specialised subdomains allows the local delivery of Ca(2+) to specific cell areas on stimulation. The nuclear envelope (NE), which is continuous with the ER, has a double role: it insulates the nucleoplasm from the cytoplasm and it stores Ca(2+) around the nucleus. Furthermore, all the constituents of the signalling cascade leading to Ca(2+) mobilisation are found in the NE; this allows the nuclear Ca(2+) to be regulated autonomously. On the other hand, cytosolic Ca(2+) transients can propagate within the nucleus via the nuclear pore complex. The variations in nuclear Ca(2+) concentration are important for controlling gene transcription and progression in the cell cycle. Recent data suggest that invaginations of the NE modify the morphology of the nucleus and may affect Ca(2+) dynamics in the nucleus and regulate transcriptional activity.
Collapse
|