1
|
Jiao F, Meng L, Du K, Li X. The autophagy-lysosome pathway: a potential target in the chemical and gene therapeutic strategies for Parkinson's disease. Neural Regen Res 2025; 20:139-158. [PMID: 38767483 PMCID: PMC11246151 DOI: 10.4103/nrr.nrr-d-23-01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such as α-synuclein in neurons. As one of the major intracellular degradation pathways, the autophagy-lysosome pathway plays an important role in eliminating these proteins. Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance of α-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson's disease. Moreover, multiple genes associated with the pathogenesis of Parkinson's disease are intimately linked to alterations in the autophagy-lysosome pathway. Thus, this pathway appears to be a promising therapeutic target for treatment of Parkinson's disease. In this review, we briefly introduce the machinery of autophagy. Then, we provide a description of the effects of Parkinson's disease-related genes on the autophagy-lysosome pathway. Finally, we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy-lysosome pathway and their applications in Parkinson's disease.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lingyan Meng
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Kang Du
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Xuezhi Li
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
2
|
Zhang Z, Sun D, Yang Y, Abbas SY, Li H, Chen L. A patent review of UNC-51-like kinase 1/2 inhibitors (2019-present). Expert Opin Ther Pat 2024:1-10. [PMID: 39470442 DOI: 10.1080/13543776.2024.2423010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION UNC-51-like kinase 1/2 (ULK1/2) are serine/threonine kinases that play a crucial role in autophagy activation and maintaining cellular homeostasis. Given their broad physiological relevance, ULK1/2 are candidate targets for treating various diseases. In recent years, ULK1/2 inhibitors have made significant progress, and the highly potent ULK1/2 inhibitors have entered clinical trials. AREA COVERED This review aims to provide an updated analysis of patents describing ULK1/2 inhibitors and their potential therapeutic applications that were disclosed between 2019 and 2024. EXPERT OPINION Due to their crucial role in various diseases, the invention of small-molecule drugs targeting ULK1/2 is particularly important, especially in cancer treatment. Despite the great success of ULK1/2 inhibitors development, ULK1/2 inhibitors are ATP competitive inhibitors of aminopyrimidines currently, and most ULK1/2 inhibitors are still in the preclinical research stage, with only DCC-3116 entered clinical research. Therefore, developing highly selective ULK1/2 inhibitors with low side effects and high bioavailability remains a challenging and promising research direction.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Samir Y Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Wang J, Wang Q, Fu Y, Lu M, Chen L, Liu Z, Fu X, Du X, Yu B, Lu H, Cui W. Swimming short fibrous nasal drops achieving intraventricular administration. Sci Bull (Beijing) 2024; 69:1249-1262. [PMID: 38522998 DOI: 10.1016/j.scib.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Adequate drug delivery across the blood-brain barrier (BBB) is a critical factor in treating central nervous system (CNS) disorders. Inspired by swimming fish and the microstructure of the nasal cavity, this study is the first to develop swimming short fibrous nasal drops that can directly target the nasal mucosa and swim in the nasal cavity, which can effectively deliver drugs to the brain. Briefly, swimming short fibrous nasal drops with charged controlled drug release were fabricated by electrospinning, homogenization, the π-π conjugation between indole group of fibers, the benzene ring of leucine-rich repeat kinase 2 (LRRK2) inhibitor along with charge-dipole interaction between positively charged poly-lysine (PLL) and negatively charged surface of fibers; this enabled these fibers to stick to nasal mucosa, prolonged the residence time on mucosa, and prevented rapid mucociliary clearance. In vitro, swimming short fibrous nasal drops were biocompatible and inhibited microglial activation by releasing an LRRK2 inhibitor. In vivo, luciferase-labelled swimming short fibrous nasal drops delivered an LRRK2 inhibitor to the brain through the nasal mucosa, alleviating cognitive dysfunction caused by sepsis-associated encephalopathy by inhibiting microglial inflammation and improving synaptic plasticity. Thus, swimming short fibrous nasal drops is a promising strategy for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiuyun Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yifei Fu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Xiaohan Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiyu Du
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
4
|
Liu Y, Tan L, Tan MS. Chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapy. Mol Cell Biochem 2023; 478:2173-2190. [PMID: 36695937 DOI: 10.1007/s11010-022-04640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/09/2022] [Indexed: 01/26/2023]
Abstract
Chaperone-mediated autophagy (CMA) is the selective degradation process of intracellular components by lysosomes, which is required for the degradation of aggregate-prone proteins and contributes to proteostasis maintenance. Proteostasis is essential for normal cell function and survival, and it is determined by the balance of protein synthesis and degradation. Because postmitotic neurons are highly susceptible to proteostasis disruption, CMA is vital for the nervous system. Since Parkinson's disease (PD) was first linked to CMA dysfunction, an increasing number of studies have shown that CMA loss, as seen during aging, occurs in the pathogenetic process of neurodegenerative diseases. Here, we review the molecular mechanisms of CMA, as well as the physiological function and regulation of this autophagy pathway. Following, we highlight its potential role in neurodegenerative diseases, and the latest advances and challenges in targeting CMA in therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Zhang S, Qian S, Liu H, Xu D, Xia W, Duan H, Wang C, Yu S, Chen Y, Ji P, Wang S, Cui X, Wang Y, Shen H. LRRK2 aggravates kidney injury through promoting MFN2 degradation and abnormal mitochondrial integrity. Redox Biol 2023; 66:102860. [PMID: 37633049 PMCID: PMC10470420 DOI: 10.1016/j.redox.2023.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
Mitochondrial dysfunction is one of the key features of acute kidney injury (AKI) and associated fibrosis. Leucine-rich repeat kinase 2 (LRRK2) is highly expressed in kidneys and regulates mitochondrial homeostasis. How it functions in AKI is unclear. Herein we reported that LRRK2 was dramatically downregulated in AKI kidneys. Lrrk2-/- mice exhibited less severity of AKI when compared to wild-type counterparts with less mitochondrial fragmentation and decreased reactive oxygen species (ROS) production in proximal renal tubular cells (PTCs) due to mitofusin 2 (MFN2) accumulation. Overexpression of LRRK2 in human PTC cell lines promoted LRRK2-MKK4/JNK-dependent phosphorylation of MFN2Ser27 and subsequently ubiquitination-mediated MFN2 degradation, which in turn exaggerated mitochondrial damage upon ischemia/reperfusion (I/R) mimicry treatment. Lrrk2 deficiency also alleviated AKI-to-chronic kidney disease (CKD) transition with less fibrosis. In vivo pretreatment of LRRK2 inhibitors attenuated the severity of AKI as well as CKD, potentiating LRRK2 as a novel target to alleviate AKI and fibrosis.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Subo Qian
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ding Xu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Weimin Xia
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Huangqi Duan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Chen Wang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Shenggen Yu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yingying Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Haibo Shen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
6
|
Wang W, Wang X, Tang G, Zhu C, Xiang M, Xiao Q, Zhang ZM, Gao L, Yao SQ. Multitarget inhibitors/probes that target LRRK2 and AURORA A kinases noncovalently and covalently. Chem Commun (Camb) 2023; 59:10789-10792. [PMID: 37594149 DOI: 10.1039/d3cc03530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Herein, we report a salicylaldehyde-based, reversible covalent inhibitor (A2) that possesses moderate cellular activity against AURKA with a prolonged residence time and shows significant non-covalent inhibition towards LRRK2. Our results indicated that this multitarget kinase inhibitor may be used as the starting point for future development of more potent, selective and dual-targeting covalent kinase inhibitors against AURKA and LRRK2 for mitophagy.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
7
|
Themistokleous C, Bagnoli E, Parulekar R, M K Muqit M. Role of autophagy pathway in Parkinson's disease and related Genetic Neurological disorders. J Mol Biol 2023:168144. [PMID: 37182812 DOI: 10.1016/j.jmb.2023.168144] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The elucidation of the function of the PINK1 protein kinase and Parkin ubiquitin E3 ligase in the elimination of damaged mitochondria by autophagy (mitophagy) has provided unprecedented understanding of the mechanistic pathways underlying Parkinson's disease (PD). We provide a comprehensive overview of the general importance of autophagy in Parkinson's disease and related disorders of the central nervous system. This reveals a critical link between autophagy and neurodegenerative and neurodevelopmental disorders and suggests that strategies to modulate mitophagy may have greater relevance in the CNS beyond PD.
Collapse
Affiliation(s)
- Christos Themistokleous
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Enrico Bagnoli
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ramaa Parulekar
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Sui GY, Wang F, Lee J, Roh YS. Mitochondrial Control in Inflammatory Gastrointestinal Diseases. Int J Mol Sci 2022; 23:14890. [PMID: 36499214 PMCID: PMC9736936 DOI: 10.3390/ijms232314890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria play a central role in the pathophysiology of inflammatory bowel disease (IBD) and colorectal cancer (CRC). The maintenance of mitochondrial function is necessary for a stable immune system. Mitochondrial dysfunction in the gastrointestinal system leads to the excessive activation of multiple inflammatory signaling pathways, leading to IBD and increased severity of CRC. In this review, we focus on the mitochondria and inflammatory signaling pathways and its related gastrointestinal diseases.
Collapse
Affiliation(s)
- Guo-Yan Sui
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Feng Wang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
9
|
Erekat NS. Autophagy and Its Association with Genetic Mutations in Parkinson Disease. Med Sci Monit 2022; 28:e938519. [PMID: 36366737 PMCID: PMC9664771 DOI: 10.12659/msm.938519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 08/07/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disorder, affecting 0.1-0.2% of the general population. It is a progressive debilitating disorder caused by degeneration of dopaminergic neurons in the substantia nigra pars compacta. It is characterized by motor and non-motor symptoms. Parkinson disease can be caused by mutations in genes that encode proteins involved in the autophagic process, resulting in impaired autophagy. Indeed, autophagy has been implicated in the pathogenesis of Parkinson disease, particularly because its impairment causes the buildup of proteins. Thus, this review aims to provide an overview of Parkinson disease-related genetic mutations and their association with autophagy impairment in Parkinson disease, which can be helpful in improving the understanding of the pathogenesis of Parkinson disease, illustrating the potential therapeutic implications of agents that can enhance autophagy in Parkinson disease. Additionally, we will highlight the essential need for the development of highly sensitive and specific assays for gene-based diagnostic biomarkers. Finally, we will provide an overview on the potential gene-based therapeutic approaches for Parkinson disease, which have been most advanced and are associated with the most common targets being alpha-synuclein (SNCA), leucine-rich repeat kinase-2 (LRRK2), and glucocerebrosidase (GBA).
Collapse
|
10
|
TRK-fused gene (TFG) regulates ULK1 stability via TRAF3-mediated ubiquitination and protects macrophages from LPS-induced pyroptosis. Cell Death Dis 2022; 13:93. [PMID: 35091545 PMCID: PMC8795729 DOI: 10.1038/s41419-022-04539-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
Abstract
TRK-fused gene (TFG) is known to be involved in protein secretion and plays essential roles in an antiviral innate immune response. However, its function in LPS-induced inflammation and pyroptotic cell death is still unknown. Here, we reported that TFG promotes the stabilization of Unc-51 like autophagy activating kinase (ULK1) and participates in LPS plus nigericin (Ng) induced pyroptotic cell death. Our results showed that TFG-deficient THP-1 macrophages exhibit higher mitochondrial ROS production. LPS/Ng stimulation triggers a much higher level of ROS and induces pyroptotic cell death. ULK1 undergoes a rapid turnover in TFG-deficient THP-1 cells. TFG forms complex with an E3 ligase, tumor necrosis factor receptor-associated factor 3 (TRAF3), and stabilizes ULK1 via disturbing ULK1-TRAF3 interaction. Knockdown of TFG facilitates the interaction of ULK1 with TRAF3 and subsequent K48-linked ULK1 ubiquitination and proteasome degradation. Rescue of ULK1 expression blocks LPS/Ng-induced cell death in TFG-deficient THP-1 macrophages. Taken together, TFG plays an essential role in LPS/Ng-induced pyroptotic cell death via regulating K48-linked ULK1 ubiquitination in macrophages.
Collapse
|
11
|
Erustes AG, Guarache GC, Guedes EDC, Leão AHFF, Pereira GJDS, Smaili SS. α-Synuclein Interactions in Mitochondria-ER Contacts: A Possible Role in Parkinson's Disease. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221119347. [PMID: 37366506 PMCID: PMC10243560 DOI: 10.1177/25152564221119347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Endoplasmic reticulum-mitochondria contact sites regulate various biological processes, such as mitochondrial dynamics, calcium homeostasis, autophagy and lipid metabolism. Notably, dysfunctions in these contact sites are closely related to neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. However, details about the role of endoplasmic reticulum-mitochondria contact sites in neurodegenerative diseases remain unknown. In Parkinson's disease, interactions between α-synuclein in the contact sites and components of tether complexes that connect organelles can lead to various dysfunctions, especially with regards to calcium homeostasis. This review will summarize the main tether complexes present in endoplasmic reticulum-mitochondria contact sites, and their roles in calcium homeostasis and trafficking. We will discuss the impact of α-synuclein accumulation, its interaction with tethering complex components and the implications in Parkinson's disease pathology.
Collapse
Affiliation(s)
- Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista
de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriel Cicolin Guarache
- Department of Pharmacology, Escola Paulista
de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Erika da Cruz Guedes
- Department of Pharmacology, Escola Paulista
de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Soraya Soubhi Smaili
- Department of Pharmacology, Escola Paulista
de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Ren H, Zhai W, Lu X, Wang G. The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease. Front Aging Neurosci 2021; 13:691881. [PMID: 34168552 PMCID: PMC8218021 DOI: 10.3389/fnagi.2021.691881] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, and it is characterized by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), as well as the presence of intracellular inclusions with α-synuclein as the main component in surviving DA neurons. Emerging evidence suggests that the imbalance of proteostasis is a key pathogenic factor for PD. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and autophagy, two major pathways for maintaining proteostasis, play important roles in PD pathology and are considered as attractive therapeutic targets for PD treatment. However, although ER stress/UPR and autophagy appear to be independent cellular processes, they are closely related to each other. In this review, we focused on the roles and molecular cross-links between ER stress/UPR and autophagy in PD pathology. We systematically reviewed and summarized the most recent advances in regulation of ER stress/UPR and autophagy, and their cross-linking mechanisms. We also reviewed and discussed the mechanisms of the coexisting ER stress/UPR activation and dysregulated autophagy in the lesion regions of PD patients, and the underlying roles and molecular crosslinks between ER stress/UPR activation and the dysregulated autophagy in DA neurodegeneration induced by PD-associated genetic factors and PD-related neurotoxins. Finally, we indicate that the combined regulation of ER stress/UPR and autophagy would be a more effective treatment for PD rather than regulating one of these conditions alone.
Collapse
Affiliation(s)
- Haigang Ren
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wanqing Zhai
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Xiaojun Lu
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Guanghui Wang
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Yakhine-Diop SMS, Rodríguez-Arribas M, Canales-Cortés S, Martínez-Chacón G, Uribe-Carretero E, Blanco-Benítez M, Duque-González G, Paredes-Barquero M, Alegre-Cortés E, Climent V, Aiastui A, López de Munain A, Bravo-San Pedro JM, Niso-Santano M, Fuentes JM, González-Polo RA. The parkinsonian LRRK2 R1441G mutation shows macroautophagy-mitophagy dysregulation concomitant with endoplasmic reticulum stress. Cell Biol Toxicol 2021; 38:889-911. [PMID: 34060004 DOI: 10.1007/s10565-021-09617-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Autophagy is a mechanism responsible for the degradation of cellular components to maintain their homeostasis. However, autophagy is commonly altered and compromised in several diseases, including neurodegenerative disorders. Parkinson's disease (PD) can be considered a multifactorial disease because environmental factors, genetic factors, and aging are involved. Several genes are involved in PD pathology, among which the LRRK2 gene and its mutations, inherited in an autosomal dominant manner, are responsible for most genetic PD cases. The R1441G LRRK2 mutation is, after G2019S, the most important in PD pathogenesis. Our results demonstrate a relationship between the R1441G LRRK2 mutation and a mechanistic dysregulation of autophagy that compromises cell viability. This altered autophagy mechanism is associated with organellar stress including mitochondrial (which induces mitophagy) and endoplasmic reticulum (ER) stress, consistent with the fact that patients with this mutation are more vulnerable to toxins related to PD, such as MPP+.
Collapse
Affiliation(s)
- Sokhna M S Yakhine-Diop
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mario Rodríguez-Arribas
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Guadalupe Martínez-Chacón
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mercedes Blanco-Benítez
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Gema Duque-González
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Marta Paredes-Barquero
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Vicente Climent
- Departamento de Anatomía Y Embriología Humana, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Ana Aiastui
- Cell Culture Platform, Donostia University Hospital, San Sebastián, Spain.,Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, San Sebastián, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Ilundain Foundation, San Sebastian, Spain.,Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastián, Spain
| | - José M Bravo-San Pedro
- Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain. .,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.
| | - José M Fuentes
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain. .,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.
| | - Rosa A González-Polo
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain. .,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.
| |
Collapse
|
14
|
Onishi M, Okamoto K. Mitochondrial clearance: mechanisms and roles in cellular fitness. FEBS Lett 2021; 595:1239-1263. [PMID: 33615465 DOI: 10.1002/1873-3468.14060] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
Mitophagy is one of the selective autophagy pathways that catabolizes dysfunctional or superfluous mitochondria. Under mitophagy-inducing conditions, mitochondria are labeled with specific molecular landmarks that recruit the autophagy machinery to the surface of mitochondria, enclosed into autophagosomes, and delivered to lysosomes (vacuoles in yeast) for degradation. As damaged mitochondria are the major sources of reactive oxygen species, mitophagy is critical for mitochondrial quality control and cellular health. Moreover, appropriate control of mitochondrial quantity via mitophagy is vital for the energy supply-demand balance in cells and whole organisms, cell differentiation, and developmental programs. Thus, it seems conceivable that defects in mitophagy could elicit pleiotropic pathologies such as excess inflammation, tissue injury, neurodegeneration, and aging. In this review, we will focus on the molecular basis and physiological relevance of mitophagy, and potential of mitophagy as a therapeutic target to overcome such disorders.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
15
|
Wang XL, Feng ST, Wang YT, Yuan YH, Li ZP, Chen NH, Wang ZZ, Zhang Y. Mitophagy, a Form of Selective Autophagy, Plays an Essential Role in Mitochondrial Dynamics of Parkinson's Disease. Cell Mol Neurobiol 2021; 42:1321-1339. [PMID: 33528716 DOI: 10.1007/s10571-021-01039-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder caused by the progressive loss of dopaminergic neurons in the substantia nigra and affects millions of people. Currently, mitochondrial dysfunction is considered as a central role in the pathogenesis of both sporadic and familial forms of PD. Mitophagy, a process that selectively targets damaged or redundant mitochondria to the lysosome for elimination via the autophagy devices, is crucial in preserving mitochondrial health. So far, aberrant mitophagy has been observed in the postmortem of PD patients and genetic or toxin-induced models of PD. Except for mitochondrial dysfunction, mitophagy is involved in regulating several other PD-related pathological mechanisms as well, e.g., oxidative stress and calcium imbalance. So far, the mitophagy mechanisms induced by PD-related proteins, PINK1 and Parkin, have been studied widely, and several other PD-associated genes, e.g., DJ-1, LRRK2, and alpha-synuclein, have been discovered to participate in the regulation of mitophagy as well, which further strengthens the link between mitophagy and PD. Thus, in this view, we reviewed mitophagy pathways in belief and discussed the interactions between mitophagy and several PD's pathological mechanisms and how PD-related genes modulate the mitophagy process.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing, 100050, China
| | - Zhi-Peng Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing, 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
16
|
Kumar M, Papaleo E. A pan-cancer assessment of alterations of the kinase domain of ULK1, an upstream regulator of autophagy. Sci Rep 2020; 10:14874. [PMID: 32913252 PMCID: PMC7483646 DOI: 10.1038/s41598-020-71527-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a key clearance process to recycle damaged cellular components. One important upstream regulator of autophagy is ULK1 kinase. Several three-dimensional structures of the ULK1 catalytic domain are available, but a comprehensive study, including molecular dynamics, is missing. Also, an exhaustive description of ULK1 alterations found in cancer samples is presently lacking. We here applied a framework which links -omics data to structural protein ensembles to study ULK1 alterations from genomics data available for more than 30 cancer types. We predicted the effects of mutations on ULK1 function and structural stability, accounting for protein dynamics, and the different layers of changes that a mutation can induce in a protein at the functional and structural level. ULK1 is down-regulated in gynecological tumors. In other cancer types, ULK2 could compensate for ULK1 downregulation and, in the majority of the cases, no marked changes in expression have been found. 36 missense mutations of ULK1, not limited to the catalytic domain, are co-occurring with mutations in a large number of ULK1 interactors or substrates, suggesting a pronounced effect of the upstream steps of autophagy in many cancer types. Moreover, our results pinpoint that more than 50% of the mutations in the kinase domain of ULK1, here investigated, are predicted to affect protein stability. Three mutations (S184F, D102N, and A28V) are predicted with only impact on kinase activity, either modifying the functional dynamics or the capability to exert effects from distal sites to the functional and catalytic regions. The framework here applied could be extended to other protein targets to aid the classification of missense mutations from cancer genomics studies, as well as to prioritize variants for experimental validation, or to select the appropriate biological readouts for experiments.
Collapse
Affiliation(s)
- Mukesh Kumar
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Aman Y, Ryan B, Torsetnes SB, Knapskog AB, Watne LO, McEwan WA, Fang EF. Enhancing mitophagy as a therapeutic approach for neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:169-202. [PMID: 32854854 DOI: 10.1016/bs.irn.2020.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurodegenerative diseases are highly debilitating illnesses and a growing cause of morbidity and mortality worldwide. Mitochondrial dysfunction and impairment of mitochondrial-specific autophagy, namely mitophagy, have emerged as important components of the cellular processes underlying neurodegeneration. Defective mitophagy has been highlighted as the cause of the accumulation of damaged mitochondria, which consequently leads to cellular dysfunction and/or death in neurodegenerative diseases. Here, we highlight the recent advances in the molecular mechanisms of mitochondrial homeostasis and mitophagy in neurodegenerative diseases. In particular, we evaluate how mitophagy is altered in Alzheimer's, Parkinson's, and Huntington's diseases, as well as in amyotrophic lateral sclerosis, and the potential of restoring mitophagy as a therapeutic intervention. We also discuss the interlinked connections between mitophagy and innate immunity (e.g., the involvement of Parkin, interferons and TRIM21) as well as the opportunity these pathways provide to develop combinational therapeutic strategies targeting them and related molecular mechanisms in such neurodegenerative diseases.
Collapse
Affiliation(s)
- Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Brent Ryan
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Silje Bøen Torsetnes
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway; Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - William A McEwan
- Department of Clinical Neurosciences, UK Dementia Research Institute at the University of Cambridge, Cambridge, United Kingdom
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
18
|
Hou X, Watzlawik JO, Fiesel FC, Springer W. Autophagy in Parkinson's Disease. J Mol Biol 2020; 432:2651-2672. [PMID: 32061929 PMCID: PMC7211126 DOI: 10.1016/j.jmb.2020.01.037] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Impaired protein homeostasis and accumulation of damaged or abnormally modified protein are common disease mechanisms in many neurodegenerative disorders, including Parkinson's disease (PD). As one of the major degradation pathways, autophagy plays a pivotal role in maintaining effective turnover of proteins and damaged organelles in cells. Several decades of research efforts led to insights into the potential contribution of impaired autophagy machinery to α-synuclein accumulation and the degeneration of dopaminergic neurons, two major features of PD pathology. In this review, we summarize recent pathological, genetic, and mechanistic findings that link defective autophagy with PD pathogenesis in human patients, animals, and cellular models and discuss current challenges in the field.
Collapse
Affiliation(s)
- Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| |
Collapse
|
19
|
Wang Y, Liu N, Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci Ther 2019; 25:859-875. [PMID: 31050206 PMCID: PMC6566062 DOI: 10.1111/cns.13140] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are double‐membrane‐encircled organelles existing in most eukaryotic cells and playing important roles in energy production, metabolism, Ca2+ buffering, and cell signaling. Mitophagy is the selective degradation of mitochondria by autophagy. Mitophagy can effectively remove damaged or stressed mitochondria, which is essential for cellular health. Thanks to the implementation of genetics, cell biology, and proteomics approaches, we are beginning to understand the mechanisms of mitophagy, including the roles of ubiquitin‐dependent and receptor‐dependent signals on damaged mitochondria in triggering mitophagy. Mitochondrial dysfunction and defective mitophagy have been broadly associated with neurodegenerative diseases. This review is aimed at summarizing the mechanisms of mitophagy in higher organisms and the roles of mitophagy in the pathogenesis of neurodegenerative diseases. Although many studies have been devoted to elucidating the mitophagy process, a deeper understanding of the mechanisms leading to mitophagy defects in neurodegenerative diseases is required for the development of new therapeutic interventions, taking into account the multifactorial nature of diseases and the phenotypic heterogeneity of patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Na Liu
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
20
|
Abstract
Mitophagy is a vital form of autophagy for selective removal of dysfunctional or redundant mitochondria. Accumulating evidence implicates elimination of dysfunctional mitochondria as a powerful means employed by autophagy to keep the immune system in check. The process of mitophagy may restrict inflammatory cytokine secretion and directly regulate mitochondrial antigen presentation and immune cell homeostasis. In this review, we describe distinctive pathways of mammalian mitophagy and highlight recent advances relevant to its function in immunity. In addition, we further discuss the direct and indirect evidence linking mitophagy to inflammation and autoimmunity underlying the pathogenesis of autoimmune diseases including inflammatory bowel diseases (IBD), systemic lupus erythematosus (SLE) and primary biliary cirrhosis (PBC).Abbreviations: AICD: activation induced cell death; AIM2: absent in melanoma 2; ALPL/HOPS: alkaline phosphatase, biomineralization associated; AMA: anti-mitochondrial antibodies; AMFR: autocrine motility factor receptor; ATG: autophagy-related; BCL2L13: BCL2 like 13; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain containing; CASP1: caspase 1; CD: Crohn disease; CGAS: cyclic GMP-AMP synthase; CXCL1: C-X-C motif chemokine ligand 1; DEN: diethylnitrosamine; DLAT/PDC-E2: dihydrolipoamide S-acetyltransferase; DNM1L/Drp1: dynamin 1 like; ESCRT: endosomal sorting complexes required for transport; FKBP8: FKBP prolyl isomerase 8; FUNDC1: Fun14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HPIV3: human parainfluenza virus type 3; IBD: inflammatory bowel diseases; IEC: intestinal epithelial cell; IFN: interferon; IL1B/IL-1β: interleukin 1 beta; iNK: invariant natural killer; IRGM: immunity related GTPase M; LIR: LC3-interacting region; LPS: lipopolysaccharide; LRRK2: leucine rich repeat kinase 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCH5: membrane associated ring-CH-type finger 5; MAVS: mitochondrial antiviral signaling protein; MDV: mitochondria-derived vesicle; MFN1: mitofusin 1; MHC: major histocompatibility complex; MIF: macrophage migration inhibitory factor; mtAP: mitochondrial antigen presentation; mtDNA: mitochondrial DNA; MTOR: mechanistic target of rapamycin kinase; mtROS: mitochondrial ROS; MUL1: mitochondrial E3 ubiquitin protein ligase 1; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-ĸB: nuclear factor kappa B subunit; NK: natural killer; NLR: NOD-like receptor; NLRC4: NLR family CARD domain containing 4; NLRP3: NLR family pyrin domain containing 3; OGDH: oxoglutarate dehydrogenase; OMM: outer mitochondrial membrane; OPTN: optineurin; ox: oxidized; PARK7: Parkinsonism associated deglycase; PBC: primary biliary cirrhosis; PEX13: peroxisomal biogenesis factor 13; PHB/PHB1: prohibitin; PHB2: prohibitin 2; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; PLEKHM1: pleckstrin homology and RUN domain containing M1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; RAB: member RAS oncogene family; RHEB: Ras homolog: mTORC1 binding; RIPK2: receptor interacting serine/threonine kinase 2; RLR: DDX58/RIG-I like receptor; ROS: reactive oxygen species; SBD: small bile ducts; SLC2A1/GLUT1: solute carrier family 2 member 1; SLE: systemic lupus erythematosus; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TCR: T cell receptor; TFAM: transcription factor A: mitochondrial; Th17: T helper 17; TLR9: toll like receptor 9; TMEM173/STING: transmembrane protein 173; TNF/TNF-α: tumor necrosis factor; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; WIPI: WD repeat domain: phosphoinositide interacting; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
- Ye Xu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
21
|
Wauters F, Cornelissen T, Imberechts D, Martin S, Koentjoro B, Sue C, Vangheluwe P, Vandenberghe W. LRRK2 mutations impair depolarization-induced mitophagy through inhibition of mitochondrial accumulation of RAB10. Autophagy 2019; 16:203-222. [PMID: 30945962 DOI: 10.1080/15548627.2019.1603548] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Parkinson disease (PD) is a disabling, incurable disorder with increasing prevalence in the western world. In rare cases PD is caused by mutations in the genes for PINK1 (PTEN induced kinase 1) or PRKN (parkin RBR E3 ubiquitin protein ligase), which impair the selective autophagic elimination of damaged mitochondria (mitophagy). Mutations in the gene encoding LRRK2 (leucine rich repeat kinase 2) are the most common monogenic cause of PD. Here, we report that the LRRK2 kinase substrate RAB10 accumulates on depolarized mitochondria in a PINK1- and PRKN-dependent manner. RAB10 binds the autophagy receptor OPTN (optineurin), promotes OPTN accumulation on depolarized mitochondria and facilitates mitophagy. In PD patients with the two most common LRRK2 mutations (G2019S and R1441C), RAB10 phosphorylation at threonine 73 is enhanced, while RAB10 interaction with OPTN, accumulation of RAB10 and OPTN on depolarized mitochondria, depolarization-induced mitophagy and mitochondrial function are all impaired. These defects in LRRK2 mutant patient cells are rescued by LRRK2 knockdown and LRRK2 kinase inhibition. A phosphomimetic RAB10 mutant showed less OPTN interaction and less translocation to depolarized mitochondria than wild-type RAB10, and failed to rescue mitophagy in LRRK2 mutant cells. These data connect LRRK2 with PINK1- and PRKN-mediated mitophagy via its substrate RAB10, and indicate that the pathogenic effects of mutations in LRRK2, PINK1 and PRKN may converge on a common pathway.Abbreviations : ACTB: actin beta; ATP5F1B: ATP synthase F1 subunit beta; CALCOCO2: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; Co-IP: co-immunoprecipitation; EBSS: Earle's balanced salt solution; GFP: green fluorescent protein; HSPD1: heat shock protein family D (Hsp60) member 1; LAMP1: lysosomal associated membrane protein 1; LRRK2: leucine rich repeat kinase 2; IF: immunofluorescence; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; OMM: outer mitochondrial membrane; OPTN: optineurin; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RHOT1: ras homolog family member T1; ROS: reactive oxygen species; TBK1: TANK binding kinase 1; WB: western blot.
Collapse
Affiliation(s)
- Fieke Wauters
- Department of Neurosciences, Laboratory for Parkinson Research, Leuven, Belgium
| | - Tom Cornelissen
- Department of Neurosciences, Laboratory for Parkinson Research, Leuven, Belgium
| | - Dorien Imberechts
- Department of Neurosciences, Laboratory for Parkinson Research, Leuven, Belgium
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, Leuven, Belgium
| | - Brianada Koentjoro
- Department of Neurogenetics, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, Australia
| | - Carolyn Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, Australia
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, Laboratory for Parkinson Research, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Barbosa MC, Grosso RA, Fader CM. Hallmarks of Aging: An Autophagic Perspective. Front Endocrinol (Lausanne) 2019; 9:790. [PMID: 30687233 PMCID: PMC6333684 DOI: 10.3389/fendo.2018.00790] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a major protein turnover pathway by which cellular components are delivered into the lysosomes for degradation and recycling. This intracellular process is able to maintain cellular homeostasis under stress conditions, and its dysregulation could lead to the development of physiological alterations. The autophagic activity has been found to decrease with age, likely contributing to the accumulation of damaged macromolecules and organelles during aging. Interestingly, failure of the autophagic process has been reported to worsen aging-associated diseases, such as neurodegeneration or cancer, among others. Likewise, it has been proposed in different organisms that maintenance of a proper autophagic activity contributes to extending longevity. In this review, we discuss recent papers showing the impact of autophagy on cell activity and age-associated diseases, highlighting the relevance of this process to the hallmarks of aging. Thus, understanding how autophagy plays an important role in aging opens new avenues for the discovery of biochemical and pharmacological targets and the development of novel anti-aging therapeutic approaches.
Collapse
Affiliation(s)
- María Carolina Barbosa
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Rubén Adrián Grosso
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
23
|
Activation of CD137 Signaling Enhances Vascular Calcification through c-Jun N-Terminal Kinase-Dependent Disruption of Autophagic Flux. Mediators Inflamm 2018; 2018:8407137. [PMID: 30356425 PMCID: PMC6178178 DOI: 10.1155/2018/8407137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023] Open
Abstract
Background Vascular calcification is widespread and clinically significant, contributing to substantial morbidity and mortality. Calcifying vascular cells are partly derived from local vascular smooth muscle cells (VSMCs), which can undergo chondrogenic or osteogenic differentiation under inflammatory environment. Recently, we have found activation of CD137 signaling accelerated vascular calcification. However, the underlying mechanism remains unknown. This study aims to identify key mediators involved in CD137 signaling-induced vascular calcification in vivo and in vitro. Methods Autophagy flux was measured through mRFP-GFP-LC3 adenovirus and transmission electron microscopy. Von Kossa assay and alkaline phosphatase (ALP) activity were used to observe calcification in vivo and in vitro, respectively. Autophagosome-containing vesicles were collected and identified by flow cytometry and Western blot. Autophagy or calcification-associated targets were measured by Western blot, quantitative real-time PCR, and immunohistochemistry. Results Treatment with the agonist-CD137 displayed c-Jun N-terminal kinase- (JNK-) dependent increase in the expression of various markers of autophagy and the number of autophagosomes relative to the control group. Autophagy flux experiments suggested that agonist-CD137 blocked the fusion of autophagosomes with lysosomes in cultured VSMCs. Calcium deposition, ALP activity, and the expression of calcification-associated proteins also increased in agonist-CD137 group compared with anti-CD137 group, which could be recovered by autophagy stimulator rapamycin. Autophagosome-containing vesicles collected from agonist-CD137 VSMCs supernatant promoted VSMC calcification. Conclusion The present study identified a new pathway in which CD137 promotes VSMC calcification through the activation of JNK signaling, subsequently leading to the disruption of autophagic flux, which is responsible for CD137-induced acceleration of vascular calcification.
Collapse
|
24
|
Chu CT. Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiol Dis 2018; 122:23-34. [PMID: 30030024 DOI: 10.1016/j.nbd.2018.07.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 01/07/2023] Open
Abstract
Over the past 20 years, the concept of mammalian autophagy as a nonselective degradation system has been repudiated, due in part to important discoveries in neurodegenerative diseases, which opened the field of selective autophagy. Protein aggregates and damaged mitochondria represent key pathological hallmarks shared by most neurodegenerative diseases. The landmark discovery in 2007 of p62/SQSTM1 as the first mammalian selective autophagy receptor defined a new family of autophagy-related proteins that serve to target protein aggregates, mitochondria, intracellular pathogens and other cargoes to the core autophagy machinery via an LC3-interacting region (LIR)-motif. Notably, mutations in the LIR-motif proteins p62 (SQSTM1) and optineurin (OPTN) contribute to familial forms of frontotemporal dementia and amyotrophic lateral sclerosis. Moreover, a subset of LIR-motif proteins is involved in selective mitochondrial degradation initiated by two recessive familial Parkinson's disease genes. PTEN-induced kinase 1 (PINK1) activates the E3 ubiquitin ligase Parkin (PARK2) to mark depolarized mitochondria for degradation. An extensive body of literature delineates key mechanisms in this pathway, based mostly on work in transformed cell lines. However, the potential role of PINK1-triggered mitophagy in neurodegeneration remains a conundrum, particularly in light of recent in vivo mitophagy studies. There are at least three major mechanisms by which mitochondria are targeted for mitophagy: transmembrane receptor-mediated, ubiquitin-mediated and cardiolipin-mediated. This review summarizes key features of the major cargo recognition pathways for selective autophagy and mitophagy, highlighting their potential impact in the pathogenesis or amelioration of neurodegenerative diseases.
Collapse
Affiliation(s)
- Charleen T Chu
- Departments of Pathology and Ophthalmology, Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine, Center for Protein Conformational Diseases, Center for Neuroscience at the University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
25
|
Deficiency of unc-51 like kinase 1 (Ulk1) protects against mice traumatic brain injury (TBI) by suppression of p38 and JNK pathway. Biochem Biophys Res Commun 2018; 503:467-473. [PMID: 29680658 DOI: 10.1016/j.bbrc.2018.04.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
Unc-51 like autophagy activating kinase 1 (Ulk1) is a serine/threonine kinase that plays a key role in regulating autophagy processes. We attempted to investigate the effects of Ulk1 on traumatic brain injury (TBI) progression by using wild type (WT) mice and Ulk1-knockout (KO) mice suffered with or not TBI. The results were verified using LPS-treated primary astrocyte (AST). Here, Ulk1 was over-expressed in hippocampus of WT mice after TBI, as well as in lipopolysaccharide (LPS)-stimulated AST. Ulk1-deletion improved cognitive ability and hippocampus histological changes in TBI mice. Nissl and neuronal nuclei (NeuN) staining indicated that Ulk1-deletion increased the number of surviving neurons in hippocampus of TBI mice. Ulk1-ablation alleviated neuroinflammation, as evidenced by the reduced expression of hippocampus pro-inflammatory cytokines in TBI mice. TBI-induced apoptosis was also ameliorated by Ulk1-ablation, as proved by the reduced number of TUNEL-staining cells, and cleaved Caspase-3 and poly (ADP-ribose) polymerase (PARP) expressions. Moreover, Ulk1-knockout suppressed TBI-stimulated activation of astrocytes and microglia cells. Additionally, hippocampus autophagy induced by TBI was attenuated by Ulk1-knockout. Further, TBI-activated p38/c-Jun N-terminal Kinase (JNK) pathway was repressed by Ulk1-deletion in hippocampus of mice. The findings above were confirmed in LPS-stimulated AST with or without Ulk1 siRNA transfection. Intriguingly, pre-treatment of p38 or JNK activator markedly abolished the anti-inflammation, anti-apoptosis and anti-autophagy effects of Ulk1-knockdown on LPS-incubated AST. In conclusion, our results demonstrated that Ulk1 might be a potential target for developing therapeutic strategy against TBI in future.
Collapse
|
26
|
Chu CT. Multiple pathways for mitophagy: A neurodegenerative conundrum for Parkinson's disease. Neurosci Lett 2018; 697:66-71. [PMID: 29626647 DOI: 10.1016/j.neulet.2018.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 01/05/2023]
Abstract
It has been nearly a decade since the first landmark studies implicating familial recessive Parkinson's disease genes in the regulation of selective mitochondrial autophagy. The PTEN-induced kinase 1 (PINK1) and the E3 ubiquitin ligase Parkin (encoded by the PARK2 gene) act together to mark depolarized mitochondria for degradation. There is now an extensive body of literature detailing key mediators and steps in this pathway, based mostly on work in transformed cell lines. However, the degree to which PINK1-triggered mitophagy contributes to mitochondrial quality control in the mammalian brain, and the extent to which its disruption contributes to Parkinson's disease pathogenesis remain uncertain. In recent years, it has become clear that there are multiple, potentially redundant, pathways of cargo specification for mitophagy. Important mitophagy-independent functions of PINK1 and Parkin are also emerging. This review summarizes key features of three major mitophagy cargo recognition systems: receptor-mediated, ubiquitin-mediated and cardiolipin-mediated. New animal models that may be useful for tracking the delivery of mitochondria into lysosomes in different neuronal populations will be highlighted. Combining these research tools with methods to selectively disrupt specific mitophagy pathways may lead to a better understanding of the potential role of mitophagy in modulating neuronal vulnerability in Parkinson's spectrum (PD/PDD/DLB) and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Charleen T Chu
- Departments of Pathology and Ophthalmology, Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine and Center for Neuroscience at the University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
27
|
Abstract
Cells constantly adapt their metabolism to meet their energy needs and respond to nutrient availability. Eukaryotes have evolved a very sophisticated system to sense low cellular ATP levels via the serine/threonine kinase AMP-activated protein kinase (AMPK) complex. Under conditions of low energy, AMPK phosphorylates specific enzymes and growth control nodes to increase ATP generation and decrease ATP consumption. In the past decade, the discovery of numerous new AMPK substrates has led to a more complete understanding of the minimal number of steps required to reprogramme cellular metabolism from anabolism to catabolism. This energy switch controls cell growth and several other cellular processes, including lipid and glucose metabolism and autophagy. Recent studies have revealed that one ancestral function of AMPK is to promote mitochondrial health, and multiple newly discovered targets of AMPK are involved in various aspects of mitochondrial homeostasis, including mitophagy. This Review discusses how AMPK functions as a central mediator of the cellular response to energetic stress and mitochondrial insults and coordinates multiple features of autophagy and mitochondrial biology.
Collapse
|
28
|
Yan R, Liu Z. LRRK2 enhances Nod1/2-mediated inflammatory cytokine production by promoting Rip2 phosphorylation. Protein Cell 2016; 8:55-66. [PMID: 27830463 PMCID: PMC5233611 DOI: 10.1007/s13238-016-0326-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is critical for clearing infection, and is tightly regulated to avert excessive tissue damage. Nod1/2-Rip2 signaling, which is essential for initiating the innate immune response to bacterial infection and ER stress, is subject to many regulatory mechanisms. In this study, we found that LRRK2, encoded by a gene implicated in Crohn's disease, leprosy and familial Parkinson's disease, modulates the strength of Nod1/2-Rip2 signaling by enhancing Rip2 phosphorylation. LRRK2 deficiency markedly reduces cytokine production in macrophages upon Nod2 activation by muramyl dipeptide (MDP), Nod1 activation by D-gamma-Glu-meso-diaminopimelic acid (iE-DAP) or ER stress. Our biochemical study shows that the presence of LRRK2 is necessary for optimal phosphorylation of Rip2 upon Nod2 activation. Therefore, this study reveals that LRRK2 is a new positive regulator of Rip2 and promotes inflammatory cytokine induction through the Nod1/2-Rip2 pathway.
Collapse
Affiliation(s)
- Ruiqing Yan
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Liu
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
De Rosa P, Marini ES, Gelmetti V, Valente EM. Candidate genes for Parkinson disease: Lessons from pathogenesis. Clin Chim Acta 2015; 449:68-76. [PMID: 26048192 DOI: 10.1016/j.cca.2015.04.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/06/2023]
Abstract
Parkinson disease (PD) is a multifactorial neurodegenerative disease characterized by the progressive loss of specific neuronal populations and accumulation of Lewy bodies in the brain, leading to motor and non-motor symptoms. In a small subset of patients, PD is dominantly or recessively inherited, while a number of susceptibility genetic loci have been identified through genome wide association studies. The discovery of genes mutated in PD and functional studies on their protein products have provided new insights into the molecular events leading to neurodegeneration, suggesting that few interconnected molecular pathways may be deranged in all forms of PD, triggering neuronal loss. Here, we summarize the most relevant findings implicating the main PD-related proteins in biological processes such as mitochondrial dysfunction, misfolded protein damage, alteration of cellular clearance systems, abnormal calcium handling and altered inflammatory response, which represent key targets for neuroprotection.
Collapse
Affiliation(s)
- Priscilla De Rosa
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy
| | - Elettra Sara Marini
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy; Dept. of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Vania Gelmetti
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy
| | - Enza Maria Valente
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy; Section of Neurosciences, Dept. of Medicine and Surgery, University of Salerno, Salerno, Italy.
| |
Collapse
|
30
|
Li Y, Zhang J, Yang C. UNC-51-like kinase 1 blocks S6k1 phosphorylation contributes to neurodegeneration in Parkinson's disease model in vitro. Biochem Biophys Res Commun 2015; 459:196-200. [PMID: 25680463 DOI: 10.1016/j.bbrc.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This study was aim to determine the role and underling mechanism of ribosomal protein S6 kinases 1 (S6k1) phosphorylation in Parkinson's disease (PD). METHODS The dopaminergic neuron MN9D was employed and 1-methyl-4-phenylpyridium (MPP) iodide (MPP(+)) was used to generate PD model in vitro. The S6k1 phosphorylation and UNC-51-like kinase 1 (ULK1) protein levels were analyzed by western blot. The ULK1 mRNA level was evaluated by Real-time RT-PCR. The S6k1 threonine 389 (T389) site-directed mutagenesis, the phosphodeficit T389A (threonine to alanine) and the phosphomimetic T389D (threonine to aspartate) were generated to examine the phosphorylation site of S6k1. RESULTS An increase in the ULK1 mRNA and protein levels were detected in the MPP(+)-treated MN9D cells compared to control. ULK1 knockdown increased neuronal cell viability, and enhanced S6k1 phosphorylation. Further investigation demonstrated ULK1 knockdown promoted the S6k1 T389 phosphorylation in particular. T389A enhanced the viability of MPP iodide-treated MN9D, whereas T389D decreased the cell viability. CONCLUSION ULK1 acts to inhibit S6k1 phosphorylation at T389, leading to MN9D viability reduction under MPP(+) treatment. These results provide evidence for a novel mechanism by which the ULK1 inhibit S6k1 T389 phosphorylation contributes to neurodegeneration in MPP(+) treated-MN9D, and suggests a new therapeutic strategy for PD.
Collapse
Affiliation(s)
- Yongle Li
- Graduate School of Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China.
| | - Jun Zhang
- Department of Nerve Internal Medicine, Jingmen No.2 People's Hospital, Xiangshan Road, Jingmen 448000, China
| | - Chunxiang Yang
- Department of Nerve Internal Medicine, Jingmen No.2 People's Hospital, Xiangshan Road, Jingmen 448000, China
| |
Collapse
|
31
|
Wang D, Xu L, Lv L, Su LY, Fan Y, Zhang DF, Bi R, Yu D, Zhang W, Li XA, Li YY, Yao YG. Association of the LRRK2 genetic polymorphisms with leprosy in Han Chinese from Southwest China. Genes Immun 2014; 16:112-9. [PMID: 25521227 DOI: 10.1038/gene.2014.72] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/19/2014] [Accepted: 10/27/2014] [Indexed: 12/31/2022]
Abstract
Leprosy is a chronic infectious and neurological disease that is caused by infection of Mycobacterium leprae (M. leprae). A recent genome-wide association study indicated a suggestive association of LRRK2 genetic variant rs1873613 with leprosy in Chinese population. To validate this association and further identify potential causal variants of LRRK2 with leprosy, we genotyped 13 LRRK2 variants in 548 leprosy patients and 1078 healthy individuals from Yunnan Province and (re-)analyzed 3225 Han Chinese across China. Variants rs1427267, rs3761863, rs1873613, rs732374 and rs7298930 were significantly associated with leprosy per se and/or paucibacillary leprosy (PB). Haplotype A-G-A-C-A was significantly associated with leprosy per se (P=0.018) and PB (P=0.020). Overexpression of the protective allele (Thr2397) of rs3761863 in HEK293 cells led to a significantly increased nuclear factor of activated T-cells' activity compared with allele Met2397 after lipopolysaccharides stimulation. Allele Thr2397 could attenuate 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced autophagic activity in U251 cells. These data suggest that the protective effect of LRRK2 variant p.M2397T on leprosy might be mediated by increasing immune response and decreasing neurotoxicity after M. leprae loading. Our findings confirm that LRRK2 is a susceptible gene to leprosy in Han Chinese population.
Collapse
Affiliation(s)
- D Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - L Xu
- 1] Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China [2] Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - L Lv
- 1] Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China [2] Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - L-Y Su
- 1] Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China [2] Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Y Fan
- 1] Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China [2] Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - D-F Zhang
- 1] Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China [2] Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - R Bi
- 1] Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China [2] Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - D Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - W Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - X-A Li
- Yuxi City Center for Disease Control and Prevention, Yuxi, Yunnan, China
| | - Y-Y Li
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Y-G Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
32
|
Schapansky J, Nardozzi JD, LaVoie MJ. The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease. Neuroscience 2014; 302:74-88. [PMID: 25284317 DOI: 10.1016/j.neuroscience.2014.09.049] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
The proteins alpha-synuclein (αSyn) and leucine rich repeat kinase 2 (LRRK2) are both key players in the pathogenesis of the neurodegenerative disorder Parkinson's disease (PD), but establishing a functional link between the two proteins has proven elusive. Research studies for these two proteins have traditionally and justifiably focused in neuronal cells, but recent studies indicate that each protein could play a greater pathological role elsewhere. αSyn is expressed at high levels within neurons, but they also secrete the protein into the extracellular milieu, where it can have broad ranging effects in the nervous system and relevance to disease etiology. Similarly, low neuronal LRRK2 expression and activity suggests that LRRK2-related functions could be more relevant in cells with higher expression, such as brain-resident microglia. Microglia are monocytic immune cells that protect neurons from noxious stimuli, including pathological αSyn species, and microglial activation is believed to contribute to neuroinflammation and neuronal death in PD. Interestingly, both αSyn and LRRK2 can be linked to microglial function. Secreted αSyn can directly activate microglia, and can be taken up by microglia for clearance, while LRRK2 has been implicated in the intrinsic regulation of microglial activation and of lysosomal degradation processes. Based on these observations, the present review will focus on how PD-associated mutations in LRRK2 could potentially alter microglial biology with respect to neuronally secreted αSyn, resulting in cell dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- J Schapansky
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States
| | - J D Nardozzi
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States
| | - M J LaVoie
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States.
| |
Collapse
|