1
|
Lithgo RM, Tomlinson CWE, Fairhead M, Winokan M, Thompson W, Wild C, Aschenbrenner JC, Balcomb BH, Marples PG, Chandran AV, Golding M, Koekemoer L, Williams EP, Wang S, Ni X, MacLean E, Giroud C, Godoy AS, Xavier MA, Walsh M, Fearon D, von Delft F. Crystallographic Fragment Screen of Coxsackievirus A16 2A Protease identifies new opportunities for the development of broad-spectrum anti-enterovirals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591684. [PMID: 38746446 PMCID: PMC11092469 DOI: 10.1101/2024.04.29.591684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Enteroviruses are the causative agents of paediatric hand-foot-and-mouth disease, and a target for pandemic preparedness due to the risk of higher order complications in a large-scale outbreak. The 2A protease of these viruses is responsible for the self-cleavage of the poly protein, allowing for correct folding and assembly of capsid proteins in the final stages of viral replication. These 2A proteases are highly conserved between Enterovirus species, such as Enterovirus A71 and Coxsackievirus A16 . Inhibition of the 2A protease deranges capsid folding and assembly, preventing formation of mature virions in host cells and making the protease a valuable target for antiviral activity. Herein, we describe a crystallographic fragment screening campaign that identified 75 fragments which bind to the 2A protease including 38 unique compounds shown to bind within the active site. These fragments reveal a path for the development of non-peptidomimetic inhibitors of the 2A protease with broad-spectrum anti-enteroviral activity.
Collapse
|
2
|
Recent advances in anti-coxsackievirus A16 viral drug research. Future Med Chem 2023; 15:97-117. [PMID: 36538291 DOI: 10.4155/fmc-2022-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hand, foot and mouth disease, a childhood disorder caused by enteroviruses, is intermittently endemic in the Asia-Pacific region and endangers the lives of many infants and young children. Coxsackievirus A16 (CV-A16) is one of the major pathogens causing hand, foot, and mouth disease on occasion, resulting in catastrophic neurological sequelae and patient death. Currently, no clinical interventions are available that completely block the CV-A16 infection. Therefore, research on anti-CV-A16 treatment continues to be a significant focus of interest. This report provides a detailed background on and an introduction to CV-A16; a description of the viral gene and protein structures and a summary of the current advances in pharmaceutical targets, drug research and other related areas.
Collapse
|
3
|
Chen T, Grauffel C, Yang WZ, Chen YP, Yuan HS, Lim C. Efficient Strategy to Design Protease Inhibitors: Application to Enterovirus 71 2A Protease. ACS BIO & MED CHEM AU 2022; 2:437-449. [PMID: 37102167 PMCID: PMC10125330 DOI: 10.1021/acsbiomedchemau.2c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
One strategy to counter viruses that persistently cause outbreaks is to design molecules that can specifically inhibit an essential multifunctional viral protease. Herein, we present such a strategy using well-established methods to first identify a region present only in viral (but not human) proteases and find peptides that can bind specifically to this "unique" region by maximizing the protease-peptide binding free energy iteratively using single-point mutations starting with the substrate peptide. We applied this strategy to discover pseudosubstrate peptide inhibitors for the multifunctional 2A protease of enterovirus 71 (EV71), a key causative pathogen for hand-foot-and-mouth disease affecting young children, along with coxsackievirus A16. Four peptide candidates predicted to bind EV71 2A protease more tightly than the natural substrate were experimentally validated and found to inhibit protease activity. Furthermore, the crystal structure of the best pseudosubstrate peptide bound to the EV71 2A protease was determined to provide a molecular basis for the observed inhibition. Since the 2A proteases of EV71 and coxsackievirus A16 share nearly identical sequences and structures, our pseudosubstrate peptide inhibitor may prove useful in inhibiting the two key pathogens of hand-foot-and-mouth disease.
Collapse
Affiliation(s)
- Ting Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Zen Yang
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ping Chen
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300 Taiwan
| |
Collapse
|
4
|
Selvaraj C, Rudhra O, Alothaim AS, Alkhanani M, Singh SK. Structure and chemistry of enzymatic active sites that play a role in the switch and conformation mechanism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:59-83. [PMID: 35534116 DOI: 10.1016/bs.apcsb.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enzymes, which are biological molecules, are constructed from polypeptide chains, and these molecules are activated through reaction mechanisms. It is the role of enzymes to speed up chemical reactions that are used to build or break down cell structures. Activation energy is reduced by the enzymes' selective binding of substrates in a protected environment. In enzyme tertiary structures, the active sites are commonly situated in a "cleft," which necessitates the diffusion of substrates and products. The amino acid residues of the active site may be far apart in the primary structure owing to the folding required for tertiary structure. Due to their critical role in substrate binding and attraction, changes in amino acid structure at or near the enzyme's active site usually alter enzyme activity. At the enzyme's active site, or where the chemical reactions occur, the substrate is bound. Enzyme substrates are the primary targets of the enzyme's active site, which is designed to assist in the chemical reaction. This chapter elucidates the summary of structure and chemistry of enzymes, their active site features, charges and role of water in the structures to clarify the biochemistry of the enzymes in the depth of atomic features.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Ondipilliraja Rudhra
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Mustfa Alkhanani
- Emergency Service Department, College of Applied Sciences, Al Maarefa University, Riyadh, Saudi Arabia
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
5
|
Structural and functional significance of the amino acid differences Val 35Thr, Ser 46Ala, Asn 65Ser, and Ala 94Ser in 3C-like proteinases from SARS-CoV-2 and SARS-CoV. Int J Biol Macromol 2021; 193:2113-2120. [PMID: 34774600 PMCID: PMC8580570 DOI: 10.1016/j.ijbiomac.2021.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022]
Abstract
Three dimensional structures of (chymo)trypsin-like proteinase (3CLpro) from SARS-CoV-2 and SARS-CoV differ at 8 positions. We previously found that the Val86Leu, Lys88Arg, Phe134His, and Asn180Lys mutations in these enzymes can change the orientation of the N- and C-terminal domains of 3CLpro relative to each other, which leads to a change in catalytic activity. This conclusion was derived from the comparison of the structural catalytic core in 169 (chymo)trypsin-like proteinases with the serine/cysteine fold. Val35Thr, Ser46Ala, Asn65Ser, Ala94Ser mutations were not included in that analysis, since they are located far from the catalytic tetrad. In the present work, the structural and functional roles of these variable amino acids at positions 35, 46, 65, and 94 in the 3CLpro sequences of SARS-CoV-2 and SARS-CoV have been established using a comparison of the same set of proteinases leading to the identification of new conservative elements. Comparative analysis showed that, in addition to interdomain mobility, which could modulate catalytic activity, the 3CLpro(s) can use for functional regulation an autolytic loop and the unique Asp33-Asn95 region (the Asp33-Asn95 Zone) in the N-terminal domain. Therefore, all 4 analyzed mutation sites are associated with the unique structure-functional features of the 3CLpro from SARS-CoV-2 and SARS-CoV. Strictly speaking, the presented structural results are hypothetical, since at present there is not a single experimental work on the identification and characterization of autolysis sites in these proteases.
Collapse
|
6
|
Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. NBCZone: Universal three-dimensional construction of eleven amino acids near the catalytic nucleophile and base in the superfamily of (chymo)trypsin-like serine fold proteases. Int J Biol Macromol 2020; 153:399-411. [PMID: 32151723 PMCID: PMC7124590 DOI: 10.1016/j.ijbiomac.2020.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 10/25/2022]
Abstract
(Chymo)trypsin-like serine fold proteases belong to the serine/cysteine proteases found in eukaryotes, prokaryotes, and viruses. Their catalytic activity is carried out using a triad of amino acids, a nucleophile, a base, and an acid. For this superfamily of proteases, we propose the existence of a universal 3D structure comprising 11 amino acids near the catalytic nucleophile and base - Nucleophile-Base Catalytic Zone (NBCZone). The comparison of NBCZones among 169 eukaryotic, prokaryotic, and viral (chymo)trypsin-like proteases suggested the existence of 15 distinct groups determined by the combination of amino acids located at two "key" structure-functional positions 54T and 55T near the catalytic base His57T. Most eukaryotic and prokaryotic proteases fell into two major groups, [ST]A and TN. Usually, proteases of [ST]A group contain a disulfide bond between cysteines Cys42T and Cys58T of the NBCZone. In contrast, viral proteases were distributed among seven groups, and lack this disulfide bond. Furthermore, only the [ST]A group of eukaryotic proteases contains glycine at position 43T, which is instrumental for activation of these enzymes. In contrast, due to the side chains of residues at position 43T prokaryotic and viral proteases do not have the ability to carry out the structural transition of the eukaryotic zymogen-zyme type.
Collapse
Affiliation(s)
- Alexander I Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia; Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
7
|
Ling H, Yang P, Hou H, Sun Y. Structural view of the 2A protease from human rhinovirus C15. Acta Crystallogr F Struct Biol Commun 2018; 74:255-261. [PMID: 29633974 PMCID: PMC5894110 DOI: 10.1107/s2053230x18003382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/27/2018] [Indexed: 11/10/2022] Open
Abstract
The majority of outbreaks of the common cold are caused by rhinoviruses. The 2A protease (2Apro) of human rhinoviruses (HRVs) is known to play important roles in the propagation of the virus and the modulation of host signal pathways to facilitate viral replication. The 2Apro from human rhinovirus C15 (HRV-C15) has been expressed in Escherichia coli and purified by affinity chromatography, ion-exchange chromatography and gel-filtration chromatography. The crystals diffracted to 2.6 Å resolution. The structure was solved by molecular replacement using the structure of 2Apro from coxsackievirus A16 (CVA16) as the search model. The structure contains a conserved His-Asp-Cys catalytic triad and a Zn2+-binding site. Comparison with other 2Apro structures from enteroviruses reveals that the substrate-binding cleft of 2Apro from HRV-C15 exhibits a more open conformation, which presumably favours substrate binding.
Collapse
Affiliation(s)
- Hui Ling
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People’s Republic of China
| | - Pan Yang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Hai Hou
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Yao Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
8
|
Yang X, Cheng A, Wang M, Jia R, Sun K, Pan K, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao XX, Chen X. Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins. Front Microbiol 2017; 8:1373. [PMID: 28785248 PMCID: PMC5519566 DOI: 10.3389/fmicb.2017.01373] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/06/2017] [Indexed: 11/27/2022] Open
Abstract
Among the few non-structural proteins encoded by the picornaviral genome, the 2A protein is particularly special, irrespective of structure or function. During the evolution of the Picornaviridae family, the 2A protein has been highly non-conserved. We believe that the 2A protein in this family can be classified into at least five distinct types according to previous studies. These five types are (A) chymotrypsin-like 2A, (B) Parechovirus-like 2A, (C) hepatitis-A-virus-like 2A, (D) Aphthovirus-like 2A, and (E) 2A sequence of the genus Cardiovirus. We carried out a phylogenetic analysis and found that there was almost no homology between each type. Subsequently, we aligned the sequences within each type and found that the functional motifs in each type are highly conserved. These different motifs perform different functions. Therefore, in this review, we introduce the structures and functions of these five types of 2As separately. Based on the structures and functions, we provide suggestions to combat picornaviruses. The complexity and diversity of the 2A protein has caused great difficulties in functional and antiviral research. In this review, researchers can find useful information on the 2A protein and thus conduct improved antiviral research.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
9
|
Structure of human Aichi virus and implications for receptor binding. Nat Microbiol 2016; 1:16150. [DOI: 10.1038/nmicrobiol.2016.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
|
10
|
Laitinen OH, Svedin E, Kapell S, Nurminen A, Hytönen VP, Flodström-Tullberg M. Enteroviral proteases: structure, host interactions and pathogenicity. Rev Med Virol 2016; 26:251-67. [PMID: 27145174 PMCID: PMC7169145 DOI: 10.1002/rmv.1883] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022]
Abstract
Enteroviruses are common human pathogens, and infections are particularly frequent in children. Severe infections can lead to a variety of diseases, including poliomyelitis, aseptic meningitis, myocarditis and neonatal sepsis. Enterovirus infections have also been implicated in asthmatic exacerbations and type 1 diabetes. The large disease spectrum of the closely related enteroviruses may be partially, but not fully, explained by differences in tissue tropism. The molecular mechanisms by which enteroviruses cause disease are poorly understood, but there is increasing evidence that the two enteroviral proteases, 2Apro and 3Cpro, are important mediators of pathology. These proteases perform the post‐translational proteolytic processing of the viral polyprotein, but they also cleave several host‐cell proteins in order to promote the production of new virus particles, as well as to evade the cellular antiviral immune responses. Enterovirus‐associated processing of cellular proteins may also contribute to pathology, as elegantly demonstrated by the 2Apro‐mediated cleavage of dystrophin in cardiomyocytes contributing to Coxsackievirus‐induced cardiomyopathy. It is likely that improved tools to identify targets for these proteases will reveal additional host protein substrates that can be linked to specific enterovirus‐associated diseases. Here, we discuss the function of the enteroviral proteases in the virus replication cycle and review the current knowledge regarding how these proteases modulate the infected cell in order to favour virus replication, including ways to avoid detection by the immune system. We also highlight new possibilities for the identification of protease‐specific cellular targets and thereby a way to discover novel mechanisms contributing to disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olli H Laitinen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Emma Svedin
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Kapell
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Anssi Nurminen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Vesa P Hytönen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Malin Flodström-Tullberg
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland.,The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Li H, Chen Y, Zhang B, Niu X, Song M, Luo Z, Lu G, Liu B, Zhao X, Wang J, Deng X. Inhibition of sortase A by chalcone prevents Listeria monocytogenes infection. Biochem Pharmacol 2016; 106:19-29. [PMID: 26826492 DOI: 10.1016/j.bcp.2016.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/26/2016] [Indexed: 12/22/2022]
Abstract
The critical role of sortase A in gram-positive bacterial pathogenicity makes this protein a good potential target for antimicrobial therapy. In this study, we report for the first time the crystal structure of Listeria monocytogenes sortase A and identify the active sites that mediate its transpeptidase activity. We also used a sortase A (SrtA) enzyme activity inhibition assay, simulation, and isothermal titration calorimetry analysis to discover that chalcone, an agent with little anti-L. monocytogenes activity, could significantly inhibit sortase A activity with an IC50 of 28.41 ± 5.34 μM by occupying the active site of SrtA. The addition of chalcone to a co-culture of L. monocytogenes and Caco-2 cells significantly inhibited bacterial entry into the cells and L. monocytogenes-mediated cytotoxicity. Additionally, chalcone treatment decreased the mortality of infected mice, the bacterial burden in target organs, and the pathological damage to L. monocytogenes-infected mice. In conclusion, these findings suggest that chalcone is a promising candidate for the development of treatment against L. monocytogenes infection.
Collapse
Affiliation(s)
- Hongen Li
- Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Song
- Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhaoqing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoran Zhao
- Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
12
|
Kim TJ, Zheng S, Sun J, Muhamed I, Wu J, Lei L, Kong X, Leckband DE, Wang Y. Dynamic visualization of α-catenin reveals rapid, reversible conformation switching between tension states. Curr Biol 2015; 25:218-224. [PMID: 25544608 PMCID: PMC4302114 DOI: 10.1016/j.cub.2014.11.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022]
Abstract
The cytosolic protein α-catenin is a postulated force transducer at cadherin complexes. The demonstration of force activation, identification of consequent downstream events in live cells, and development of tools to study these dynamic processes in living cells are central to elucidating the role of α-catenin in cellular mechanics and tissue function. Here we demonstrate that α-catenin is a force-activatable mechanotransducer at cell-cell junctions by using an engineered α-catenin conformation sensor based on fluorescence resonance energy transfer (FRET). This sensor reconstitutes α-catenin-dependent functions in α-catenin-depleted cells and recapitulates the behavior of the endogenous protein. Dynamic imaging of cells expressing the sensor demonstrated that α-catenin undergoes immediate, reversible conformation switching in direct response to different mechanical perturbations of cadherin adhesions. Combined magnetic twisting cytometry with dynamic FRET imaging revealed rapid, local conformation switching upon the mechanical stimulation of specific cadherin bonds. At acutely stretched cell-cell junctions, the immediate, reversible conformation change further reveals that α-catenin behaves like an elastic spring in series with cadherin and actin. The force-dependent recruitment of vinculin—a principal α-catenin effector—to junctions requires the vinculin binding site of the α-catenin sensor. In cells, the relative rates of force-dependent α-catenin conformation switching and vinculin recruitment reveal that α-catenin activation and vinculin recruitment occur sequentially, rather than in a concerted process, with vinculin accumulation being significantly slower. This engineered α-catenin sensor revealed that α-catenin is a reversible, stretch-activatable sensor that mechanically links cadherin complexes and actin and is an indispensable player in cadherin-specific mechanotransduction at intercellular junctions.
Collapse
Affiliation(s)
- Tae-Jin Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuai Zheng
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jie Sun
- Department of Integrative and Molecular Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ismaeel Muhamed
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lei Lei
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinyu Kong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yingxiao Wang
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Integrative and Molecular Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Dang M, Wang X, Wang Q, Wang Y, Lin J, Sun Y, Li X, Zhang L, Lou Z, Wang J, Rao Z. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein Cell 2014; 5:692-703. [PMID: 24986489 PMCID: PMC4145081 DOI: 10.1007/s13238-014-0087-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
Unlike the well-established picture for the entry of enveloped viruses, the mechanism of cellular entry of non-enveloped eukaryotic viruses remains largely mysterious. Picornaviruses are representative models for such viruses, and initiate this entry process by their functional receptors. Here we present the structural and functional studies of SCARB2, a functional receptor of the important human enterovirus 71 (EV71). SCARB2 is responsible for attachment as well as uncoating of EV71. Differences in the structures of SCARB2 under neutral and acidic conditions reveal that SCARB2 undergoes a pivotal pH-dependent conformational change which opens a lipid-transfer tunnel to mediate the expulsion of a hydrophobic pocket factor from the virion, a pre-requisite for uncoating. We have also identified the key residues essential for attachment to SCARB2, identifying the canyon region of EV71 as mediating the receptor interaction. Together these results provide a clear understanding of cellular attachment and initiation of uncoating for enteroviruses.
Collapse
MESH Headings
- Acids/chemistry
- Amino Acid Sequence
- Animals
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Enterovirus A, Human/genetics
- Enterovirus A, Human/metabolism
- Enterovirus A, Human/physiology
- HEK293 Cells
- Host-Pathogen Interactions
- Humans
- Hydrogen-Ion Concentration
- Lysosomal Membrane Proteins/chemistry
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/metabolism
- Molecular Docking Simulation
- Molecular Sequence Data
- Protein Binding
- Protein Conformation
- Protein Interaction Mapping
- Protein Structure, Tertiary
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Scavenger/chemistry
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- Sequence Homology, Amino Acid
- Sf9 Cells
- Static Electricity
- Virion/genetics
- Virion/metabolism
- Virus Attachment
Collapse
Affiliation(s)
- Minghao Dang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Quan Wang
- School of Life Sciences, School of Pharmacy, Nankai University, Tianjin, 300071 China
| | - Yaxin Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Jianping Lin
- School of Life Sciences, School of Pharmacy, Nankai University, Tianjin, 300071 China
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Xuemei Li
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Liguo Zhang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Zhiyong Lou
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, 100050 China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084 China
- School of Life Sciences, School of Pharmacy, Nankai University, Tianjin, 300071 China
| |
Collapse
|