1
|
Huang YJ, Cheng TL, Wang YT, Chen CS, Leu YL, Chang CS, Ho CH, Chao SW, Li CT, Chuang CH. Exploring the therapeutic potential of DV-B-120 as an inhibitor of dengue virus infection. J Virol 2024; 98:e0125823. [PMID: 38546211 PMCID: PMC11019862 DOI: 10.1128/jvi.01258-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Dengue fever, an infectious disease prevalent in subtropical and tropical regions, currently lacks effective small-molecule drugs as treatment. In this study, we used a fluorescence peptide cleavage assay to screen seven compounds to assess their inhibition of the dengue virus (DENV) NS2B-NS3 protease. DV-B-120 demonstrated superior inhibition of NS2B-NS3 protease activity and lower toxicity compared to ARDP0006. The selectivity index of DV-B-120 was higher than that of ARDP0006. In vivo assessments of the antiviral efficacy of DV-B-120 against DENV replication demonstrated delayed mortality of suckling mice treated with the compound, with 60-80% protection against life-threatening effects, compared to the outcomes of DENV-infected mice treated with saline. The lower clinical scores of DENV-infected mice treated with DV-B-120 indicated a reduction in acute-progressive illness symptoms, underscoring the potential therapeutic impact of DV-B-120. Investigations of DV-B-120's ability to restore the antiviral type I IFN response in the brain tissue of DENV-infected ICR suckling mice demonstrated its capacity to stimulate IFN and antiviral IFN-stimulated gene expression. DV-B-120 not only significantly delayed DENV-2-induced mortality and illness symptoms but also reduced viral numbers in the brain, ultimately restoring the innate antiviral response. These findings strongly suggest that DV-B-120 holds promise as a therapeutic agent against DENV infection and highlight its potential contribution in addressing the current lack of effective treatments for this infectious disease.IMPORTANCEThe prevalence of dengue virus (DENV) infection in tropical and subtropical regions is escalating due to factors like climate change and mosquito vector expansion. With over 300 million annual infections and potentially fatal outcomes, the urgent need for effective treatments is evident. While the approved Dengvaxia vaccine has variable efficacy, there are currently no antiviral drugs for DENV. This study explores seven compounds targeting the NS2B-NS3 protease, a crucial protein in DENV replication. These compounds exhibit inhibitory effects on DENV-2 NS2B-NS3, holding promise for disrupting viral replication and preventing severe manifestations. However, further research, including animal testing, is imperative to assess therapeutic efficacy and potential toxicity. Developing safe and potent treatments for DENV infection is critical in addressing the rising global health threat posed by this virus.
Collapse
Affiliation(s)
- Yi-Jung Huang
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Tseng Wang
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Shu Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ling Leu
- Department of Pharmacy, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chih-Shiang Chang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Cheng-Han Ho
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shi-Wei Chao
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Tse Li
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chuang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Liu J, Liu L, Zeng S, Meng X, Lei N, Yang H, Li R, Mu X, Guo X. Inhibition of EV71 replication by an interferon-stimulated gene product L3HYPDH. Virus Res 2024; 342:199336. [PMID: 38342315 PMCID: PMC10875296 DOI: 10.1016/j.virusres.2024.199336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Enterovirus 71 (EV71) is the common causative agent of hand-foot-mouth disease (HFMD). Despite evidence in mice model suggested that the interferon (IFN) signaling pathways play a role in defending against this virus, knowledge on the IFN-mediated antiviral response is still limited. Here we identified an IFN-stimulated gene (ISG) called L3HYPDH, whose expression inhibits EV71 replication. Mapping assay indicated that amino acids 61-120 and 295-354 are critical for its optimal antiviral activity. Mechanismly, L3HYPDH specifically inhibits protein translation mediated by EV71 internal ribosome entry site (IRES). Our data thus uncovered a new mechanism utilized by the host cell to restrict EV71 replication.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Logen Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Shinuan Zeng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiaobin Meng
- Meizhou People's Hospital, Meizhou 514031, China
| | - Nanfeng Lei
- Meizhou People's Hospital, Meizhou 514031, China
| | - Hai Yang
- Meizhou People's Hospital, Meizhou 514031, China
| | - Runcai Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Xuemin Guo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China; Meizhou People's Hospital, Meizhou 514031, China; Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou 514031, China.
| |
Collapse
|
3
|
Lin QXX, Rajagopalan D, Gamage AM, Tan LM, Venkatesh PN, Chan WOY, Kumar D, Agrawal R, Chen Y, Fong SW, Singh A, Sun LJ, Tan SY, Chai LYA, Somani J, Lee B, Renia L, Ng LFP, Ramanathan K, Wang LF, Young B, Lye D, Singhal A, Prabhakar S. Longitudinal single cell atlas identifies complex temporal relationship between type I interferon response and COVID-19 severity. Nat Commun 2024; 15:567. [PMID: 38238298 PMCID: PMC10796319 DOI: 10.1038/s41467-023-44524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/18/2023] [Indexed: 01/22/2024] Open
Abstract
Due to the paucity of longitudinal molecular studies of COVID-19, particularly those covering the early stages of infection (Days 1-8 symptom onset), our understanding of host response over the disease course is limited. We perform longitudinal single cell RNA-seq on 286 blood samples from 108 age- and sex-matched COVID-19 patients, including 73 with early samples. We examine discrete cell subtypes and continuous cell states longitudinally, and we identify upregulation of type I IFN-stimulated genes (ISGs) as the predominant early signature of subsequent worsening of symptoms, which we validate in an independent cohort and corroborate by plasma markers. However, ISG expression is dynamic in progressors, spiking early and then rapidly receding to the level of severity-matched non-progressors. In contrast, cross-sectional analysis shows that ISG expression is deficient and IFN suppressors such as SOCS3 are upregulated in severe and critical COVID-19. We validate the latter in four independent cohorts, and SOCS3 inhibition reduces SARS-CoV-2 replication in vitro. In summary, we identify complexity in type I IFN response to COVID-19, as well as a potential avenue for host-directed therapy.
Collapse
Affiliation(s)
- Quy Xiao Xuan Lin
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Deepa Rajagopalan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Akshamal M Gamage
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Le Min Tan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Prasanna Nori Venkatesh
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Wharton O Y Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Dilip Kumar
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore
| | - Ragini Agrawal
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Yao Chen
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Louisa J Sun
- Alexandra Hospital, Singapore, 159964, Singapore
| | - Seow-Yen Tan
- Changi General Hospital, Singapore, 529889, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jyoti Somani
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Bernett Lee
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore
| | - Kollengode Ramanathan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- National University Hospital, Singapore, 119074, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, 168753, Singapore
| | - Barnaby Young
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- National Centre for Infectious diseases, Singapore, 308442, Singapore
- Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - David Lye
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- National Centre for Infectious diseases, Singapore, 308442, Singapore
- Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Amit Singhal
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore.
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore.
| | - Shyam Prabhakar
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore.
| |
Collapse
|
4
|
Pawar P, Gokavi J, Wakhare S, Bagul R, Ghule U, Khan I, Ganu V, Mukherjee A, Shete A, Rao A, Saxena V. MiR-155 Negatively Regulates Anti-Viral Innate Responses among HIV-Infected Progressors. Viruses 2023; 15:2206. [PMID: 38005883 PMCID: PMC10675553 DOI: 10.3390/v15112206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/26/2023] Open
Abstract
HIV infection impairs host immunity, leading to progressive disease. An anti-retroviral treatment efficiently controls viremia but cannot completely restore the immune dysfunction in HIV-infected individuals. Both host and viral factors determine the rate of disease progression. Among the host factors, innate immunity plays a critical role; however, the mechanism(s) associated with dysfunctional innate responses are poorly understood among HIV disease progressors, which was investigated here. The gene expression profiles of TLRs and innate cytokines in HIV-infected (LTNPs and progressors) and HIV-uninfected individuals were examined. Since the progressors showed a dysregulated TLR-mediated innate response, we investigated the role of TLR agonists in restoring the innate functions of the progressors. The stimulation of PBMCs with TLR3 agonist-poly:(I:C), TLR7 agonist-GS-9620 and TLR9 agonist-ODN 2216 resulted in an increased expression of IFN-α, IFN-β and IL-6. Interestingly, the expression of IFITM3, BST-2, IFITM-3, IFI-16 was also increased upon stimulation with TLR3 and TLR7 agonists, respectively. To further understand the molecular mechanism involved, the role of miR-155 was explored. Increased miR-155 expression was noted among the progressors. MiR-155 inhibition upregulated the expression of TLR3, NF-κB, IRF-3, TNF-α and the APOBEC-3G, IFITM-3, IFI-16 and BST-2 genes in the PBMCs of the progressors. To conclude, miR-155 negatively regulates TLR-mediated cytokines as wel l as the expression of host restriction factors, which play an important role in mounting anti-HIV responses; hence, targeting miR-155 might be helpful in devising strategic approaches towards alleviating HIV disease progression.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Jyotsna Gokavi
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Shilpa Wakhare
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Rajani Bagul
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Ujjwala Ghule
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Ishrat Khan
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, India; (I.K.); (A.M.)
| | - Varada Ganu
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, India; (I.K.); (A.M.)
| | - Ashwini Shete
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Amrita Rao
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| |
Collapse
|
5
|
Song B, Wei W, Liu X, Huang Y, Zhu S, Yi L, Eerdunfu, Ding H, Zhao M, Chen J. Recombinant Porcine Interferon-α Decreases Pseudorabies Virus Infection. Vaccines (Basel) 2023; 11:1587. [PMID: 37896991 PMCID: PMC10610829 DOI: 10.3390/vaccines11101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Interferon (IFN) is a cell-secreted cytokine possessing biological activities including antiviral functioning, immune regulation, and others. Interferon-alpha (IFN-α) mainly derives from plasmacytoid dendritic cells, which activate natural killer cells and regulate immune responses. IFN-α responds to the primary antiviral mechanism in the innate immune system, which can effectively cure acute infectious diseases. Pseudorabies (PR) is an acute infectious disease caused by pseudorabies virus (PRV). The clinical symptoms of PRV are as follows: reproductive dysfunction among pregnant sows and high mortality rates among piglets. These pose a severe threat to the swine industry. Related studies show that IFN-α has broad applications in preventing and treating viral diseases. Therefore, a PRV mouse model using artificial infection was established in this study to explore the pathogenic effect of IFN-α on PRV. We designed a sequence with IFN-α4 (M28623, Genbank) and cloned it on the lentiviral vector. CHO-K1 cells were infected and identified using WB and RT-PCR; a CHO-K1 cell line with a stable expression of the recombinant protein PoIFN-α was successfully constructed. H&E staining and virus titer detection were used to investigate the recombinant protein PoIFN-α's effect on PR in BALB/c mice. The results show that the PoIFN-α has a preventive and therapeutic impact on PR. In conclusion, the recombinant protein can alleviate symptoms and reduce the replication of PRV in vivo.
Collapse
Affiliation(s)
- Bowen Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Wenkang Wei
- Agro-Biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Yaoyao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Shuaiqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Eerdunfu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
- Agro-Biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| |
Collapse
|
6
|
Tian H, Yu K, He L, Xu H, Han C, Zhang X, Wang X, Zhang X, Zhang L, Gao G, Deng H. RNF213 modulates γ-herpesvirus infection and reactivation via targeting the viral Replication and Transcription Activator. Proc Natl Acad Sci U S A 2023; 120:e2218825120. [PMID: 36917666 PMCID: PMC10041092 DOI: 10.1073/pnas.2218825120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Huabin Tian
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Kuai Yu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Liang He
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Hongtao Xu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Chuanhui Han
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xiaolin Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xinlu Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xuyuan Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| |
Collapse
|
7
|
Cho SJ, Pronko A, Yang J, Pagan K, Stout-Delgado H. Role of Cholesterol 25-Hydroxylase (Ch25h) in Mediating Innate Immune Responses to Streptococcus pneumoniae Infection. Cells 2023; 12:570. [PMID: 36831236 PMCID: PMC9953875 DOI: 10.3390/cells12040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Alveolar macrophages (AM) are long-lived tissue-resident innate immune cells of the airways. AM are key effectors of recognition, initiation, and resolution of the host defense against microbes and play an essential role in mediating host responses to Streptococcus pneumoniae infection. Lipid metabolism in AM can significantly impact cellular function and biology. Dysregulated metabolism contributes to an accumulation of lipids, unfolded protein response induction, and inflammatory cytokine production. Our study was designed to investigate the impact of Ch25h on mediating innate immune responses by macrophages during S. pneumoniae infection. Using wild-type and Ch25-/- mice, we examined the role of cholesterol metabolism on inflammatory cytokine production and bacterial clearance. Our results demonstrate that Ch25h plays an important role in the initiation and intensity of cytokine and chemokine production in the lung during S. pneumoniae infection. In the absence of Ch25h, there was enhanced phagocytosis and bacterial clearance. Taken together, our findings demonstrate the important role of Ch25h in modulating host responsiveness to S. pneumoniae infection.
Collapse
|
8
|
Bruera S, Chavula T, Madan R, Agarwal SK. Targeting type I interferons in systemic lupus erythematous. Front Pharmacol 2023; 13:1046687. [PMID: 36726783 PMCID: PMC9885195 DOI: 10.3389/fphar.2022.1046687] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with systemic clinical manifestations including, but not limited to, rash, inflammatory arthritis, serositis, glomerulonephritis, and cerebritis. Treatment options for SLE are expanding and the increase in our understanding of the immune pathogenesis is leading to the development of new therapeutics. Autoantibody formation and immune complex formation are important mediators in lupus pathogenesis, but an important role of the type I interferon (IFN) pathway has been identified in SLE patients and mouse models of lupus. These studies have led to the development of therapeutics targeting type I IFN and related pathways for the treatment of certain manifestations of SLE. In the current narrative review, we will discuss the role of type I IFN in SLE pathogenesis and the potential translation of these data into strategies using type I IFN as a biomarker and therapeutic target for patients with SLE.
Collapse
Affiliation(s)
- Sebastian Bruera
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Thandiwe Chavula
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Riya Madan
- Section of General Internal Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Sandeep K. Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Wang Y, Liu M, Guo X, Zhang B, Li H, Liu Y, Han J, Jia L, Li L. Endogenous Retrovirus Elements Are Co-Expressed with IFN Stimulation Genes in the JAK-STAT Pathway. Viruses 2022; 15:60. [PMID: 36680099 PMCID: PMC9861321 DOI: 10.3390/v15010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Endogenous retrovirus (ERV) elements can act as proximal regulatory elements in promoting interferon (IFN) responses. Previous relevant studies have mainly focused on IFN-stimulated genes (ISGs). However, the role of ERV elements as cis-regulatory motifs in regulating genes of the JAK-STAT pathway remains poorly understood. In our study, we analyzed the changes in ERV elements and genes under both IFN stimulation and blockade of the signaling pathway. Methods: The effects of interferon on cells under normal conditions and knockout of the receptor were compared based on the THP1_IFNAR1_KO and THP1_IFNAR2_mutant cell lines. The correlation between differentially expressed ERVs (DHERVs) and differentially expressed genes (DEGs) as DEHERV-G pairs was explored with construction of gene regulatory networks related to ERV and induced by proinflammatory cytokines. Results: A total of 430 DEHERV loci and 190 DEGs were identified in 842 DEHERV-G pairs that are common to the three groups. More than 87% of DEHERV-G pairs demonstrated a consistent expression pattern. ISGs such as AIM2, IFIT1, IFIT2, IFIT3, STAT1, and IRF were activated via the JAK-STAT pathway in response to interferon stimulation. Thus, STAT1, STAT2, and IRF1 appear to play core roles in regulatory networks and are closely associated with ERVs. Conclusions: The RNA expression of ISGs and ERV elements is correlated, indicating that ERV elements are closely linked to host innate immune responses.
Collapse
Affiliation(s)
- Yanglan Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengying Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Guo
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Bohan Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Hanping Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Yongjian Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Jingwan Han
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| |
Collapse
|
10
|
Pim1 promotes IFN-β production by interacting with IRF3. Exp Mol Med 2022; 54:2092-2103. [PMID: 36446848 PMCID: PMC9722908 DOI: 10.1038/s12276-022-00893-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The Pim (proviral integration site for Moloney murine leukemia virus) proteins compose a serine threonine kinase family whose members regulate cell proliferation, migration and cell survival. However, whether Pim kinases participate in innate immune responses is unclear. Here, we show for the first time that Pim1 plays an essential role in the production of interferon (IFN)-β by macrophages after their Toll-like receptor (TLR) pathway is activated by pathogen-associated molecular patterns (PAMPs). Specifically, Pim1 was quickly upregulated in an NF-κB-dependent manner after TLR stimulation with PAMPs. Pim1 deficiency reduced TLR3- or TLR4-stimulated IFN-β and IFN-stimulated gene (ISG) expression but not proinflammatory cytokine expression in macrophages. Mechanistically, Pim1 specifically upregulates IRF3 phosphorylation and nuclear translocation. However, this role is not dependent on Pim1 kinase activity. Rather, Pim1 appears to promote IRF3 phosphorylation by enhancing the formation of IFN-β signaling complexes composed of TRIF, TRAF3, TBK1, and IRF3. Poly (I:C)-treated Pim1-/- mice produced less serum IFN-β and were less likely to survive than wild-type mice. These findings show for the first time that Pim1 participates in TLR-mediated IFN-β production, thus revealing a novel target for controlling antiviral innate immune responses.
Collapse
|
11
|
Min J, Liu W, Li J. Emerging Role of Interferon-Induced Noncoding RNA in Innate Antiviral Immunity. Viruses 2022; 14:2607. [PMID: 36560611 PMCID: PMC9780829 DOI: 10.3390/v14122607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Thousands of unique noncoding RNAs (ncRNAs) exist within the genomes of higher eukaryotes. Upon virus infection, the host generates interferons (IFNs), which initiate the expression of hundreds of interferon-stimulated genes (ISGs) through IFN receptors on the cell surface, establishing a barrier as the host's antiviral innate immunity. With the development of novel RNA-sequencing technology, many IFN-induced ncRNAs have been identified, and increasing attention has been given to their functions as regulators involved in the antiviral innate immune response. IFN-induced ncRNAs regulate the expression of viral proteins, IFNs, and ISGs, as well as host genes that are critical for viral replication, cytokine and chemokine production, and signaling pathway activation. This review summarizes the complex regulatory role of IFN-induced ncRNAs in antiviral innate immunity from the above aspects, aiming to improve understanding of ncRNAs and provide reference for the basic research of antiviral innate immunity.
Collapse
Affiliation(s)
- Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Shi J, Xu C, Wu Z, Bao W, Wu S. Integrated analysis of lncRNA-mediated ceRNA network involved in immune regulation in the spleen of Meishan piglets. Front Vet Sci 2022; 9:1031786. [PMID: 36337195 PMCID: PMC9627291 DOI: 10.3389/fvets.2022.1031786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Meishan pigs are a famous local pig breed in China, with high fertility and early sexual maturity, and stronger immunity compared to other breeds. The spleen is the largest lymphoid organ in pigs and performs essential functions, such as those relating to immunity and haematopoiesis. The invasion of many pathogenic microorganisms in pigs is associated with spleen damage. Long non-coding RNAs participate in a broad range of biological processes and have been demonstrated to be associated with splenic immune regulation. However, the expression network of mRNAs and lncRNAs in the spleen of Meishan pigs remains unclear. This study collected spleen tissues from Meishan piglets at three different ages as a model, and mRNA and lncRNA transcripts were profiled for each sample. Additionally, 1,806 differential mRNAs and 319 differential lncRNAs were identified. A complicated interaction between mRNAs and lncRNAs was identified via WGCNA, demonstrating that lncRNAs are a crucial regulatory component in mRNA. The results show that the modules black and red have similar mRNA and lncRNA transcription patterns and are mainly involved in the process of the immune defense response. The core genes (DHX58 and IFIT1) and key lncRNAs (TCONS-00002102 and TCONS-00012474) of piglet spleen tissue were screened using the ceRNA network. The expression of these genes is related to the immune response of pigs. Our research may contribute to a further understanding of mRNA and lncRNA expression in the spleen of piglets, and provide new ideas to improve the disease resistance of piglets.
Collapse
Affiliation(s)
- Jing Shi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- *Correspondence: Shenglong Wu
| |
Collapse
|
13
|
Mo G, Wei P, Hu B, Nie Q, Zhang X. Advances on genetic and genomic studies of ALV resistance. J Anim Sci Biotechnol 2022; 13:123. [PMID: 36217167 PMCID: PMC9550310 DOI: 10.1186/s40104-022-00769-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Avian leukosis (AL) is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus (ALV). No vaccine or drug is currently available for the disease. Therefore, the disease can result in severe economic losses in poultry flocks. Increasing the resistance of poultry to ALV may be one effective strategy. In this review, we provide an overview of the roles of genes associated with ALV infection in the poultry genome, including endogenous retroviruses, virus receptors, interferon-stimulated genes, and other immune-related genes. Furthermore, some methods and techniques that can improve ALV resistance in poultry are discussed. The objectives are willing to provide some valuable references for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530001, Guangxi, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
14
|
TMEΜ45B Interacts with Sindbis Virus Nsp1 and Nsp4 and Inhibits Viral Replication. J Virol 2022; 96:e0091922. [PMID: 35938871 PMCID: PMC9472651 DOI: 10.1128/jvi.00919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphavirus infection induces the expression of type I interferons, which inhibit the viral replication by upregulating the expression of interferon-stimulated genes (ISGs). Identification and mechanistic studies of the antiviral ISGs help to better understand how the host controls viral infection and help to better understand the viral replication process. Here, we report that the ISG product TMEM45B inhibits the replication of Sindbis virus (SINV). TMEM45B is a transmembrane protein that was detected mainly in the trans-Golgi network, endosomes, and lysosomes but not obviously at the plasma membrane or endoplasmic reticulum. TMEM45B interacted with the viral nonstructural proteins Nsp1 and Nsp4 and inhibited the translation and promoted the degradation of SINV RNA. TMEM45B overexpression rendered the intracellular membrane-associated viral RNA sensitive to RNase treatment. In line with these results, the formation of cytopathic vacuoles (CPVs) was dramatically diminished in TMEM45B-expressing cells. TMEM45B also interacted with Nsp1 and Nsp4 of chikungunya virus (CHIKV), suggesting that it may also inhibit the replication of other alphaviruses. These findings identified TMEM45B as an antiviral factor against alphaviruses and help to better understand the process of the viral genome replication. IMPORTANCE Alphaviruses are positive-stranded RNA viruses with more than 30 members. Infection with Old World alphaviruses, which comprise some important human pathogens such as chikungunya virus and Ross River virus, rarely results in fatal diseases but can lead to high morbidity in humans. Infection with New World alphaviruses usually causes serious encephalitis but low morbidity in humans. Alphavirus infection induces the expression of type I interferons, which subsequently upregulate hundreds of interferon-stimulated genes. Identification and characterization of host antiviral factors help to better understand how the viruses can establish effective infection. Here, we identified TMEM45B as a novel interferon-stimulated antiviral factor against Sindbis virus, a prototype alphavirus. TMEM45B interacted with viral proteins Nsp1 and Nsp4, interfered with the interaction between Nsp1 and Nsp4, and inhibited the viral replication. These findings provide insights into the detailed process of the viral replication and help to better understand the virus-host interactions.
Collapse
|
15
|
Abstract
XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.
Collapse
|
16
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Jiang S, Wang X, Chen K, Yang P. Establishment of an inducible cell line for Hepatitis B virus genotype C2 and its pharmacological responses to interferons. Pharmacol Res 2022; 178:106142. [PMID: 35218895 DOI: 10.1016/j.phrs.2022.106142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis B virus (HBV) genotype C is closely associated with poor prognosis, contributing greatly to heavy chronic hepatitis B (CHB)-related liver disease burden in China and worldwide. However, the mechanistic studies on genotype C of HBV remain largely limited, partially because of a long-term lack of genotype C HBV-based stable cell tools. According to a bioinformatic analysis on the sub-genotype C2 HBV that is predominantly endemic in China, we selected 17.3 strain as a representative isolate. With a Tet-off gene expression system, an inducible viral replication and virion production of genotype C2 HBV were achieved in a cell line carrying persistent rcDNA-cccDNA recycling, termed HepG2-17.3, can be useful for virological studies on genotype C2 HBV. Additionally, this cell line has been formatted into cell-based assay that permits particular pharmacological screening of drug candidates, such as interferon regimens, for evaluations of the inhibitory effects on genotype C2 HBV replication.
Collapse
Affiliation(s)
- Shaodong Jiang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaili Chen
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyuan Yang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Mao D, Yan F, Zhang X, Gao G. TMEM106A inhibits enveloped virus release from cell surface. iScience 2022; 25:103843. [PMID: 35198896 PMCID: PMC8844723 DOI: 10.1016/j.isci.2022.103843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses pose constant threat to hosts from ocean to land. Virion particle release from cell surface is a critical step in the viral life cycle for most enveloped viruses, making it a common antiviral target for the host defense system. Here we report that host factor TMEM106A inhibits the release of enveloped viruses from the cell surface. TMEM106A is a type II transmembrane protein localized on the plasma membrane and can be incorporated into HIV-1 virion particles. Through intermolecular interactions of its C-terminal domains on virion particle and plasma membrane, TMEM106A traps virion particles to the cell surface. HIV-1 Env interacts with TMEM106A to interfere with the intermolecular interactions and partially suppresses its antiviral activity. TMEM106A orthologs from various species displayed potent antiviral activity against multiple enveloped viruses. These results suggest that TMEM106A is an evolutionarily conserved antiviral factor that inhibits the release of enveloped viruses from the cell surface. Type II transmembrane protein TMEM106A can be incorporated into virion particles TMEM106A inhibits enveloped virion release through C-terminal molecular interactions HIV-1 envelope protein interacts with TMEM106A and suppresses its antiviral activity TMEM106A is an evolutionarily conserved antiviral factor against multiple viruses
Collapse
Affiliation(s)
- Dexin Mao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feixiang Yan
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence
| |
Collapse
|
19
|
Hajian S, Mazdeh M, Nouri F, Roshanaei G, Soleimani M. Association study of promoter polymorphisms of interferon alpha and beta receptor subunit 1 (IFNAR1) gene and therapeutic response to interferon-beta in patients with multiple sclerosis. Mol Biol Rep 2021; 48:6007-6013. [PMID: 34328599 DOI: 10.1007/s11033-021-06602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease described by inflammatory neuronal losses and resultant failures. The disease could abate by interferon-beta (IFN-β) therapy in MS patients. However, the drug response productivity is changeable between patients, and the accurate mechanism of action of the IFN-β is not obvious. The present study aims to investigate the role of interferon alpha and beta receptor subunit 1 (IFNAR1) promoter polymorphisms towards IFN-β treatment response in MS patients. METHODS The subjects herein were separated into either responder (n = 57) or non-responder (n = 43) groups according to IFN-β treatment and Expanded Disability Status Scale score. The Sanger sequencing method was used for genotyping. RESULTS Among nearly 64 Single Nucleotide Polymorphisms (SNPs), we found a significant association between the rs2850015 polymorphism and the responders and non-responders to IFN-β treatment in the recessive model of inheritance (P = 0.02). The results also revealed a significant change in the two groups of responders and non-responders to the treatment for rs36158718 as an Insertion/Deletion (INDEL) (P = 0.02). Moreover, bioinformatic analyses predicted a remarkable role for both rs2850015 and rs36158718 related to the changes of binding affinity of transcription factors and alterations in their alleles. CONCLUSION The present study results suggest that the genetic heterogeneity in the promoter region of IFNAR1 could affect the response to IFN-β. However, further studies with a larger sample size are needed to further demonstrate this relationship.
Collapse
Affiliation(s)
- Samin Hajian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Shahid Fahmide Blvd, 6517838678, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Shahid Fahmide Blvd, 6517838678, Hamadan, Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Shahid Fahmide Blvd, 6517838678, Hamadan, Iran.
| |
Collapse
|
20
|
Zhu H, Yan J, Liu X, Li L, Liu W, Wang X, Jiang P, Bai J. Cholesterol 25-hydroxylase inhibits Senecavirus A replication by enzyme activity-dependent and independent mechanisms. Vet Microbiol 2021; 256:109038. [PMID: 33845332 DOI: 10.1016/j.vetmic.2021.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Cholesterol 25-hydroxylase (CH25 H), as a host restriction factor, has been reported to take a broad-spectrum antiviral effect. However, the role of CH25H in Senecavirus A (SVA) infection remains unknown. In this study, we first demonstrate that overexpression of CH25H inhibits SVA replication. Consistently, knockdown or knockout of the endogens CH25H promotes SVA infection. Further, the anti-SVA effect of 25-hydroxycholesterol (25HC), which is the product of CH25H, operates via inhibition of viral attachment and replication. On the other hand, the CH25H mutant (CH25H-M) lacking hydroxylase activity still restricts SVA infection, which can selectively interact and degrade SVA 3A protein via the ubiquitin-proteasome manner. Altogether, these results suggest that CH25H has an antiviral function in SVA infection and provides an alternative manner to control SVA.
Collapse
Affiliation(s)
- Huixin Zhu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junfang Yan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Liang Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwen Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
21
|
Krey K, Babnis AW, Pichlmair A. System-Based Approaches to Delineate the Antiviral Innate Immune Landscape. Viruses 2020; 12:E1196. [PMID: 33096788 PMCID: PMC7589202 DOI: 10.3390/v12101196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses pose substantial challenges for society, economy, healthcare systems, and research. Their distinctive pathologies are based on specific interactions with cellular factors. In order to develop new antiviral treatments, it is of central importance to understand how viruses interact with their host and how infected cells react to the virus on a molecular level. Invading viruses are commonly sensed by components of the innate immune system, which is composed of a highly effective yet complex network of proteins that, in most cases, mediate efficient virus inhibition. Central to this process is the activity of interferons and other cytokines that coordinate the antiviral response. So far, numerous methods have been used to identify how viruses interact with cellular processes and revealed that the innate immune response is highly complex and involves interferon-stimulated genes and their binding partners as functional factors. Novel approaches and careful experimental design, combined with large-scale, high-throughput methods and cutting-edge analysis pipelines, have to be utilized to delineate the antiviral innate immune landscape at a global level. In this review, we describe different currently used screening approaches, how they contributed to our knowledge on virus-host interactions, and essential considerations that have to be taken into account when planning such experiments.
Collapse
Affiliation(s)
- Karsten Krey
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Aleksandra W. Babnis
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Andreas Pichlmair
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
- German Center for Infection Research (DZIF), Munich Partner Site, 80538 Munich, Germany
| |
Collapse
|
22
|
Multifaceted Functions of CH25H and 25HC to Modulate the Lipid Metabolism, Immune Responses, and Broadly Antiviral Activities. Viruses 2020; 12:v12070727. [PMID: 32640529 PMCID: PMC7411728 DOI: 10.3390/v12070727] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
With the frequent outbreaks of emerging infectious diseases in recent years, an effective broad-spectrum antiviral drug is becoming an urgent need for global public health. Cholesterol-25-hydroxylase (CH25H) and its enzymatic products 25-hydroxycholesterol (25HC), a well-known oxysterol that regulates lipid metabolism, have been reported to play multiple functions in modulating cholesterol homeostasis, inflammation, and immune responses. CH25H and 25HC were recently identified as exerting broadly antiviral activities, including upon a variety of highly pathogenic viruses such as human immunodeficiency virus (HIV), Ebola virus (EBOV), Nipah virus (NiV), Rift Valley fever virus (RVFV), and Zika virus (ZIKV). The underlying mechanisms for its antiviral activities are being extensively investigated but have not yet been fully clarified. In this study, we summarized the current findings on how CH25H and 25HC play multiple roles to modulate cholesterol metabolism, inflammation, immunity, and antiviral infections. Overall, 25HC should be further studied as a potential therapeutic agent to control emerging infectious diseases in the future.
Collapse
|
23
|
Dai M, Xie T, Liao M, Zhang X, Feng M. Systematic identification of chicken type I, II and III interferon-stimulated genes. Vet Res 2020; 51:70. [PMID: 32448397 PMCID: PMC7245633 DOI: 10.1186/s13567-020-00793-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023] Open
Abstract
Interferon-stimulated genes (ISGs) play an important role in antiviral innate immune responses. Although many ISGs have been identified in mammals, researchers commonly recognize that many more ISGs are yet to be discovered. Current information is still very limited particularly for the systematic identification of type III ISGs. Similarly, current research on ISGs in birds is still in its infancy. The aim of this study was to systematically identify chicken type I (IFN-α), II (IFN-γ) and III (IFN-λ) ISGs and analyze their respective response elements. RNA sequencing (RNA-Seq) was employed to identify those genes with up-regulated expression following chicken IFN-α, IFN-γ and IFN-λ treatment. Two hundred and five type I ISGs, 299 type II ISGs, and 421 type III ISGs were identified in the chicken. We further searched for IFN-stimulated response elements (ISRE) and gamma-activated sequences (GAS) elements in the promoters region of ISGs. The GAS elements were common in the promoter of type II ISGs and were even detected in type I and III ISGs. However, ISRE were not commonly found in the promoters of chicken ISGs. Furthermore, we demonstrated that ISRE in chicken cells were significantly activated by IFN-α or IFN-λ treatment, and expectedly, that GAS elements were also significantly activated by IFN-γ treatment. Interestingly, we also found that GAS elements were significantly activated by IFN-λ. Our study provides a systematic library of ISGs in the chicken together with preliminary information about the transcriptional regulation of the identified ISGs.
Collapse
Affiliation(s)
- Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Fan J, Cheng M, Chi X, Liu X, Yang W. A Human Long Non-coding RNA LncATV Promotes Virus Replication Through Restricting RIG-I-Mediated Innate Immunity. Front Immunol 2019; 10:1711. [PMID: 31379885 PMCID: PMC6658999 DOI: 10.3389/fimmu.2019.01711] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/08/2019] [Indexed: 12/03/2022] Open
Abstract
Pattern recognition receptors sense pathogen components and initiate the host antiviral innate immune response, such as inducing interferons (IFNs). Long non-coding RNAs (lncRNAs) are emerging regulators of multiple biological processes. However, their role in antiviral response, especially through regulating the human innate immune, is largely unexplored. Here we characterized that lncATV, a human specific lncRNA, was up-regulated upon type I/III IFN stimulations and virus infection. LncATV was cytoplasmic localized and relatively high expressed in human monocytes, erythroleukemia cells and hepatoma cells. Notably, lncATV knockdown significantly inhibited the replication of multiple RNA viruses, such as hepatitis C virus, Zika virus, Newcastle disease virus, and Sendai virus. Mechanistically, RIG-I antiviral signaling and IFN effective pathway were enhanced when lncATV expression was knocked down but inhibited by overexpressed lncATV. RNA immunoprecipitation results demonstrated an association between LncATV and RIG-I. Collectively, our findings reveal the functional role of a novel human specific lncATV as a regulatory lncRNA restricting virus associated innate immune response.
Collapse
Affiliation(s)
- Jingjing Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Cheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaojing Chi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Xie T, Feng M, Dai M, Mo G, Ruan Z, Wang G, Shi M, Zhang X. Cholesterol-25-hydroxylase Is a Chicken ISG That Restricts ALV-J Infection by Producing 25-hydroxycholesterol. Viruses 2019; 11:E498. [PMID: 31151272 PMCID: PMC6631237 DOI: 10.3390/v11060498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
The avian leukosis virus subgroup J (ALV-J) belongs to the chicken retrovirus that causes enormous economic losses in the poultry industry. Interferon-stimulated genes (ISGs) are critical for controlling virus infections. Here, we identified 897 type I ISGs induced by interferon-α (IFN-α) in chicken peripheral blood mononuclear cell (PBMC) by RNA-Seq. In addition, we further identified 152 potential anti-ALV-J chicken type I ISGs. Among these potential anti-ALV-J ISGs, chicken cholesterol 25-hydroxylase (chCH25H) was selected for further antiviral mechanism studies in chicken embryo fibroblast cell lines (DF1). The gene chCH25H is located on chromosome 6 and clustered in a distinct group with mammals CH25H in the phylogenetic tree. The core promoter region of chCH25H was located within -75/-1 sequence. We found that chCH25H was induced by chicken IFN-α and ALV-J in DF1 cells. The overexpression of chCH25H significantly inhibited ALV-J replication in DF1 cells at 48 h post infection (hpi). In addition, ALV-J replication was significantly enhanced in the chCH25H- knockout DF1 cells. Furthermore, we demonstrated that chCH25H restricted ALV-J infection through the production of 25-hydroxycholesterol (25HC), rather than type I and II interferon. Our results identified 152 potential anti-ALV-J chicken type I ISGs and revealed that 25HC, the product of chCH25H, could be used as a natural antiviral agent to control ALV-J infection.
Collapse
Affiliation(s)
- Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Zhuohao Ruan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Guiyan Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MA 20742, USA.
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| |
Collapse
|
26
|
Interferon-Stimulated Genes-Mediators of the Innate Immune Response during Canine Distemper Virus Infection. Int J Mol Sci 2019; 20:ijms20071620. [PMID: 30939763 PMCID: PMC6480560 DOI: 10.3390/ijms20071620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
The demyelinating canine distemper virus (CDV)-leukoencephalitis represents a translational animal model for multiple sclerosis. The present study investigated the expression of type I interferon (IFN-I) pathway members in CDV-induced cerebellar lesions to gain an insight into their role in lesion development. Gene expression of 110 manually selected genes in acute, subacute and chronic lesions was analyzed using pre-existing microarray data. Interferon regulatory factor (IRF) 3, IRF7, signal transducer and activator of transcription (STAT) 1, STAT2, MX protein, protein kinase R (PKR), 2'-5'-oligoadenylate synthetase (OAS) 1 and interferon-stimulated gene (ISG) 15 expression were also evaluated using immunohistochemistry. Cellular origin of STAT1, STAT2, MX and PKR were determined using immunofluorescence. CDV infection caused an increased expression of the antiviral effector proteins MX, PKR, OAS1 and ISG15, which probably contributed to a restricted viral replication, particularly in neurons and oligodendrocytes. This increase might be partly mediated by IRF-dependent pathways due to the lack of changes in IFN-I levels and absence of STAT2 in astrocytes. Nevertheless, activated microglia/macrophages showed a strong expression of STAT1, STAT2 and MX proteins in later stages of the disease, indicating a strong activation of the IFN-I signaling cascade, which might be involved in the aggravation of bystander demyelination.
Collapse
|