1
|
Bavil AY, Eghan-Acquah E, Diamond LE, Barrett R, Bade D, Carty CP, Feih S, Saxby DJ. Effect of Postoperative Neck-Shaft and Anteversion Angles on Biomechanical Outcomes in Proximal Femoral Osteotomy: An In Silico Study. J Orthop Res 2025. [PMID: 39810480 DOI: 10.1002/jor.26043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Effective surgical planning is crucial for maximizing patient outcomes following complex orthopedic procedures such as proximal femoral osteotomy. In silico simulations can be used to assess how surgical variations in proximal femur geometry, such as femur neck-shaft and anteversion angles, affect postoperative system mechanics. This study investigated the sensitivity of femur mechanics to postoperative neck-shaft angles, anteversion angles, and osteotomy contact areas using patient-specific finite element analysis informed by neuromusculoskeletal models. A sequential neuromusculoskeletal modeling and finite element analysis pipeline was used to simulate postoperative mechanics in three pediatric patients with varying demographic and anatomic features. Nine surgical configurations derived from permutations of the clinical envelope of neck-shaft angles and anteversion angles were simulated for the stance phase of gait. The outcome mechanics assessed were peak von Mises stresses on the bone-implant contact surfaces as well as interfragmentary movement and strain on the osteotomy location. Peak von Mises stress and interfragmentary movement and strain were on average 38% more sensitive to surgical variation in neck-shaft angle compared to anteversion angle. A significant negative correlation was detected between contact area and interfragmentary movement (r = -0.90, p < 0.0001) and strain (r = -0.45, p = 0.017). Overall findings suggest neck-shaft angle significantly influences postoperative femur mechanics and highlight the importance of maximizing contact area to limit interfragmentary motion and foster an optimal mechanical environment for bone healing and callus formation following proximal femoral osteotomy. Between-patient variation in sensitivity to proximal femoral geometry reinforced the importance of patient-specific surgical planning.
Collapse
Affiliation(s)
- Alireza Y Bavil
- Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Emmanuel Eghan-Acquah
- Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
| | - Laura E Diamond
- Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
| | - Rod Barrett
- Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
| | - David Bade
- Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia
- Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, South Brisbane, Australia
| | - Christopher P Carty
- Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
- Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, South Brisbane, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Stefanie Feih
- Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia
- Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Gold Coast, Australia
- School of Engineering and Build Environment, Griffith University, Gold Coast, Australia
| | - David J Saxby
- Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
| |
Collapse
|
2
|
Li L, Liu X, Patel M, Zhang L. Effect of hand-wrist exercises on distal radius fracture healing based on markerless motion capture system. J Biomech 2025; 179:112458. [PMID: 39662262 DOI: 10.1016/j.jbiomech.2024.112458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
With the internal volar locking plate (VLP) technique emerging as a preferred surgical approach, early post-surgery therapeutic exercises have shown promise in promoting wrist functionality after distal radial fractures (DRFs). The biomechanical microenvironment, particularly the role of biomechanical stimuli, plays a crucial role in guiding stem tissue formation at the fracture site. However, much less is known about how various hand exercises interact with the microenvironment and influence fracture healing outcomes. This study employed the Leap Motion Controller for markerless hand motion capture and utilised an enhanced OpenSim hand model to simulate these motions. An advanced DRF healing model, integrating angiogenesis and the mechano-regulated maturation of callus tissue, was applied to simulate the MSCs differentiation and predict the healing outcomes. The effects of various rehabilitation exercises on DRFs' healing outcomes were systematically analysed. The results showed rehabilitation exercises, such as wrist extension/flexion and ulnar deviation, generally had a higher contact force on the distal radius compared with the slack state. Also, the relationship between contact force and muscle activations was not always linear, reflecting the intricate dynamics of the kinematic system. Exercise could induce changes in the bony bridge and cartilage formation, while angiogenesis remained unaffected. In the initial weeks, gripping exercises proved most beneficial, but as time progressed, extension and flexion exercises became more advantageous. The study highlights the importance of tailoring rehabilitation exercises to the dynamic healing process of DRFs. As the healing trajectory progresses, the therapeutic efficacy of specific exercises evolves, necessitating adaptive and patient-specific rehabilitation programs.
Collapse
Affiliation(s)
- Lunjian Li
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Xuanchi Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Minoo Patel
- Centre for Limb Lengthening & Reconstruction, Epworth Hospital Richmond, Richmond, Victoria, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Talukdar RG, Dhara S, Gupta S. Bone ingrowth in randomly distributed porous interbody cage during lumbar spinal fusion. Med Eng Phys 2024; 133:104248. [PMID: 39557508 DOI: 10.1016/j.medengphy.2024.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Porous interbody cages are often used in spinal fusion surgery since they allow bone ingrowth which facilitates long-term stability. However, the extent of bone ingrowth in and around porous interbody cages has scarcely been investigated. Moreover, tissue differentiation might not be similar around the superior and inferior cage-bone interfaces. Using mechanobiology-based numerical framework and physiologic loading conditions, the study investigates the spatial distribution of evolutionary bone ingrowth within randomly distributed porous interbody cages, having varied porosities. Finite Element (FE) microscale models, corresponding to cage porosities of 60 %, 72 %, and 83 %, were developed for the superior and inferior interfacial regions of the cage, along with the macroscale model of the implanted lumbar spine. The implant-bone relative displacements of different porosity models were mapped from macroscale to microscale model. Bone formation of 10-40 % was predicted across the porous cage models, resulting in an average Young's modulus ranging between 765 MPa and 915 MPa. Maximum bone ingrowth of ∼34 % was observed for the 83 % porous cage, which was subject to low implant-bone relative displacements (maximum 50μm). New bone formation was found to be greater at the superior interface (∼34 %) as compared to the inferior interface (∼30 %) for P83 model. Relatively greater volume of fibrous tissue was formed at the implant-bone interface for the cage with 60 % and 72 % porosities, which might lead to cage migration and eventual failure of the implant. Hence, the interbody cage with 83 % porosity appears to be most favorable for bone ingrowth, provided sufficient mechanical strength is offered.
Collapse
Affiliation(s)
- Rahul Gautam Talukdar
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
4
|
Je DY, Kim JW, Lee SJ, Kim CH. What is the Optimal Nail Length to Treat Osteoporotic Subtrochanteric Fractures? A Finite Element Analysis. Clin Orthop Surg 2024; 16:363-373. [PMID: 38827761 PMCID: PMC11130630 DOI: 10.4055/cios23234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 06/05/2024] Open
Abstract
Background Operative management with intramedullary nail fixation remains the definitive treatment of choice for osteoporotic subtrochanteric (ST) fractures; however, there remains no consensus regarding the proper nail length. We aimed to use 3-dimensional finite element (FE) analysis to determine the optimal nail length for the safe fixation of osteoporotic ST fractures. Methods Nine modes of FE models were constructed using 9 different lengths of cephalomedullary nails (short nails: 170, 180, and 200 mm; long nails: 280, 300, 320, 340, 360, and 380 mm) from the same company. The interfragmentary motion was analyzed. Additionally, the peak von Mises stress (PVMS) in the cortical bone, cancellous bone of the femoral head, and the nail were measured, and the yielding risk for each subject was investigated. Results Long nails were associated with less interfragmentary motion. In the cortical bone, the PVMS of short nails was observed at the distal locking screw holes of the femoral medial cortex; however, in long nails, the PVMS was observed at the lag screw holes on the lateral cortex. The mean yielding risk of long nails was 40.1% lower than that of short nails. For the cancellous bone of the femoral head, the PVMS in all 9 FE models was in the same area: at the apex of the femoral head. There was no difference in the yielding risk between short and long nails. For implants, the PVMS was at the distal locking screw hole of the nail body in the short nails and the nail body at the fracture level in the long nails. The mean yielding risk was 74.9% lower for long nails than that for short nails. Conclusions Compared to short nails, long nails with a length of 320 mm or more showed less interfragmentary motion and lower yielding risk in low-level osteoporotic ST fractures. The FE analysis supports long nails as a safer option than short nails, especially for treating transverse-type low-level osteoporotic ST fractures.
Collapse
Affiliation(s)
- Dong-Young Je
- Department of Biomechanical Engineering, Inje University, Gimhae, Korea
| | - Ji Wan Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Jae Lee
- Department of Biomechanical Engineering, Inje University, Gimhae, Korea
| | - Chul-Ho Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Abd Aziz AU, Ammarullah MI, Ng BW, Gan HS, Abdul Kadir MR, Ramlee MH. Unilateral external fixator and its biomechanical effects in treating different types of femoral fracture: A finite element study with experimental validated model. Heliyon 2024; 10:e26660. [PMID: 38404809 PMCID: PMC10884926 DOI: 10.1016/j.heliyon.2024.e26660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
Previous works had successfully demonstrated the clinical effectiveness of unilateral external fixator in treating various types of fracture, ranging from the simple type, such as oblique and transverse fractures, to complex fractures. However, literature that investigated its biomechanical analyses to further justify its efficacy is limited. Therefore, this paper aimed to analyse the stability of unilateral external fixator for treating different types of fracture, including the simple oblique, AO32C3 comminuted, and 20 mm gap transverse fracture. These fractures were reconstructed at the distal diaphysis of the femoral bone and computationally analysed through the finite element method under the stance phase condition. Findings showed a decrease in the fixation stiffness in large gap fracture (645.2 Nmm-1 for oblique and comminuted, while 23.4 Nmm-1 for the gap fracture), which resulted in higher displacement, IFM and stress distribution at the pin bone interface. These unfavourable conditions could consequently increase the risk of delayed union, pin loosening and infection, as well as implant failure. Nevertheless, the stress observed on the fracture surfaces was relatively low and in controlled amount, indicating that bone unity is still allowable in all models. Briefly, the unilateral fixation may provide desirable results in smaller fracture gap, but its usage in larger gap fracture might be alarming. These findings could serve as a guide and insight for surgeons and researchers, especially on the biomechanical stability of fixation in different fracture types and how will it affect bone unity.
Collapse
Affiliation(s)
- Aishah Umairah Abd Aziz
- Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
| | - Muhammad Imam Ammarullah
- Department of Mechanics and Aerospace Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro, Semarang, 50275, Central Java, Indonesia
| | - Bing Wui Ng
- Department of Orthopaedics and Traumatology, Hospital Universiti Kebangsaan Malaysia (HUKM), Cheras, 56000, Federal Territory of Kuala Lumpur, Malaysia
| | - Hong-Seng Gan
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou, 215400, Jiangsu, China
| | - Mohammed Rafiq Abdul Kadir
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Federal Territory of Kuala Lumpur, Malaysia
| | - Muhammad Hanif Ramlee
- Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
| |
Collapse
|
6
|
Sun J, Wu L, Fang N, Liu L. IFM calculator: An algorithm for interfragmentary motion calculation in finite element analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107996. [PMID: 38176328 DOI: 10.1016/j.cmpb.2023.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Interfragmentary motion (IFM) is a complex state that significantly impacts the healing process of fractures following implant placement. It is crucial to fully consider the IFM state after implantation in the design and biomechanical testing of implants. However, current finite element analysis software lacks direct tools for calculating IFM, and existing IFM tools do not offer a comprehensive solution in terms of accuracy, functionality, and visualization. METHODS In our study, we developed a Python-based algorithm for calculating IFM that addresses limitations. Our algorithm automatically calculated IFM distances, sliding distances, gaps, as well as the angles and rotation of the two fracture surfaces using all nodes on both sides of the fracture ends. Researchers could input data and selected desired parameters in the interface. The algorithm then performed the necessary calculations and presented the results in a clear and concise manner. The algorithm also provided comprehensive data export capabilities, allowing researchers to customize analyses based on specific needs.To provide a more intuitive demonstration of the calculation process and usage of IFM-Cal, we conducted simulations in Ansys using two rectangular blocks to compare the accuracy and function of three different methods (Point based method, contact tool and IFM-Cal). RESULTS The point-based method and the contact tool could not accurately calculate IFA, while IFM-Cal could provide a comprehensive evaluation of IFA. In simulation 1, the IFM distances calculated using the point sampling method, contact tool, and IFM-Cal were 2.00 mm, 3.15 mm, and 2.00 mm, respectively. In simulation 2, both the point sampling method and contact tool failed to calculate the interfragmentary angle (IFA), while the IFM-Cal algorithm estimated an angle of -7.87°, which had a small error compared to the ground-truth value of 7.9°. CONCLUSION We have developed an algorithm for computing IFM which can be utilized in finite element analysis and biomechanical experiments. By conducting comparative simulations with other existing algorithms, we have demonstrated the superior accuracy and expanded evaluation capabilities of our algorithm.
Collapse
Affiliation(s)
- Jun Sun
- Department of Orthopedics, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo road, Pudong new district, Shanghai, China 200120
| | - Le Wu
- Department of Orthopedics, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo road, Pudong new district, Shanghai, China 200120
| | - Nan Fang
- Department of Orthopedics, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo road, Pudong new district, Shanghai, China 200120
| | - Lifeng Liu
- Department of Orthopedics, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo road, Pudong new district, Shanghai, China 200120.
| |
Collapse
|
7
|
Verma V, Singh S, Pal K. Comprehensive Study on the Age-Strengthened Mg-Zn-Mn-Ca/ZnO Composites for Fracture Fixation: Microstructure, Mechanical, and In Vitro Biocompatibility Evaluation. ACS APPLIED BIO MATERIALS 2024; 7:203-219. [PMID: 38176074 DOI: 10.1021/acsabm.3c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The present work investigates the use of age-strengthened Mg-Zn-Mn-Ca/xZnO as resorbable materials in temporary orthopedic implants. Quaternary Mg-Zn-Mn-Ca alloy, reinforced with zinc oxide particles, was stir-cast, followed by solution treatment and a range of aging treatments. Optical and electron microscopy, mechanical, electrochemical, immersion, and dynamic mechanical testing, with biocompatibility assessment were carried out. The observed 2θ shift in the (101) peaks of ZMX611/ZnO-ST and ZMX611/ZnO-H indicated lattice shrinkage. The formation of Mg7Zn3 and Ca2Mg6Zn3 in the grain boundary compositions was observed. ZMX611/ZnO-ST had a smaller β-phase fraction, indicating a finer microstructure. ZMX611/ZnO-H had the highest tensile yield strength (102.97 ± 3.92 MPa), and ZMX611/ZnO-ST showed the highest ultimate tensile strength (127.21 ± 7.48 MPa), indicating precipitation hardening of Zn enrichment. The uniformly dispersed secondary phases played a dual role in corrosion behavior. ZMX611/ZnO-ST showed a better cytocompatibility response among all samples. Composite materials exhibited satisfactory biocompatibility and mechanical compatibility as indicated by in silico results of deviatoric strain-based mechanical stimuli at the fracture interface.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Swati Singh
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kaushik Pal
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
8
|
Rechenmacher AJ, Helmkamp J, Brown M, Paul AV, Campbell ST, Pean CA, DeBaun MR. Interfragmentary strain measurement post-fixation to guide intraoperative decision making: a narrative review. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:3299-3305. [PMID: 37284986 DOI: 10.1007/s00590-023-03605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE Interfragmentary strain influences whether a fracture will undergo direct and indirect fracture healing. Orthopedic trauma surgeons modulate strain and create optimal biomechanical environments for specific fracture patterns using fixation constructs. However, objective intraoperative interfragmentary strain measurement does not currently inform fixation strategy in common practice. This review identifies potential methods and technologies to enable intraoperative strain measurement for guiding optimal fracture fixation strategies. METHODS PubMed, Scopus, and Web of Science were methodologically queried for manuscripts containing terms related to "bone fracture," "strain," "measurement," and "intraoperative." Manuscripts were systematically screened for relevance and adjudicated by three reviewers. Relevant articles describing methods to measure interfragmentary strain intraoperatively were summarized. RESULTS After removing duplicates, 1404 records were screened initially. There were 49 manuscripts meeting criteria for in-depth review. Of these, four reports were included in this study that described methods applicable to measuring interfragmentary strain intraoperatively. Two of these reports described a method using instrumented staples, one described optical tracking of Kirschner wires, and one described using a digital linear variable displacement transducer with a custom external fixator. CONCLUSION The four reports identified by this review describe potential methods to quantify interfragmentary strain after fixation. However, further studies are needed to confirm the precision and accuracy of these measurements across a range of fractures and fixation methods. Additionally, described methods require the insertion and likely removal of additional implants into the bone. Ideally, innovations that measure interfragmentary strain intraoperatively would provide dynamic biomechanical feedback for the surgeon to proactively modulate construct stability.
Collapse
Affiliation(s)
- Albert J Rechenmacher
- Department of Orthopaedic Surgery, Duke University Hospital, 200 Trent Drive, Durham, NC, 27710, USA.
| | - Joshua Helmkamp
- Department of Orthopaedic Surgery, Duke University Hospital, 200 Trent Drive, Durham, NC, 27710, USA
| | - Matthew Brown
- Department of Orthopaedic Surgery, Duke University Hospital, 200 Trent Drive, Durham, NC, 27710, USA
| | - Alexandra V Paul
- Department of Orthopaedic Surgery, Duke University Hospital, 200 Trent Drive, Durham, NC, 27710, USA
| | - Sean T Campbell
- UC Davis Medical Center, Department of Orthopaedic Surgery, Lawrence J. Ellison Ambulatory Care Center, 4860 Y Street, Suite 1700, Sacramento, CA, 95817, USA
| | - Christian A Pean
- Department of Orthopaedic Surgery, Duke University Hospital, 200 Trent Drive, Durham, NC, 27710, USA
| | - Malcolm R DeBaun
- Department of Orthopaedic Surgery, Duke University Hospital, 200 Trent Drive, Durham, NC, 27710, USA
| |
Collapse
|
9
|
Liu X, Liao J, Patel M, Miramini S, Qu J, Zhang L. Effect of uncertain clinical conditions on the early healing and stability of distal radius fractures. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107774. [PMID: 37651819 DOI: 10.1016/j.cmpb.2023.107774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND AND OBJECTIVES The healing outcomes of distal radius fracture (DRF) treated with the volar locking plate (VLP) depend on surgical strategies and postoperative rehabilitation. However, the accurate prediction of healing outcomes is challenging due to a range of certainties related to the clinical conditions of DRF patients, including fracture geometry, fixation configuration, and physiological loading. The purpose of this study is to investigate the influence of uncertainty and variability in fracture/fixation parameters on the mechano-biology and biomechanical stability of DRF, using a probabilistic numerical approach based on the results from a series of experimental tests performed in this study. METHODS Six composite radius sawboneses fitted with titanium VLP (VLP 2.0, Austofix) were loaded to failure at a rate of 2 N/s. The testing results of the elastic and plastic behaviour of the VLP were used as inputs for a probabilistic-based computational model of DRF, which simulated mechano-regulated tissue differentiation and fixation elastic capacity at the fracture site. Finally, the probability of success in early indirect healing and fracture stabilisation was predicted. RESULTS The titanium VLP is a strong and ductile fixation whose flexibility and elastic capacity are governed by flexion working length and bone-to-plate distance, respectively. A fixation with optimised designs and configurations is critical to mechanically stabilising the early fracture site. Importantly, the uncertainty and variability in fracture/fixation parameters could compromise early DRF healing. The physiological loading uncertainty is the most adverse factor, followed by the negative impact of uncertainty in fracture geometry. CONCLUSIONS The VRP 2.0 fixation made of grade II titanium is a desirable fixation that is strong enough to resist irreparable deformation during early recovery and is also ductile to deform plastically without implant failure at late rehabilitation.
Collapse
Affiliation(s)
- Xuanchi Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - JinJing Liao
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Minoo Patel
- Centre for Limb Lengthening & Reconstruction, Epworth Hospital Richmond, Richmond, Victoria, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Ji Qu
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
10
|
Li L, Liu X, Patel M, Zhang L. Depth camera-based model for studying the effects of muscle loading on distal radius fracture healing. Comput Biol Med 2023; 164:107292. [PMID: 37544250 DOI: 10.1016/j.compbiomed.2023.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/24/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Distal radius fractures (DRFs) treated with volar locking plates (VLPs) allows early rehabilitation exercises favourable to fracture recovery. However, the role of rehabilitation exercises induced muscle forces on the biomechanical microenvironment at the fracture site remains to be fully explored. The purpose of this study is to investigate the effects of muscle forces on DRF healing by developing a depth camera-based fracture healing model. METHOD First, the rehabilitation-related hand motions were captured by a depth camera system. A macro-musculoskeletal model is then developed to analyse the data captured by the system for estimating hand muscle and joint reaction forces which are used as inputs for our previously developed DRF model to predict the tissue differentiation patterns at the fracture site. Finally, the effect of different wrist motions (e.g., from 60° of extension to 60° of flexion) on the DRF healing outcomes will be studied. RESULTS Muscle and joint reaction forces in hands which are highly dependent on hand motions could significantly affect DRF healing through imposed compressive and bending forces at the fracture site. There is an optimal range of wrist motion (i.e., between 40° of extension and 40° of flexion) which could promote mechanical stimuli governed healing while mitigating the risk of bony non-union due to excessive movement at the fracture site. CONCLUSION The developed depth camera-based fracture healing model can accurately predict the influence of muscle loading induced by rehabilitation exercises in distal radius fracture healing outcomes. The outcomes from this study could potentially assist osteopathic surgeons in designing effective post-operative rehabilitation strategies for DRF patients.
Collapse
Affiliation(s)
- Lunjian Li
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Xuanchi Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Minoo Patel
- Centre for Limb Lengthening & Reconstruction, Epworth Hospital Richmond, Richmond, Victoria, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Zhang E, Miramini S, Patel M, Richardson M, Ebeling P, Zhang L. The effects of mechanical instability on PDGF mediated inflammatory response at early stage of fracture healing under diabetic condition. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107319. [PMID: 36586180 DOI: 10.1016/j.cmpb.2022.107319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Mechanical stability plays an important role in fracture healing process. Excessive interfragmentary movement will continuously damage the tissue and newly formed capillaries at the fracture site, which leads to overproduction of platelet-derived growth factor (PDGF) that attracts more macrophages into fracture callus, ultimately persistent and enhanced inflammatory response happens. For diabetic condition, the impact of mechanical instability of fracture site on inflammatory response could be further compliciated and the relevant research in this field is relatively limited. METHODS Building on previous experimental studies, this study presents a numerical model consisting of a system of reactive-transport equations representing the transport as well as interactions of different cells and cytokines within the fracture callus. The model is initially validated by available experimental data, and then implemented to investigate the role of mechanical stability of fracture site in inflammatory response during early stage of healing. It is assumed that there is an increased release of PDGF due to the rupture of blood vessels resulting from mechanical instability, which leads to increased production of inflammatory cytokines (i.e., TNF-α). The bone healing process under three different conditions were investigated, i.e., mechanically stable condition with normal inflammatory response (Control, Case 1), mechanically unstable condition with normal inflammatory response (Case 2) and mechanically unstable condition with diabetes (Case 3). RESULTS Mechanical instability can promote the macrophage infiltration and thus induce an enhanced and prolonged inflammatory response, which could impede the MSCs proliferation during the early fracture healing stage (e.g., compared with the control condition, the MSCs concentration in unstable fracture with normal inflammatory response can be reduced by 3.2% and 5.2% on day 2 and day 10 post-fracture, respectively). Under diabetic condition, the mechanical instability of fracture site could lead to a significant increase of TNF-α concentration in fracture callus (Case 3) in comparison to control (Case 1) (e.g., three-fold increase in TNF-α concentration compared to control). In addition, the results show that the mechanical instability affects the cell differentiation and proliferation in fracture callus in a spatially dependent manner, e.g., for diabetic fracture patients, the mechanical instability could potentially decrease the concentration of MSCs, osteoblasts and chondrocytes by around 39%, 30% and 29% in cortical callus, respectively, in comparison to control. CONCLUSION The mechanical instability together with diabetic condition can significantly affect the natural resolution of inflammation during early stage of healing by turning acute inflammation into chronic inflammation which is characterized by a continuously upregulated TNF-α pathway.
Collapse
Affiliation(s)
- Enhao Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Minoo Patel
- Epworth Hospital Richmond, Richmond, Victoria, Australia
| | | | - Peter Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Monash Medical Centre, Victoria, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
12
|
Influence of muscle loading on early-stage bone fracture healing. J Mech Behav Biomed Mater 2023; 138:105621. [PMID: 36549248 DOI: 10.1016/j.jmbbm.2022.105621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Designing weight-bearing exercises for patients with lower-limb bone fractures is challenging and requires a systematic approach that accounts for patient-specific loading conditions. However, 'trial-and-error' approaches are commonplace in clinical settings due to the lack of a fundamental understanding of the effect of weight-bearing exercises on the bone healing process. Whilst computational modelling has the potential to assist clinicians in designing effective patient-specific weight-bearing exercises, current models do not explicitly account for the effects of muscle loading, which could play an important role in mediating the mechanical microenvironment of a fracture site. We combined a fracture healing model involving a tibial fracture stabilised with a locking compression plate (LCP) with a detailed musculoskeletal model of the lower limb to determine interfragmentary strains in the vicinity of the fracture site during both full weight-bearing (100% body weight) and partial weight-bearing (50% body weight) standing. We found that muscle loading significantly altered model predictions of interfragmentary strains. For a fractured bone with a standard LCP configuration (bone-plate distance = 2 mm, working length = 30 mm) subject to full weight-bearing, the predicted strains at the near and far cortices were 23% and 11% higher when muscle loading was included compared to the case when muscle loading was omitted. The knee and ankle muscles accounted for 38% of the contact force exerted at the knee joint during quiet standing and contributed significantly to the strains calculated at the fracture site. Thus, models of bone fracture healing ought to account explicitly for the effects of muscle loading. Furthermore, the study indicated that LCP configuration parameters play a crucial role in influencing the fracture site microenvironment. The results highlighted the dominance of working length over bone-plate distance in controlling the flexibility of fracture sites stabilised with LCP devices.
Collapse
|
13
|
Zhang S, Patel D, Brady M, Gambill S, Theivendran K, Deshmukh S, Swadener J, Junaid S, Leslie LJ. Experimental testing of fracture fixation plates: A review. Proc Inst Mech Eng H 2022; 236:1253-1272. [PMID: 35920401 PMCID: PMC9449446 DOI: 10.1177/09544119221108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Metal and its alloys have been predominantly used in fracture fixation for
centuries, but new materials such as composites and polymers have begun to see
clinical use for fracture fixation during the past couple of decades. Along with
the emerging of new materials, tribological issues, especially debris, have
become a growing concern for fracture fixation plates. This article for the
first time systematically reviews the most recent biomechanical research, with a
focus on experimental testing, of those plates within ScienceDirect and PubMed
databases. Based on the search criteria, a total of 5449 papers were retrieved,
which were then further filtered to exclude nonrelevant, duplicate or
non-accessible full article papers. In the end, a total of 83 papers were
reviewed. In experimental testing plates, screws and simulated bones or cadaver
bones are employed to build a fixation construct in order to test the strength
and stability of different plate and screw configurations. The test set-up
conditions and conclusions are well documented and summarised here, including
fracture gap size, types of bones deployed, as well as the applied load, test
speed and test ending criteria. However, research on long term plate usage was
very limited. It is also discovered that there is very limited experimental
research around the tribological behaviour particularly on the debris’
generation, collection and characterisation. In addition, there is no identified
standard studying debris of fracture fixation plate. Therefore, the authors
suggested the generation of a suite of tribological testing standards on
fracture fixation plate and screws in the aim to answer key questions around the
debris from fracture fixation plate of new materials or new design and
ultimately to provide an insight on how to reduce the risks of debris-related
osteolysis, inflammation and aseptic loosening.
Collapse
Affiliation(s)
- Shiling Zhang
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Dharmesh Patel
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | - Mark Brady
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | - Sherri Gambill
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | | | - Subodh Deshmukh
- Sandwell and West Birmingham Hospital NHS Trust, Birmingham, UK
| | - John Swadener
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Sarah Junaid
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Laura Jane Leslie
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| |
Collapse
|
14
|
Liu X, Miramini S, Patel M, Liao J, Shidid D, Zhang L. Influence of therapeutic grip exercises induced loading rates in distal radius fracture healing with volar locking plate fixation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106626. [PMID: 35051836 DOI: 10.1016/j.cmpb.2022.106626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/25/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Therapeutic exercises could potentially enhance the healing of distal radius fractures (DRFs) treated with volar locking plate (VLP). However, the healing outcomes are highly dependant on the patient-specific fracture geometries (e.g., gap size) and the loading conditions at the fracture site (e.g., loading frequency) resulted from different types of therapeutic exercises. The purpose of this study is to investigate the effects of different loading frequencies induced by therapeutic exercises on the biomechanical microenvironment of the fracture site and the transport of cells and growth factors within the fracture callus, ultimately the healing outcomes. This is achieved through numerical modelling and mechanical testing. METHODS Five radius sawbones specimens (Pacific Research Laboratories, Vashon, USA) fixed with VLP (VRP2.0+, Austofix) were mechanically tested using dynamic test instrument (INSTRON E3000, Norwood, MA). The loading protocol used in mechanical testing involved a series of cyclic axial compression tests representing hand and finger therapeutic exercises. The relationship between the dynamic loading rate (i.e., loading frequency) and dynamic stiffness of the construct was established and used as inputs to a developed numerical model for studying the dynamic loading induced cells and growth factors in fracture site and biomechanical stimuli required for healing. RESULTS There is a strong positive linear relationship between the loading rate and axial stiffness of the construct fixed with VLP. The loading rates induced by the moderate frequencies (i.e., 1-2 Hz) could promote endochondral ossification, whereas relatively high loading frequencies (i.e., over 3 Hz) may hinder the healing outcomes or lead to non-union. In addition, a dynamic loading frequency of 2 Hz in combination of a fracture gap size of 3 mm could produce a better healing outcome by enhancing the transport of cells and growth factors at the fracture site in comparison to free diffusion (i.e. without loading), and thereby produces a biomechanical microenvironment which is favourable for healing. CONCLUSION The experimentally validated numerical model presented in this study could potentially contribute to the design of effective patient-specific therapeutic exercises for better healing outcomes. Importantly, the model results demonstrate that therapeutic grip exercises induced dynamic loading could produce a better biomechanical microenvironment for healing without compromising the mechanical stability of the overall volar locking plate fixation construct.
Collapse
Affiliation(s)
- Xuanchi Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Minoo Patel
- Centre for Limb Lengthening and Reconstruction, Epworth Hospital Richmond, Richmond, Victoria, Australia
| | - JinJing Liao
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Darpan Shidid
- RMIT Centre for Additive Manufacture, RMIT University, Melbourne, Victoria, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Mohandes Y, Tahani M, Rouhi G. Osteosynthesis of diaphyseal tibia fracture with locking compression plates: A numerical investigation using Taguchi and ANOVA. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3528. [PMID: 34486240 DOI: 10.1002/cnm.3528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Performance of the locking compression plate (LCP) is a multifactorial function. The control parameters of plating, such as geometries, material properties, and physical constraints of the LCP components, affect basic functions associated with the bone fixation, including the extent of stress shielding and subsequent bone remodeling, strength and stability of the bone-LCP construct, and performance of secondary bone healing. The main objectives of this research were as follows: (1) to find the appropriate values of control parameters of an LCP construct to achieve the optimized performance throughout bone healing; and (2) to unravel relationships between LCP parameters and the LCP's performance. Different values for the plate/screw modulus of elasticity (E), plate width (W), plate thickness (T), screw diameter (D), bone-plate offset (O), and screw configuration (C), as six control parameters, were considered at five different levels. Taguchi method was adopted to create trial combinations of control parameters and determining the best set of parameters, which can optimize the overall performance of the LCP. All design cases were analyzed using the finite element method. The optimal set of control parameters consisting of 150 GPa, 12 mm, 4 mm, 5.5 mm, 2 mm, and 123,678 were determined for E, W, T, D, O, and C, respectively. Furthermore, ANOVA was used to rank the most influential parameters on each function of the LCP fixation. In the overall performance of the LCP fixation, E, D, T, C, W, and O showed a contribution percentage of 46%, 22%, 10%, 11%, 8%, and 3%, respectively.
Collapse
Affiliation(s)
- Yousof Mohandes
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Tahani
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Rouhi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
16
|
In silico analysis of modular bone plates. J Mech Behav Biomed Mater 2021; 124:104847. [PMID: 34555620 DOI: 10.1016/j.jmbbm.2021.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inventory management or immediate availability of fracture plates can be problematic since for each surgical intervention a specific plate of varying size and functionality must be ordered. Modularization of the standard monolithic plate is proposed to address this issue. METHODS The effects of four different unit module design parameters (type, degree of modularization, connector screw diameter, sandwich ratio) on the plate bending stiffness and failure are investigated in a finite element four-point-bending analysis. A chosen, best-performing modular plate is then tested in silico for a simple diaphyseal tibial fracture scenario under anatomical compressional, torsional, and bending loads. RESULTS A modularization strategy is proposed to match the monolithic plate bending properties as closely as possible. With the best combination of design parameters, a fully modularized equivalent length plate with a 42.3% decrease in stiffness and 46.2% decrease in strength could be assembled. The chosen modular plate also displayed sufficient mechanical performance under the fracture fixation scenarios for a potentially successful osteosynthesis. CONCLUSIONS Via computational methods, the viability of the modularization strategy as an alternate to the traditional monolithic plate is demonstrated. As a further realized advantage, the modular plates can alleviate stress shielding thanks to the reduced stiffness.
Collapse
|
17
|
Rasoulian A, Vakili-Tahami F, Smit TH. Linear and Nonlinear Biphasic Mechanical Properties of Goat IVDs Under Different Swelling Conditions in Confined Compression. Ann Biomed Eng 2021; 49:3296-3309. [PMID: 34480262 DOI: 10.1007/s10439-021-02856-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
To define technical specifications for artificial substitutes, it is necessary to model their mechanical behaviour. Here we studied the linear and nonlinear biphasic models for Nucleus Pulposus (NP) and Annulus Fibrosus (AF). The associated material parameters were obtained using confined compression stress relaxation tests on goat intervertebral disc (IVD) samples. The first parameter, aggregate modulus HA0, which essentially describes load-bearing capacity of the solid phase, was larger for AF (HA0 = 0.53 ± 0.06 MPa) than for NP (HA0 = 0.26 ± 0.04 MPa). For hydraulic permeability, which quantifies the ability to transmit interstitial fluid, it was the opposite (k0 = (0.20 ± 0.07) × 10-15 m4/Ns for AF and k0 = (0.67 ± 0.08)×10-15 m4/Ns for NP). The values of nonlinearity coefficients, nonlinear stiffening coefficient β and non-dimensional nonlinear permeability coefficient M, reflected that these tissues had nonlinear elastic behaviour and permeability. Also, investigating the effect of swelling conditions in sample preparation showed that for both AF and NP, confined-swollen samples had higher aggregate modulus and lower permeability values compared to the free-swollen ones. The quantitative description of the nonlinear properties of AF and NP provided a better understanding of IVD behaviour as well as technical specifications for their artificial substitutes.
Collapse
Affiliation(s)
- Akbar Rasoulian
- Department of Mechanical Engineering, University of Tabriz, 29 Bahman Blvd., 5166616471, Tabriz, Iran.,Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Farid Vakili-Tahami
- Department of Mechanical Engineering, University of Tabriz, 29 Bahman Blvd., 5166616471, Tabriz, Iran.
| | - Theodoor H Smit
- Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.,Department of Medical Biology, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1085 AZ, The Netherlands
| |
Collapse
|
18
|
Ganadhiepan G, Miramini S, Mendis P, Patel M, Zhang L. A probabilistic approach for modelling bone fracture healing under Ilizarov circular fixator. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3466. [PMID: 33864429 DOI: 10.1002/cnm.3466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/27/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Bone fracture treatments using Ilizarov circular fixator (ICF) involve dealing with uncertainties about a range of critical factors that control the mechanical microenvironment of the fracture site such as ICF configuration, fracture gap size, physiological loading etc. To date, the effects of the uncertainties about these critical factors on the mechanical microenvironment of the fracture site have not been fully understood. The purpose of this study is to tackle this challenge by using computational modelling in conjunction with engineering reliability analysis. Particularly, the effects of uncertainties in fracture gap size (GS), level of weight-bearing (P), ICF wire pretension (T) and wire diameter (WD) on the fracture site mechanical microenvironment at the beginning of the reparative phase of healing was investigated in this study. The results show that the mechanical microenvironment of fracture site stabilised with ICF is very sensitive to the uncertainties in P and GS. For example, an increase in the coefficient of variation of P (COVP ) from 0.1 to 0.9 (i.e., an increase in the uncertainty in P) could reduce the probability of achieving a favourable mechanical microenvironment within the fracture site (i.e., Probability of Success, PoS) by more than 50%, while an increase in the coefficient of variation of GS (COVGS ) from 0.1 to 0.9 could decrease PoS by around 30%. In contrast, an increase in the uncertainties in T and WD (COV increase from 0.1 to 0.9) has little influence on the fracture site mechanical microenvironment (PoS changes <5%).
Collapse
Affiliation(s)
- Ganesharajah Ganadhiepan
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Priyan Mendis
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Minoo Patel
- Centre for Limb Lengthening & Reconstruction, Epworth Hospital Richmond, Richmond, Victoria, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Liu X, Miramini S, Patel M, Liao J, Shidid D, Zhang L. Balance Between Mechanical Stability and Mechano-Biology of Fracture Healing Under Volar Locking Plate. Ann Biomed Eng 2021; 49:2533-2553. [PMID: 34189632 DOI: 10.1007/s10439-021-02815-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
The application of volar locking plate (VLP) is promising in the treatment of dorsally comminuted and displaced fracture. However, the optimal balance between the mechanical stability of VLP and the mechanobiology at the fracture site is still unclear. The purpose of this study is to develop numerical models in conjunction with experimental studies to identify the favourable mechanical microenvironment for indirect healing, by optimizing VLP configuration and post-operative loadings for different fracture geometries. The simulation results show that the mechanical behaviour of VLP is mainly governed by the axial compression. In addition, the model shows that, under relatively large gap size (i.e., 3-5 mm), the increase of FWL could enhance chondrocyte differentiation while a large BPD could compromise the mechanical stability of VLP. Importantly, bending moment produced by wrist flexion/extension and torsion moment produced from forearm rotation could potentially hinder endochondral ossification at early stage of healing. The developed model could potentially assist orthopaedic surgeons in surgical pre-planning and designing post-operation physical therapy for treatment of distal radius fractures.
Collapse
Affiliation(s)
- Xuanchi Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Minoo Patel
- Centre for Limb Lengthening & Reconstruction, Epworth Hospital Richmond, Richmond, VIC, Australia
| | - JinJing Liao
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Darpan Shidid
- RMIT Centre for Additive Manufacture, RMIT University, Melbourne, VIC, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
20
|
Chandra G, Pandey A. Design approaches and challenges for biodegradable bone implants: a review. Expert Rev Med Devices 2021; 18:629-647. [PMID: 34041994 DOI: 10.1080/17434440.2021.1935875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Biodegradable materials have been at the forefront of cutting-edge research and offer a truly viable option in the designing and manufacturing of bone implants in biomedical engineering. Most research regarding these materials has focused on their biological characteristics and mechanical behavior vis-à-vis nonbiodegradable (NB) materials; but the design aspects and parametric configurations of biodegradable bone implant have somehow not received as much attention as they deserved.Area covered: This review aims to develop insight into the parametrically conceptualized design of biodegradable bone implant and takes into due consideration the characteristics of bone-biodegradable implant interface (BBII), design techniques employed for conventionally used bone implants to optimize parameters using standard test methods, traditional design, and finite element analysis approaches for implant and healing behavior, manufacturing techniques, real-time surgical simulations, and so on.Expert opinion: Some successful and conventionally used NB bone implants do not dissolve or degrade with time and require removal through a complicated surgery after fulfilling the intended objectives. These bone implants should be reconceptualized and designed with an appropriate biodegradable material while paying due attention to all factors/parameters involved and striking a balance between these factors with the ultimate objective of fulfilling all desired orthopedic requirements.
Collapse
Affiliation(s)
- Girish Chandra
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Ajay Pandey
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
21
|
Ganadhiepan G, Miramini S, Patel M, Mendis P, Zhang L. Optimal time-dependent levels of weight-bearing for bone fracture healing under Ilizarov circular fixators. J Mech Behav Biomed Mater 2021; 121:104611. [PMID: 34082182 DOI: 10.1016/j.jmbbm.2021.104611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/25/2021] [Accepted: 05/23/2021] [Indexed: 02/09/2023]
Abstract
It is known that weight-bearing exercises under Ilizarov circular fixators (ICF) could enhance bone fracture healing by mechano-regulation. However, interfragmentary movements at the fracture site induced by weight-bearing may inhibit angiogenesis and ultimately delay the healing process. To tackle this challenge, a computational model is presented in this study which considers the spatial and temporal changes in mechanical properties of fracture callus to predict optimal levels of weight-bearing during fracture healing under ICF. The study takes sheep fractures as example and shows that the developed model has the capability of predicting patient specific, time-dependent optimal levels of weight-bearing which enhances mechano-regulation mediated healing without hindering the angiogenesis process. The results demonstrate that allowable level of weight-bearing and timings depend on fracture gap size. For normal body weights (BW) and moderate fracture gap sizes (e.g. 3 mm), weight-bearing with 30% BW could start by week 4 post-operation and gradually increase to 100% BW by week 11. In contrast, for relatively large fracture gap sizes (i.e. 6 mm), weight-bearing is recommended to commence in later stages of healing (e.g. week 11 post-operation). Furthermore, increasing ICF stiffness (e.g. using half pins instead of pretension wires) can increase the level of weight-bearing significantly in the early stages up to a certain time point (e.g. week 8 post-operation) beyond which no noticeable benefits could be achieved. The findings of this study have potential applications in designing post-operative weight bearing exercises.
Collapse
Affiliation(s)
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Australia
| | - Minoo Patel
- Epworth Hospital Richmond, Victoria, 3121, Australia
| | - Priyan Mendis
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
22
|
Park HJ, Kang SB, Chang MJ, Chang CB, Jung WH, Jin H. Association of Gap Healing With Angle of Correction After Opening-Wedge High Tibial Osteotomy Without Bone Grafting. Orthop J Sports Med 2021; 9:23259671211002289. [PMID: 34026915 PMCID: PMC8120544 DOI: 10.1177/23259671211002289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Studies have reported that opening wedge high tibial osteotomy (OWHTO) without bone grafting has outcomes that are similar to or even better than those of OWHTO with bone grafting, especially after use of a locking plate. However, a consensus on managing the gap after OWHTO has not been established. Purpose: To determine the degree of gap healing achieved without bone grafting, the factors associated with gap healing, and whether additional gap healing would be obtained after plate removal. Study Design: Cohort study; Level of evidence, 3. Methods: This retrospective study included 73 patients who underwent OWHTO without bone grafting between 2015 and 2018. Patients in the study were divided into 2 groups based on the correction angle: small correction group (<10°; SC group) and large correction group (≥10°; LC group). The locking plate used in OWHTO was removed at a mean of 13.5 months after surgery in 65 patients. Radiographic indexes were measured: gap filling height, gap vacancy ratio (GVR), and osteotomy filling index. The acceptable gap healing was defined as an osteotomy filling index ≥3. The factors related to gap healing around the osteotomy site were selected after multicollinearity analysis. Results: Although both groups achieved acceptable gap healing regardless of the correction angle, the SC group showed higher and earlier gap healing than did the LC group (gap healing rate 81.4% in the SC group vs 41.7% in the LC group at 3 months postoperatively). The GVR was 8.6% in the SC group and 15.3% in the LC group at 12 months after surgery (P = .005). Both the amount of time that elapsed after surgery and the correction angle were associated with gap healing (P < .05). Additional gap healing was observed after plate removal, as the GVR decreased 2.7% more in the patients with plate removal than in patients who did not have plate removal (P = .012). Conclusion: All patients achieved acceptable gap healing without bone graft. The degree of gap healing was higher in the SC group and increased over time. Gap healing was promoted after plate removal. Considering the results of this study, a bone graft is not necessary in routine OWHTO in terms of gap healing.
Collapse
Affiliation(s)
- Hyung Jun Park
- Department of Orthopedic Surgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Seung-Baik Kang
- Department of Orthopedic Surgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Moon Jong Chang
- Department of Orthopedic Surgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Chong Bum Chang
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Woon Hwa Jung
- Department of Orthopedic Surgery, Murup Hospital, Gyeongnam, Republic of Korea
| | - Heejin Jin
- Department of Biostatistics, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
23
|
Barcik J, Ernst M, Dlaska CE, Drenchev L, Zeiter S, Epari DR, Windolf M. Programable Active Fixator System for Systematic In Vivo Investigation of Bone Healing Processes. SENSORS (BASEL, SWITZERLAND) 2020; 21:E17. [PMID: 33375087 PMCID: PMC7792812 DOI: 10.3390/s21010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
This manuscript introduces a programable active bone fixator system that enables systematic investigation of bone healing processes in a sheep animal model. In contrast to previous systems, this solution combines the ability to precisely control the mechanical conditions acting within a fracture with continuous monitoring of the healing progression and autonomous operation of the system throughout the experiment. The active fixator system was implemented on a double osteotomy model that shields the experimental fracture from the influence of the animal's functional loading. A force sensor was integrated into the fixator to continuously measure stiffness of the repair tissue as an indicator for healing progression. A dedicated control unit was developed that allows programing of different loading protocols which are later executed autonomously by the active fixator. To verify the feasibility of the system, it was implanted in two sheep with different loading protocols, mimicking immediate and delayed weight-bearing, respectively. The implanted devices operated according to the programmed protocols and delivered seamless data over the whole course of the experiment. The in vivo trial confirmed the feasibility of the system. Hence, it can be applied in further preclinical studies to better understand the influence of mechanical conditions on fracture healing.
Collapse
Affiliation(s)
- Jan Barcik
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (M.E.); (S.Z.); (M.W.)
- Bulgarian Academy of Sciences, Institute of Metal Science ‘Acad. A. Balevski’, Shipchenski prohod 67, 1574 Sofia, Bulgaria;
| | - Manuela Ernst
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (M.E.); (S.Z.); (M.W.)
| | - Constantin E. Dlaska
- Orthopaedic Research Institute of Queensland, 7 Turner Street, Townsville, QLD 4812, Australia;
| | - Ludmil Drenchev
- Bulgarian Academy of Sciences, Institute of Metal Science ‘Acad. A. Balevski’, Shipchenski prohod 67, 1574 Sofia, Bulgaria;
| | - Stephan Zeiter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (M.E.); (S.Z.); (M.W.)
| | - Devakara R. Epari
- Institute of Health and Biomedical Innovation, Queensland University of Technology, George Street 2, Brisbane City, QLD 4000, Australia;
| | - Markus Windolf
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (M.E.); (S.Z.); (M.W.)
| |
Collapse
|
24
|
Ghimire S, Miramini S, Edwards G, Rotne R, Xu J, Ebeling P, Zhang L. The investigation of bone fracture healing under intramembranous and endochondral ossification. Bone Rep 2020; 14:100740. [PMID: 33385019 PMCID: PMC7772545 DOI: 10.1016/j.bonr.2020.100740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
After trauma, fractured bone starts healing directly through bone union or indirectly through callus formation process. Intramembranous and endochondral ossification are two commonly known mechanisms of indirect healing. The present study investigated the bone fracture healing under intramembranous and endochondral ossification by developing theoretical models in conjunction with performing a series of animal experiments. Using experimentally determined mean bone densities in sheep tibia stabilized by the Locking Compression Plate (LCP) fixation system, the research outcomes showed that intramembranous and endochondral ossification can be described by Hill Function with two unique sets of function parameters in mechanical stimuli mediated fracture healing. Two different thresholds exist within the range of mechanical simulation index which could trigger significant intramembranous and endochondral ossification, with a relatively higher bone formation rate of endochondral ossification than that of intramembranous ossification. Furthermore, the increase of flexibility of the LCP system and the use of titanium LCP could potentially promote uniform bone formation across the fracture gap, ultimately better healing outcomes.
Collapse
Affiliation(s)
- Smriti Ghimire
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Glenn Edwards
- School of Animal & Veterinary Sciences, Charles Sturt University, NSW 2678, Australia
| | - Randi Rotne
- School of Animal & Veterinary Sciences, Charles Sturt University, NSW 2678, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, WA 6009, Australia
| | - Peter Ebeling
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
25
|
Steffen C, Sellenschloh K, Vollmer M, Morlock MM, Heiland M, Huber G, Rendenbach C. Biomechanical comparison of titanium miniplates versus a variety of CAD/CAM plates in mandibular reconstruction. J Mech Behav Biomed Mater 2020; 111:104007. [DOI: 10.1016/j.jmbbm.2020.104007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
|
26
|
Travascio F, Buller LT, Milne E, Latta L. Mechanical performance and implications on bone healing of different screw configurations for plate fixation of diaphyseal tibia fractures: a computational study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 31:121-130. [PMID: 32725431 DOI: 10.1007/s00590-020-02749-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022]
Abstract
Diaphyseal tibia fractures may require plate fixation for proper healing to occur. Currently, there is no consensus on the number of screws required for proper fixation or the optimal placement of the screws within the plate. Mechanical stability of the construct is a leading criterion for choosing plate and screws configuration. However, number and location of screws have implications on the mechanical environment at the fracture site and, consequently, on bone healing response: The interfragmentary motion attained with a specific plate and screw construct may elicit mechano-transduction signals influencing cell-type differentiation, which in turn affects how well the fracture heals. This study investigated how different screw configurations affect mechanical performance of a tibia plate fixation construct. Three configurations of an eight-hole plate were considered with the fracture in the center of the plate: eight screws-screws at first, fourth, fifth and eighth hole and screws at first, third, sixth and eighth hole. Constructs' stiffness was compared through biomechanical tests on bone surrogates. A finite element model of tibia diaphyseal fracture was used to conduct a stress analysis on the implanted hardware. Finally, the potential for bone regeneration of each screw configuration was assessed via the computational model through the evaluation of the magnitude of mechano-transduction signals at the bone callus. The results of this study indicate that having screws at fourth and fifth holes represents a preferable configuration since it provides mechanical properties similar to those attained by the stiffest construct (eight screws), and elicits an ideal bone regenerative response.
Collapse
Affiliation(s)
- Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Drive, Mc Arthur Engineering Building #276, Coral Gables, FL, USA. .,Department of Orthopaedic Surgery, University of Miami, Miami, FL, USA. .,Max Biedermann Institute for Biomechanics at Mount Sinai, Miami Beach, FL, USA.
| | - Leonard T Buller
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward Milne
- Max Biedermann Institute for Biomechanics at Mount Sinai, Miami Beach, FL, USA
| | - Loren Latta
- Department of Orthopaedic Surgery, University of Miami, Miami, FL, USA.,Max Biedermann Institute for Biomechanics at Mount Sinai, Miami Beach, FL, USA
| |
Collapse
|
27
|
Numerical Study of Prosthetic Knee Replacement Using Finite Element Analysis. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2020. [DOI: 10.4028/www.scientific.net/jbbbe.44.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The knee at times undergoes a surgical process to substitute the weight-bearing surfaces of the knee joint. This procedure relieves the pain and disability around the knee joint. This research paper studied the knee arthroplasty, also referred to as knee replacement. This work was aided with computer vision for visual and accuracy. Autodesk fusion 360 and the stl files were used to generate cemented, posterior stabilised knee prosthesis and imported into the COMSOL Multiphysics software. Then, the three-dimensional models of the total knee arthroplasty (TKA) prosthetic structure are produced. The prosthetic components are modelled as linear isotropic elastic materials. Finite element (FE) simulations using COMSOL Multiphysics on a CAD model of a knee are effectuated to show the effect of several loads and strains on the knee. FE analysis of the model indicates that the orthotropic model depicts a more realistic stress distribution of the knee as it reveals the detailed anatomy of the entire knee structure. The computational results of this work displayed a fair agreement with experimental information from the literature.
Collapse
|
28
|
Schmal H, Brix M, Bue M, Ekman A, Ferreira N, Gottlieb H, Kold S, Taylor A, Toft Tengberg P, Ban I. Nonunion - consensus from the 4th annual meeting of the Danish Orthopaedic Trauma Society. EFORT Open Rev 2020; 5:46-57. [PMID: 32071773 PMCID: PMC7017598 DOI: 10.1302/2058-5241.5.190037] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonunions are a relevant economic burden affecting about 1.9% of all fractures. Rather than specifying a certain time frame, a nonunion is better defined as a fracture that will not heal without further intervention. Successful fracture healing depends on local biology, biomechanics and a variety of systemic factors. All components can principally be decisive and determine the classification of atrophic, oligotrophic or hypertrophic nonunions. Treatment prioritizes mechanics before biology. The degree of motion between fracture parts is the key for healing and is described by strain theory. If the change of length at a given load is > 10%, fibrous tissue and not bone is formed. Therefore, simple fractures require absolute and complex fractures relative stability. The main characteristics of a nonunion are pain while weight bearing, and persistent fracture lines on X-ray. Treatment concepts such as ‘mechanobiology’ or the ‘diamond concept’ determine the applied osteosynthesis considering soft tissue, local biology and stability. Fine wire circular external fixation is considered the only form of true biologic fixation due to its ability to eliminate parasitic motions while maintaining load-dependent axial stiffness. Nailing provides intramedullary stability and biology via reaming. Plates are successful when complex fractures turn into simple nonunions demanding absolute stability. Despite available alternatives, autograft is the gold standard for providing osteoinductive and osteoconductive stimuli. The infected nonunion remains a challenge. Bacteria, especially staphylococcus species, have developed mechanisms to survive such as biofilm formation, inactive forms and internalization. Therefore, radical debridement and specific antibiotics are necessary prior to reconstruction.
Cite this article: EFORT Open Rev 2020;5:46-57. DOI: 10.1302/2058-5241.5.190037
Collapse
Affiliation(s)
- Hagen Schmal
- Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark.,Department of Orthopaedics and Traumatology, Freiburg University Hospital, Freiburg, Germany
| | - Michael Brix
- Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark
| | - Mats Bue
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| | - Anna Ekman
- Orthopaedic Department, Södersjukhuset, Stockholm, Sweden
| | - Nando Ferreira
- Division of Orthopaedics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Hans Gottlieb
- Department of Orthopaedic Surgery, Herlev Hospital, Herlev, Denmark
| | - Søren Kold
- Department of Orthopaedic Surgery, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Andrew Taylor
- Department of Orthopaedic Surgery, Nottingham University Hospitals, UK
| | - Peter Toft Tengberg
- Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Ilija Ban
- Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | | |
Collapse
|
29
|
Ghiasi MS, Chen JE, Rodriguez EK, Vaziri A, Nazarian A. Computational modeling of human bone fracture healing affected by different conditions of initial healing stage. BMC Musculoskelet Disord 2019; 20:562. [PMID: 31767007 PMCID: PMC6878676 DOI: 10.1186/s12891-019-2854-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Bone healing process includes four phases: inflammatory response, soft callus formation, hard callus development, and remodeling. Mechanobiological models have been used to investigate the role of various mechanical and biological factors on bone healing. However, the effects of initial healing phase, which includes the inflammatory stage, the granulation tissue formation, and the initial callus formation during the first few days post-fracture, are generally neglected in such studies. METHODS In this study, we developed a finite-element-based model to simulate different levels of diffusion coefficient for mesenchymal stem cell (MSC) migration, Young's modulus of granulation tissue, callus thickness and interfragmentary gap size to understand the modulatory effects of these initial phase parameters on bone healing. RESULTS The results quantified how faster MSC migration, stiffer granulation tissue, thicker callus, and smaller interfragmentary gap enhanced healing to some extent. However, after a certain threshold, a state of saturation was reached for MSC migration rate, granulation tissue stiffness, and callus thickness. Therefore, a parametric study was performed to verify that the callus formed at the initial phase, in agreement with experimental observations, has an ideal range of geometry and material properties to have the most efficient healing time. CONCLUSIONS Findings from this paper quantified the effects of the initial healing phase on healing outcome to better understand the biological and mechanobiological mechanisms and their utilization in the design and optimization of treatment strategies. It is also demonstrated through a simulation that for fractures, where bone segments are in close proximity, callus development is not required. This finding is consistent with the concepts of primary and secondary bone healing.
Collapse
Affiliation(s)
- Mohammad S Ghiasi
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA
- Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, 334 Snell Engineering Center, Boston, MA, 02115, USA
| | - Jason E Chen
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA
| | - Edward K Rodriguez
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Ashkan Vaziri
- Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, 334 Snell Engineering Center, Boston, MA, 02115, USA.
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA.
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia.
| |
Collapse
|
30
|
The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. J Mech Behav Biomed Mater 2019; 103:103544. [PMID: 32090944 DOI: 10.1016/j.jmbbm.2019.103544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023]
Abstract
The ability to fabricate complex structures via precise and heterogeneous deposition of biomaterials makes additive manufacturing (AM) a leading technology in the creation of implants and tissue engineered scaffolds. Connective tissues (CTs) remain attractive targets for manufacturing due to their "simple" tissue compositions that, in theory, are replicable through choice of biomaterial(s) and implant microarchitecture. Nevertheless, characterisation of the mechanical and biological functions of 3D printed constructs with respect to their host tissues is often limited and remains a restriction towards their translation into clinical practice. This review aims to provide an update on the current status of AM to mimic the mechanical properties of CTs, with focus on arterial tissue, articular cartilage and bone, from the perspective of printing platforms, biomaterial properties, and topological design. Furthermore, the grand challenges associated with the AM of CT replacements and their subsequent regulatory requirements are discussed to aid further development of reliable and effective implants.
Collapse
|
31
|
Miramini S, Yang Y, Zhang L. A probabilistic-based approach for computational simulation of bone fracture healing. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 180:105011. [PMID: 31421602 DOI: 10.1016/j.cmpb.2019.105011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE It is widely known that bone fracture healing is affected by mechanical factors such as fracture geometry, fixation configuration and post-operative weight bearing loading. However, there are several uncertainties associated with the magnitude of the mechanical factors affecting bone healing as it is challenging to adjust and control them in clinical practice. The current bone fracture healing investigations mainly adopt a deterministic approach for identifying the optimal mechanical conditions for a favourable bone healing outcome. However, a probabilistic approach should be used in the analysis to incorporate such uncertainties for prediction of bone healing. METHODS In this study we developed a probabilistic-based computational model to predict the probability of delayed healing or non-union under different fracture treatment mechanical conditions for fractures stabilised by locking plates. RESULTS The results show that there is a strong positive linear correlation between the mechanical stimulations (S) in the fracture gap and the magnitude of weight bearing, the bone-plate distance (BPD) and the plate working length (WL), whereas the fracture gap size has a highly negative and nonlinear correlation with S. While the results show that fracture mechanical microenvironment is more sensitive to the uncertainties in WL compared to BPD, the uncertainty associated with the magnitude of WL is very low and can be resulted from implant manufacturing tolerance. However, there is a high uncertainty associated with the magnitude of BPD as it cannot be accurately adjusted during the surgery. The results show that the tissue differentiation at the far cortex of fracture gap is more sensitive to the variation of BPD compared with that at the near cortex. The probability of delayed healing (fibrous tissue formation) at far cortex is increased from 0% to 40% when coefficient of variation (COV) of BPD rises from 0.1 to 0.9 (for average BPD = 2 mm, WL = 65 mm, fracture gap size = 3 mm and Weight bearing = 150 N). Further, both near and far cortex of fracture site are sensitive to the variation in weight bearing loading. CONCLUSIONS The developed probabilistic model may lead to useful guidelines that could help orthopaedic surgeons identify how reliable a specific fracture treatment strategy is.
Collapse
Affiliation(s)
- Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia.
| | - Yi Yang
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia.
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
32
|
Effects of dynamic loading on fracture healing under different locking compression plate configurations: A finite element study. J Mech Behav Biomed Mater 2019; 94:74-85. [DOI: 10.1016/j.jmbbm.2019.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/04/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
|
33
|
Ganadhiepan G, Zhang L, Miramini S, Mendis P, Patel M, Ebeling P, Wang Y. The Effects of Dynamic Loading on Bone Fracture Healing Under Ilizarov Circular Fixators. J Biomech Eng 2019; 141:2727816. [DOI: 10.1115/1.4043037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Indexed: 11/08/2022]
Abstract
Early weight bearing appears to enhance bone fracture healing under Ilizarov circular fixators (ICFs). However, the role of early weight bearing in the healing process remains unclear. This study aims to provide insights into the effects of early weight bearing on healing of bone fractures stabilized with ICFs, with the aid of mathematical modeling. A computational model of fracture site was developed using poro-elastic formulation to simulate the transport of mesenchymal stem cells (MSCs), fibroblasts, chondrocytes, osteoblasts, osteogenic growth factor (OGF), and chondrogenic growth factor (CGF) and MSC differentiation during the early stage of healing, under various combinations of fracture gap sizes (GS), ICF wire pretension forces, and axial loads. 1 h of physiologically relevant cyclic axial loading followed by 23 h of rest in the post-inflammation phase (i.e., callus with granulation tissue) was simulated. The results show that physiologically relevant dynamic loading could significantly enhance cell and growth factor concentrations in the fracture site in a time and spatially dependent manner. 1 h cyclic loading (axial load with amplitude, PA, of 200 N at 1 Hz) increased the content of chondrocytes up to 37% (in all zones of callus), CGF up to 28% (in endosteal and periosteal callus) and OGF up to 50% (in endosteal and cortical callus) by the end of the 24 h period simulated. This suggests that the synergistic effect of dynamic loading-induced advective transport and mechanical stimuli due to early weight bearing is likely to enhance secondary healing. Furthermore, the study suggests that relatively higher PA values or lower ICF wire pretension forces or smaller GS could result in increased chondrocyte and GF content within the callus.
Collapse
Affiliation(s)
- Ganesharajah Ganadhiepan
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia e-mail:
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Priyan Mendis
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Minoo Patel
- Epworth Hospital Richmond, Victoria 3121, Australia
| | - Peter Ebeling
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Yulong Wang
- Rehabilitation Centre, The First Affiliated Hospital, Shenzhen University, Guangdong 518060, China
| |
Collapse
|
34
|
Ghimire S, Miramini S, Richardson M, Mendis P, Zhang L. Role of Dynamic Loading on Early Stage of Bone Fracture Healing. Ann Biomed Eng 2018; 46:1768-1784. [DOI: 10.1007/s10439-018-2083-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/23/2018] [Indexed: 12/14/2022]
|
35
|
Zhang L, Miramini S, Richardson M, Mendis P, Ebeling P. The role of impairment of mesenchymal stem cell function in osteoporotic bone fracture healing. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:603-610. [DOI: 10.1007/s13246-017-0566-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
|
36
|
Computational modelling of bone fracture healing under partial weight-bearing exercise. Med Eng Phys 2017; 42:65-72. [DOI: 10.1016/j.medengphy.2017.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 11/21/2022]
|
37
|
Miramini S, Zhang L, Richardson M, Mendis P, Ebeling PR. Influence of fracture geometry on bone healing under locking plate fixations: A comparison between oblique and transverse tibial fractures. Med Eng Phys 2016; 38:1100-8. [DOI: 10.1016/j.medengphy.2016.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/28/2016] [Accepted: 07/17/2016] [Indexed: 11/29/2022]
|