1
|
Zhao D, Cheng Z, Qian Y, Hu Z, Tang Y, Huang X, Tao J. PlWRKY47 Coordinates With Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase 2 Gene to Improve Thermotolerance Through Inhibiting Reactive Oxygen Species Generation in Herbaceous Peony. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39254178 DOI: 10.1111/pce.15143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Although WRKY transcription factors play crucial roles in plant responses to high-temperature stress, little is known about Group IIb WRKY family members. Here, we identified the WRKY-IIb protein PlWRKY47 from herbaceous peony (Paeonia lactiflora Pall.), which functioned as a nuclear-localized transcriptional activator. The expression level of PlWRKY47 was positively correlated with high-temperature tolerance. Silencing of PlWRKY47 in P. lactiflora resulted in the decreased tolerance to high-temperature stress by accumulating reactive oxygen species (ROS). Overexpression of PlWRKY47 improved plant high-temperature tolerance through decreasing ROS accumulation. Moreover, PlWRKY47 directly bound to the promoter of cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 (PlGAPC2) gene and activated its transcription. PlGAPC2 was also positively regulated high-temperature tolerance in P. lactiflora by increasing NAD+ content to inhibit ROS generation. Additionally, PlWRKY47 physically interacted with itself to form a homodimer, and PlWRKY47 could also interact with one Group IIb WRKY family member PlWRKY72 to form a heterodimer, they all promoted PlWRKY47 to bind to and activate PlGAPC2. These data support that the PlWRKY47-PlWRKY47 homodimer and PlWRKY72-PlWRKY47 heterodimer can directly activate PlGAPC2 expression to improve high-temperature tolerance by inhibiting ROS generation in P. lactiflora. These results will provide important insights into the plant high-temperature stress response by WRKY-IIb transcription factors.
Collapse
Affiliation(s)
- Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Zhuoya Cheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yi Qian
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Ziao Hu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Xingqi Huang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Qian Y, Hu Z, Cheng Z, Tao J, Zhao D. PlPOD45 positively regulates high-temperature tolerance of herbaceous peony by scavenging reactive oxygen species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1581-1592. [PMID: 39310701 PMCID: PMC11413285 DOI: 10.1007/s12298-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is a widely used famous traditional flower in China. It prefers cold and cool climate, but is not resistant to high temperature during summer in the middle and lower reaches of the Yangtze River. Previously, we found peroxidase (POD) is an important antioxidant enzyme that played an important role in high-temperature tolerance of P. lactiflora. The present study isolated the candidate gene PlPOD45 and verified its function in resisting high-temperature stress. And the results showed that PlPOD45 had an open reading frame of 978 bp that encoded 325 amino acids. Its protein was localized to the cell membrane and cytoplasm. High-temperature stress induced PlPOD45 expression. Heterologous overexpression of PlPOD45 improved plant tolerance to high-temperature stress, decreased reactive oxygen species (ROS) accumulation, relative electrical conductivity and malondialdehyde content, and increased the ratio of variable fluorescence to highest fluorescence and POD activity. Conversely, silencing PlPOD45 in P. lactiflora could decrease POD activity, ROS scavenging capability and cell membrane stability when these plants were exposed to high-temperature stress. These results suggest that PlPOD45 positively regulates high-temperature tolerance through ROS scavenging, which would provide a theoretical basis for improving high-temperature tolerance in P. lactiflora. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01505-x.
Collapse
Affiliation(s)
- Yi Qian
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Ziao Hu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Zhuoya Cheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| |
Collapse
|
3
|
Lee S, Park NI, Park Y, Heo K, Kwon Y, Kim ES, Son YK, Lee KJ, Choi SY, Choi BS, Kim NS, Choi IY. Contents of paeoniflorin and albiflorin in two Korean landraces of Paeonia lactiflora and characterization of paeoniflorin biosynthesis genes in peony. Genes Genomics 2024; 46:1107-1122. [PMID: 39126602 DOI: 10.1007/s13258-024-01553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND RESEARCH PURPOSE Paeoniflorin and albiflorin are monoterpene glycosides that exhibit various medicinal properties in Paeonia species. This study explored the terpene biosynthesis pathway and analyzed the distribution of these compounds in different tissues of two Korean landraces of Paeonia lactiflora to gain insights into the biosynthesis of monoterpene glycosides in P. lactiflora and their potential applications. MATERIALS AND METHODS Two Korean landraces, Hongcheon var. and Hwacheon var, of P. lactiflora were used for the analyses. Contents of the paeoniflorin and albiflorin were analyzed using HPLC. RNA was extracted, sequenced, and subjected to transcriptome analysis. Differential gene expression, KEGG, and GO analyses were performed. Paeoniflorin biosynthesis genes were isolated from the transcriptomes using the genes in Euphorbia maculata with the NBLAST program. Phylogenetic analysis of of 1-Deoxy-D-xylulose 5-phosphate synthase (DOXPS), geranyl pyrophosphate synthase (GPPS), and pinene synthase (PS) was carried out with ClustalW and MEGA v5.0. RESULTS AND DISCUSSION Analysis of paeoniflorin and albiflorin content in different tissues of the two P. lactiflora landraces revealed significant variation. Transcriptome analysis yielded 36,602 unigenes, most of which were involved in metabolic processes. The DEG analysis revealed tissue-specific expression patterns with correlations between landraces. The isolation of biosynthetic genes identified 173 candidates. Phylogenetic analysis of the key enzymes in these pathways provides insights into their evolutionary relationships. The sequencing and analysis of DOXPS, GPPS, PS revealed distinct clades and subclades, highlighting their evolutionary divergence and functional conservation. Our findings highlight the roots as the primary sites of paeoniflorin and albiflorin accumulation in P. lactiflora, underscoring the importance of tissue-specific gene expression in their biosynthesis. CONCLUSION this study advances our understanding of monoterpene glycoside production and distribution in Paeonia, thereby guiding further plant biochemistry investigations.
Collapse
Affiliation(s)
- Seungki Lee
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, 25457, Korea
| | - Yeri Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, 25457, Korea
| | - Kweon Heo
- Department of Plant Resources and Applied Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Yongsoo Kwon
- Department of Pharmacy, Kangwon National University, Chucheon, 24341, Korea
| | - Eun Sil Kim
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Youn Kyoung Son
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Kyung Jin Lee
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | | | | | - Nam-Soo Kim
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Korea.
| | - Ik-Young Choi
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
4
|
Zhu J, Sun Y, Zhang S, Li H, Liu Z, Liu X, Yi J. Unraveling the Genetic Adaptations in Cell Surface Composition and Transporters of Lactiplantibacillus plantarum for Enhanced Acid Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5368-5378. [PMID: 38394628 DOI: 10.1021/acs.jafc.3c09292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
This study employed adaptive laboratory evolution to improve the acid tolerance of Lactiplantibacillus plantarum, a vital strain in food fermentation and a potential probiotic. Phenotype and genomic analyses identified the overexpression of stress response proteins, ATP synthases, and transporters as pivotal in conferring acid tolerance to the evolved strains. These adaptations led to a shorter lag phase, improved survival rates, and higher intracellular pH values compared to the wild-type strain under acid stress conditions. Additionally, the evolved strains showed an increased expression of genes in the fatty acid synthesis pathway, resulting in a higher production of unsaturated fatty acids. The changes in cell membrane composition possibly prevented H+ influx, while mutant genes related to cell surface structure contributed to observed elongated cells and thicker cell surface. These alterations in cell wall and membrane composition, along with improved transporter efficiency, were key factors contributing to the enhanced acid tolerance in the evolved strains.
Collapse
Affiliation(s)
- Jiang Zhu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yuwei Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Hong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
5
|
Zhang S, Qu-Bie JZ, Feng MK, Qu-Bie AX, Huang Y, Zhang ZF, Yan XJ, Liu Y. Illuminating the biosynthesis pathway genes involved in bioactive specific monoterpene glycosides in Paeonia veitchii Lynch by a combination of sequencing platforms. BMC Genomics 2023; 24:45. [PMID: 36698081 PMCID: PMC9878870 DOI: 10.1186/s12864-023-09138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Paeonia veitchii Lynch, a well-known herb from the Qinghai-Tibet Plateau south of the Himalayas, can synthesize specific monoterpene glycosides (PMGs) with multiple pharmacological activities, and its rhizome has become an indispensable ingredient in many clinical drugs. However, little is known about the molecular background of P. veitchii, especially the genes involved in the biosynthetic pathway of PMGs. RESULTS A corrective full-length transcriptome with 30,827 unigenes was generated by combining next-generation sequencing (NGS) and single-molecule real-time sequencing (SMRT) of six tissues (leaf, stem, petal, ovary, phloem and xylem). The enzymes terpene synthase (TPS), cytochrome P450 (CYP), UDP-glycosyltransferase (UGT), and BAHD acyltransferase, which participate in the biosynthesis of PMGs, were systematically characterized, and their functions related to PMG biosynthesis were analysed. With further insight into TPSs, CYPs, UGTs and BAHDs involved in PMG biosynthesis, the weighted gene coexpression network analysis (WGCNA) method was used to identify the relationships between these genes and PMGs. Finally, 8 TPSs, 22 CYPs, 7 UGTs, and 2 BAHD genes were obtained, and these putative genes were very likely to be involved in the biosynthesis of PMGs. In addition, the expression patterns of the putative genes and the accumulation of PMGs in tissues suggested that all tissues are capable of biosynthesizing PMGs and that aerial plant parts could also be used to extract PMGs. CONCLUSION We generated a large-scale transcriptome database across the major tissues in P. veitchii, providing valuable support for further research investigating P. veitchii and understanding the genetic information of plants from the Qinghai-Tibet Plateau. TPSs, CYPs, UGTs and BAHDs further contribute to a better understanding of the biology and complexity of PMGs in P. veitchii. Our study will help reveal the mechanisms underlying the biosynthesis pathway of these specific monoterpene glycosides and aid in the comprehensive utilization of this multifunctional plant.
Collapse
Affiliation(s)
- Shaoshan Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Jun-zhang Qu-Bie
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - Ming-kang Feng
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - A-xiang Qu-Bie
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - Yanfei Huang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Zhi-feng Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Xin-jia Yan
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Yuan Liu
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| |
Collapse
|
6
|
Development of a Multi-Criteria Decision-Making Approach for Evaluating the Comprehensive Application of Herbaceous Peony at Low Latitudes. Int J Mol Sci 2022; 23:ijms232214342. [PMID: 36430818 PMCID: PMC9697995 DOI: 10.3390/ijms232214342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
The growing region of herbaceous peony (Paeonia lactiflora) has been severely constrained due to the intensification of global warming and extreme weather events, especially at low latitudes. Assessing and selecting stress-tolerant and high-quality peony germplasm is essential for maintaining the normal growth and application of peonies under adverse conditions. This study proposed a modified multi-criteria decision-making (MCDM) model for assessing peonies adapted to low-latitude climates based on our previous study. This model is low-cost, timesaving and suitable for screening the adapted peony germplasm under hot and humid climates. The evaluation was conducted through the analytic hierarchy process (AHP), three major criteria, including adaptability-related, ornamental feature-related and growth habits-related criteria, and eighteen sub-criteria were proposed and constructed in this study. The model was validated on fifteen herbaceous peonies cultivars from different latitudes. The results showed that 'Meiju', 'Hang Baishao', 'Hongpan Tuojin' and 'Bo Baishao' were assessed as Level I, which have strong growth adaptability and high ornamental values, and were recommended for promotion and application at low latitudes. The reliability and stability of the MCDM model were further confirmed by measuring the chlorophyll fluorescence of the selected adaptive cultivars 'Meiju' and 'Hang Baishao' and one maladaptive cultivar 'Zhuguang'. This study could provide a reference for the introduction, breeding and application of perennials under everchanging unfavorable climatic conditions.
Collapse
|
7
|
Chatelain P, Blanchard C, Astier J, Klinguer A, Wendehenne D, Jeandroz S, Rosnoblet C. Reliable reference genes and abiotic stress marker genes in Klebsormidium nitens. Sci Rep 2022; 12:18988. [PMID: 36348043 PMCID: PMC9643330 DOI: 10.1038/s41598-022-23783-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Microalgae have recently emerged as a key research topic, especially as biological models. Among them, the green alga Klebsormidium nitens, thanks to its particular adaptation to environmental stresses, represents an interesting photosynthetic eukaryote for studying the transition stages leading to the colonization of terrestrial life. The tolerance to different stresses is manifested by changes in gene expression, which can be monitored by quantifying the amounts of transcripts by RT-qPCR. The identification of optimal reference genes for experiment normalization was therefore necessary. In this study, using four statistical algorithms followed by the RankAggreg package, we determined the best reference gene pairs suitable for normalizing RT-qPCR data in K. nitens in response to three abiotic stresses: high salinity, PEG-induced dehydration and heat shock. Based on these reference genes, we were able to identify marker genes in response to the three abiotic stresses in K. nitens.
Collapse
Affiliation(s)
- Pauline Chatelain
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Cécile Blanchard
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Jeremy Astier
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Jeandroz
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
8
|
Zhang T, Tang Y, Luan Y, Cheng Z, Wang X, Tao J, Zhao D. Herbaceous peony AP2/ERF transcription factor binds the promoter of the tryptophan decarboxylase gene to enhance high-temperature stress tolerance. PLANT, CELL & ENVIRONMENT 2022; 45:2729-2743. [PMID: 35590461 DOI: 10.1111/pce.14357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Global warming has multifarious adverse effects on plant growth and productivity. Nonetheless, the effects of endogenous phytomelatonin on the high-temperature resistance of plants and the underlying genetic mechanisms remain unclear. Here, herbaceous peony (Paeonia lactiflora Pall.) tryptophan decarboxylase (TDC) gene involved in phytomelatonin biosynthesis was shown to respond to high-temperature stress at the transcriptional level, and its transcript level was positively correlated with phytomelatonin production. Moreover, overexpression of PlTDC enhanced phytomelatonin production and high-temperature stress tolerance in transgenic tobacco, while silencing PlTDC expression decreased these parameters in P. lactiflora. In addition, a 2402 bp promoter fragment of PlTDC was isolated, and DNA pull-down assay revealed that one APETALA2/ethylene-responsive element-binding factor (AP2/ERF) transcription factor, PlTOE3, could specifically activate the PlTDC promoter, which was further verified by yeast one-hybrid assay and luciferase reporter assay. PlTOE3 was a nucleus-localized protein, and its transcript level responded to high-temperature stress. Additionally, transgenic tobacco overexpressing PlTOE3 showed enhanced phytomelatonin production and high-temperature stress tolerance, while silencing PlTDC expression obtained the opposite results. These results illustrated that PlTOE3 bound the PlTDC promoter to enhance high-temperature stress tolerance by increasing phytomelatonin production in P. lactiflora.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhuoya Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoxiao Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Meng JS, Tang YH, Sun J, Zhao DQ, Zhang KL, Tao J. Identification of genes associated with the biosynthesis of unsaturated fatty acid and oil accumulation in herbaceous peony 'Hangshao' (Paeonia lactiflora 'Hangshao') seeds based on transcriptome analysis. BMC Genomics 2021; 22:94. [PMID: 33522906 PMCID: PMC7849092 DOI: 10.1186/s12864-020-07339-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023] Open
Abstract
Background Paeonia lactiflora ‘Hangshao’ is widely cultivated in China as a traditional Chinese medicine ‘Radix Paeoniae Alba’. Due to the abundant unsaturated fatty acids in its seed, it can also be regarded as a new oilseed plant. However, the process of the biosynthesis of unsaturated fatty acids in it has remained unknown. Therefore, transcriptome analysis is helpful to better understand the underlying molecular mechanisms. Results Five main fatty acids were detected, including stearic acid, palmitic acid, oleic acid, linoleic acid and α-linolenic acid, and their absolute contents first increased and then decreased during seed development. A total of 150,156 unigenes were obtained by transcriptome sequencing. There were 15,005 unigenes annotated in the seven functional databases, including NR, NT, GO, KOG, KEGG, Swiss-Prot and InterPro. Based on the KEGG database, 1766 unigenes were annotated in the lipid metabolism. There were 4635, 12,304, and 18,291 DEGs in Group I (60 vs 30 DAF), Group II (90 vs 60 DAF) and Group III (90 vs 30 DAF), respectively. A total of 1480 DEGs were detected in the intersection of the three groups. In 14 KEGG pathways of lipid metabolism, 503 DEGs were found, belonging to 111 enzymes. We screened out 123 DEGs involved in fatty acid biosynthesis (39 DEGs), fatty acid elongation (33 DEGs), biosynthesis of unsaturated fatty acid (24 DEGs), TAG assembly (17 DEGs) and lipid storage (10 DEGs). Furthermore, qRT-PCR was used to analyze the expression patterns of 16 genes, including BBCP, BC, MCAT, KASIII, KASII, FATA, FATB, KCR, SAD, FAD2, FAD3, FAD7, GPAT, DGAT, OLE and CLO, most of which showed the highest expression at 45 DAF, except for DGAT, OLE and CLO, which showed the highest expression at 75 DAF. Conclusions We predicted that MCAT, KASIII, FATA, SAD, FAD2, FAD3, DGAT and OLE were the key genes in the unsaturated fatty acid biosynthesis and oil accumulation in herbaceous peony seed. This study provides the first comprehensive genomic resources characterizing herbaceous peony seed gene expression at the transcriptional level. These data lay the foundation for elucidating the molecular mechanisms of fatty acid biosynthesis and oil accumulation for herbaceous peony. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07339-7.
Collapse
Affiliation(s)
- Jia-Song Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Han Tang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Da-Qiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ke-Liang Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
10
|
Yang Y, Sun M, Li S, Chen Q, Teixeira da Silva JA, Wang A, Yu X, Wang L. Germplasm resources and genetic breeding of Paeonia: a systematic review. HORTICULTURE RESEARCH 2020; 7:107. [PMID: 32637135 PMCID: PMC7327061 DOI: 10.1038/s41438-020-0332-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 05/10/2023]
Abstract
Members of the genus Paeonia, which consists of globally renowned ornamentals and traditional medicinal plants with a rich history spanning over 1500 years, are widely distributed throughout the Northern Hemisphere. Since 1900, over 2200 new horticultural Paeonia cultivars have been created by the discovery and breeding of wild species. However, information pertaining to Paeonia breeding is considerably fragmented, with fundamental gaps in knowledge, creating a bottleneck in effective breeding strategies. This review systematically introduces Paeonia germplasm resources, including wild species and cultivars, summarizes the breeding strategy and results of each Paeonia cultivar group, and focuses on recent progress in the isolation and functional characterization of structural and regulatory genes related to important horticultural traits. Perspectives pertaining to the resource protection and utilization, breeding and industrialization of Paeonia in the future are also briefly discussed.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- College of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, 100083 Beijing, China
- National Engineering Research Center for Floriculture, 100083 Beijing, China
| | - Miao Sun
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- College of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, 100083 Beijing, China
- National Engineering Research Center for Floriculture, 100083 Beijing, China
| | - Shanshan Li
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qihang Chen
- College of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, 100083 Beijing, China
- National Engineering Research Center for Floriculture, 100083 Beijing, China
| | | | - Ajing Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaonan Yu
- College of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, 100083 Beijing, China
- National Engineering Research Center for Floriculture, 100083 Beijing, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
11
|
Li T, Wang R, Zhao D, Tao J. Effects of drought stress on physiological responses and gene expression changes in herbaceous peony ( Paeonia lactiflora Pall.). PLANT SIGNALING & BEHAVIOR 2020; 15:1746034. [PMID: 32264754 PMCID: PMC7238884 DOI: 10.1080/15592324.2020.1746034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 05/24/2023]
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is known as the flower phase. This phase is somewhat resistant to drought, but long-term drought and severe water shortage will affect its normal growth and development. In this study, physiological indices and the transcriptome of P. lactiflora were determined to clarify its physiological responses and gene expression changes under drought stress. The results showed that under drought stress, soluble sugar content, peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities, and chlorophyll, carotenoid and flavonoid contents were significantly increased, and soluble protein content, superoxide dismutase (SOD), glutathione reductase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), ascorbic acid (AsA) and glutathione (GSH) activity first increased and then decreased after day 14. Moreover, drought stress also significantly reduced chlorophyll content, photosynthesis and chlorophyll fluorescence parameters. Transcriptomic analysis revealed that compared with the Control, 10,747 differentially expressed genes (DEGs) were upregulated and 11,835 downregulated under drought stress. These DEGs were classified into three categories and 46 functional groups by GO function classification. The 3,179 DEGs were enriched into 128 pathways by KEGG pathway enrichment. The ROS system, chlorophyll degradation and photosynthetic capacity, as well as secondary pathways of biosynthesis and sugar metabolism were included. Additionally, relevant genes expressed in some metabolic pathways were discovered. These results provide a theoretical basis for understanding the responses of P. lactiflora to drought stress.
Collapse
Affiliation(s)
- Tingting Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Rong Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Tang Y, Fang Z, Liu M, Zhao D, Tao J. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony ( Paeonia lactiflora Pall.). 3 Biotech 2020; 10:76. [PMID: 32051809 PMCID: PMC6987280 DOI: 10.1007/s13205-020-2063-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/08/2020] [Indexed: 01/26/2023] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is one of the color-leaved ornamental spring plants, with graceful appearance and splendid color. However, the underlying mechanism of this coloration variation from purple to green has not been studied in P. lactiflora. In th study, the leaves in purple, purple-green, and green stages were compared in terms of anatomical, physiological, and molecular. We found that the variation of leaf color from purple to green was mainly determined by the change in pigments distributed in the leaf surface. Physiological experiments showed a significant increase in chlorophyll contents and a notable reduction in anthocyanin contents in leaves from the purple to green stages. We further found that the anthocyanin biosynthesis-related dihydroflavonol 4-reductase (DFR) gene and anthocyanin synthase (ANS) gene as well as chlorophyll biosynthesis-related glutamyl-tRNA reductase (HEMA) gene showed a decreased trend in leaves from purple to green stages, whereas the chlorophyll degradation-related chlorophyll b reductase (NYC) gene showed a rising trend. Alteration of DFR and ANS gene expression might reduce anthocyanin accumulation, whereas increased HEMA gene expression would enhance chlorophyll biosynthesis and reduced NYC gene expression would inhibit chlorophyll degradation. Consequently, reduction in anthocyanins and enhanced deposition of chlorophylls resulted in leaf coloration variation from purple to green in P. lactiflora, which could improve our understanding of its mechanism for further studies.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 People’s Republic of China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Ziwen Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Mi Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Jun Tao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 People’s Republic of China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| |
Collapse
|
13
|
Fan Y, Wang Q, Dong Z, Yin Y, Teixeira da Silva JA, Yu X. Advances in molecular biology of Paeonia L. PLANTA 2019; 251:23. [PMID: 31784828 DOI: 10.1007/s00425-019-03299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Molecular biology can serve as a tool to solve the limitations of traditional breeding and cultivation techniques related to flower patterns, the improvement of flower color, and the regulation of flowering and stress resistance. These characteristics of molecular biology ensured its significant role in improving the efficiency of breeding and germplasm amelioration of Paeonia. This review describes the advances in molecular biology of Paeonia, including: (1) the application of molecular markers; (2) genomics, transcriptomics, proteomics, metabolomics, and microRNA studies; (3) studies of functional genes; and (4) molecular biology techniques. This review also points out select limitations in current molecular biology, analyzes the direction of Paeonia molecular biology research, and provides advice for future research objectives.
Collapse
Affiliation(s)
- Yongming Fan
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Qi Wang
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Zhijun Dong
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Yijia Yin
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | | | - Xiaonan Yu
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China.
| |
Collapse
|
14
|
Zhang J, Wang X, Zhang D, Qiu S, Wei J, Guo J, Li D, Xia Y. Evaluating the Comprehensive Performance of Herbaceous Peonies at low latitudes by the Integration of Long-running Quantitative Observation and Multi-Criteria Decision Making Approach. Sci Rep 2019; 9:15079. [PMID: 31636314 PMCID: PMC6803760 DOI: 10.1038/s41598-019-51425-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Enlarging the planting area of economic plants, such as the "Southward Planting of Herbaceous Peony" (Paeonia lactiflora. Pall), is significant for improving people's lives. Peony is globally known as an ornamental because of gorgeous flowers and is mainly cultivated in the temperate regions with relatively cool and dry climates in the Northern Hemisphere. Promoting the landscape application of peony to the lower latitude regions is difficult because of the hot-humid climate. In this study, 29 northern peony cultivars and a unique Chinese southern peony, 'Hang Baishao', were introduced to Hangzhou, located in the central subtropics. Annual growth cycles, resistances and dormancy durations were measured, and crossbreeding between the southern and northern peonies was performed for six years, from 2012 to 2017. Based on data collected from the long-running quantitative observation (LQO), a multi-criteria decision making (MCDM) system was established to evaluate the comprehensive planting performance of these 30 cultivars in the central subtropics. 'Qihua Lushuang', 'Hang Baishao' and 'Meiju' were highly recommended, while 'Zhuguang' and 'Qiaoling' were scarcely recommended for the Hangzhou landscape. This study highlights the dependability and comprehensiveness of integrating the LQO and MCDM approaches for evaluating the introduction performance of ornamental plants.
Collapse
Affiliation(s)
- Jiaping Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobin Wang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dong Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuai Qiu
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Jianfen Wei
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Juan Guo
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Danqing Li
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yiping Xia
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Zhang J, Zhang D, Wei J, Shi X, Ding H, Qiu S, Guo J, Li D, Zhu K, Horvath DP, Xia Y. Annual growth cycle observation, hybridization and forcing culture for improving the ornamental application of Paeonia lactiflora Pall. in the low-latitude regions. PLoS One 2019; 14:e0218164. [PMID: 31194806 PMCID: PMC6564672 DOI: 10.1371/journal.pone.0218164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/28/2019] [Indexed: 11/19/2022] Open
Abstract
Expanding the southern range of herbaceous peony (Paeonia lactiflora Pall.) is a meaningful and worthwhile horticultural endeavor in the Northern Hemisphere. However, high temperatures in winter seriously hinder the bud dormancy release and flowering of peony in the more southern areas of subtropical and tropical regions. Resource introduction and hybridization can contribute to creating new cultivars with high adaptability in a warmer winter climate. In this study, three representative cultivars of P. lactiflora were screened for flowering capabilities and their annual growth cycles were observed to provide information needed for hybridization. Among these three cultivars, ‘Hang Baishao’ is the best adapted cultivar for southern growing regions and is unique in its ability to thrive in southern areas of N 30°00’. Pollen viability of ‘Hang Baishao’ was 55.60% based on five measuring methods, which makes it an excellent male parent in hybridization. Hybrid plants among these three cultivars grew well, but all of their flower buds aborted. Additionally, the ability of three growth regulators that advance the flowering of ‘Hang Baishao’ to promote an indoor cultivation strategy for improving peony application as a potted or cut-flower plant was tested. 5-azacytidine could impact the growth of ‘Hang Baishao’ and induce dwarfism and small flowers but not advance the flowering time. Gibberellin A3 promoted the sprouting and growth significantly, but all plants eventually withered. Chilling at 0–4°C for four weeks and irrigation with 300 mg/L humic acid was the optimal combination used to hasten flowering and ensure flowering quality simultaneously. These results can lay the foundation for future studies on the chilling requirement trait, bud dormancy release and key functional gene exploration of herbaceous peony. Additionally, this study can also provide guidance for expanding the range of economically important plants with the winter dormancy trait to the low-latitude regions.
Collapse
Affiliation(s)
- Jiaping Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dong Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianfen Wei
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, Zhejiang Province, China
| | - Xiaohua Shi
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Huaqiao Ding
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Shuai Qiu
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, Zhejiang Province, China
| | - Juan Guo
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, Zhejiang Province, China
| | - Danqin Li
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kaiyuan Zhu
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - David P. Horvath
- Sunflower and Plant Biology Research, Red River Valley Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, North Dakota, United States of America
- * E-mail: (YX); (DH)
| | - Yiping Xia
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail: (YX); (DH)
| |
Collapse
|
16
|
Zhao D, Xia X, Su J, Wei M, Wu Y, Tao J. Overexpression of herbaceous peony HSP70 confers high temperature tolerance. BMC Genomics 2019; 20:70. [PMID: 30665351 PMCID: PMC6341652 DOI: 10.1186/s12864-019-5448-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background Heat shock proteins (HSPs) are found extensively in Eukaryotes and are involved in stress tolerance. However, their functions in herbaceous peony (Paeonia lactiflora Pall.) under high temperature stress are poorly characterized. Results In this study, the genomic sequence of P. lactiflora HSP70, designated PlHSP70, was isolated. Its full-length was 3635 bp, and it contained a large 1440-bp intron. The encoded protein with a molecular weight of 71 kDa was localized in the cytoplasm of the cell. PlHSP70 transcription was detected in P. lactiflora and increased with the treatment of high temperature stress. The constitutive overexpression of PlHSP70 in Arabidopsis thaliana obviously conferred tolerance to high temperature stress by affecting different physiological and biochemical indices. Transgenic A. thaliana plants exhibited higher chlorophyll fluorescence values than the wild-type (WT) when exposed to high temperature stress. The accumulation of hydrogen peroxide (H2O2), superoxide anion free radical (O2·-) and relative electric conductivity (REC) were significantly lower in the transgenic A. thaliana plants compared to the WT. In addition, more intact cell membranes, chloroplasts and starch grains, and fewer plastoglobuli were found in the PlHSP70-overexpressing transgenic lines than in the WT. Conclusions All of these results indicated that PlHSP70 possessed the ability to improve the tolerance to high temperature in transgenic A. thaliana, which could provide a theoretical basis to improve high temperature tolerance of P. lactiflora by future genetic manipulation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5448-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xing Xia
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jianghong Su
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Mengran Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yanqing Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
17
|
Zhao DQ, Li TT, Hao ZJ, Cheng ML, Tao J. Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. Cell Stress Chaperones 2019; 24:247-257. [PMID: 30632065 PMCID: PMC6363623 DOI: 10.1007/s12192-018-00961-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/08/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is an excellent ornamental plant, which is usually stressed by summer high temperatures, but little is known about its relevant measures. In this study, the effects of trehalose on alleviating high temperature-induced damage in P. lactiflora were examined. High temperature stress in P. lactiflora increased production of reactive oxygen species (ROS), including superoxide anion free radical (O2·-) and hydrogen peroxide (H2O2), enhanced both malondialdehyde (MDA) content and relative electrical conductivity (REC), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, inhibited photosynthesis, and destroyed cell structure. However, exogenous trehalose effectively alleviated its high temperature-induced damage. Trehalose decreased O2·- and H2O2 accumulation, MDA content, and REC, increased the activities of antioxidant enzymes, enhanced photosynthesis, improved cell structure, and made chloroplasts rounder. Additionally, trehalose induced high temperature-tolerant-related gene expressions to different degrees. These results indicated that trehalose decreased the deleterious effect of high temperature stress on P. lactiflora growth by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. These findings indicate the potential application of trehalose for managing high temperatures in P. lactiflora cultivation.
Collapse
Affiliation(s)
- Da-Qiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Institute of Flowers and Trees Industry, Yangzhou University-Rugao City, Rugao, 226500, People's Republic of China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Institute of Flowers and Trees Industry, Yangzhou University-Rugao City, Rugao, 226500, People's Republic of China
| | - Zhao-Jun Hao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Institute of Flowers and Trees Industry, Yangzhou University-Rugao City, Rugao, 226500, People's Republic of China
| | - Meng-Lin Cheng
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Institute of Flowers and Trees Industry, Yangzhou University-Rugao City, Rugao, 226500, People's Republic of China
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Institute of Flowers and Trees Industry, Yangzhou University-Rugao City, Rugao, 226500, People's Republic of China.
| |
Collapse
|
18
|
High throughput sequencing of herbaceous peony small RNAs to screen thermo-tolerance related microRNAs. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0505-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|