1
|
Zhao A, Yang Z, Wang H, Wang H, Zhong S, Li C, Zhang Y, Hu J, Bao Z, Huang X. Establishment and Characterization of Bisexually Fertile Triploid Dwarf Surf Clam Mulinia lateralis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:24. [PMID: 39725760 DOI: 10.1007/s10126-024-10406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Triploids are widely used to rapidly achieve genetic improvements of organisms due to their fast growth and enhanced environmental adaptability. Artificially induced triploids are generally considered to be infertile owing to the obvious inhibition of gonadal development. Recently, some fertile individuals with reduced advantages have been found in triploid bivalves, which is a notable deviation from the original intention of artificially inducing triploids. This study utilized dwarf surf clams (Mulinia lateralis), a promising model organism of bivalves, to develop a model for exploring the potential mechanism of triploid reproduction. The results showed that the optimal induction condition for triploid M. lateralis, determined by orthogonal experiments, was 0.5 mg/L cytochalasin B (CB) to inhibit PB2 for 20 min, resulting in a triploidy rate of 95.57% and a hatching rate of 60.25%. By tracking the development of M. lateralis, we found that the induced triploids could develop normally to maturity and exhibited significant growth and survival advantages post-metamorphosis. Although the triploidy rate exhibited a slight decline overtime, it remained high, with a ratio of 90.63% at 120 dpf. Histological observation confirmed that the gonadal development pattern of triploid M. laterali was similar to that of diploids, but it also showed characteristics such as developmental retardation, few mature gametes, and gamete gigantism. The dynamic expression of genes related to gonadal development provided further molecular evidence for this phenomenon. Additionally, 82.6% of triploid M. laterali exhibited normal spawning behavior, produced fewer but larger viable gametes, and could generate offspring with full developmental potential. Flow cytometry analysis revealed that sperm of triploid M. laterali was aneuploid, with a DNA content of about 1.5 times that of diploid sperm, and the ploidy levels of mating offspring were 2N (DD, diploid female × diploid male), 2.5N (DT, diploid female × triploid male), 2.5N (TD, triploid female × diploid male), and 3N (TT, triploid female × triploid male), respectively. Overall, the artificially induced triploid M. laterali has been confirmed to be bisexually fertile, which will provide a unique model for exploring the underlying mechanisms of advantageous trait formation and fertility regulation in triploids, and offer a valuable platform for the study of ploidy control and polyploidization in bivalves. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. Yes, i have checked and it is OK.
Collapse
Affiliation(s)
- Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Haoran Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Academy of Future Ocean, Ocean University of China, Qingdao, 266100, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Shuai Zhong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chenhui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Zhu J, Xing F, Li Y, Wu C, Li S, Wang Q, Huang J, Zhang Y, Zheng X, Liu Z, Rao J, Hong R, Tian S, Xiong S, Tan L, Chen X, Li Y, He W, Hong X, Xia J, Zhou Q, Zhang Z. Exploring the causes of variability in quality of oropharyngeal swab sampling for SARS-CoV-2 nucleic acid testing and proposed improvement measures: a multicenter, double-blind study. Microbiol Spectr 2024; 12:e0156724. [PMID: 39382280 PMCID: PMC11537049 DOI: 10.1128/spectrum.01567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Although coronavirus disease 2019 (COVID-19) has not been considered a public health emergency of international concern since last year, intermittent regional impacts still persist, and accurate testing remains crucial. Ribonuclease P protein subunit P30 (RPP30) RNA, known for its broad and stable expression in tissue cells, was used to evaluate samples from 10 hospitals with over 3,000 negative nucleic acid tests. The results revealed that the overall pass rate for the collected samples was consistently low and exhibited significant heterogeneity. After reassessing the evaluative effectiveness of RPP30 RNA Ct values from the samples of 132 positive individuals under quarantine observation, it was used to identify factors affecting sampling quality. These factors included different stages ranging from sample collection to PCR processing, various characteristics of both samplers and individuals being sampled, as well as sampling season and location. The results indicated that post-sampling handling had minimal impact, winter and fever clinic samples showed higher quality, whereas children's samples had lower quality. The key finding was that the characteristics of samplers were closely related to sampling quality, emphasizing the role of subjectivity. Quality control warnings led to substantial improvements, confirming this finding. Consequently, although there are various factors during the testing process, the most critical aspect is to improve, supervise, and maintain standardized practices among sampling staff.IMPORTANCEThis study further confirmed the reliability of internal references (IRs) in assessing sample quality, and utilized a large sample IR data to comprehensively and multidimensionally identify significant interference factors in nucleic acid test results. By further reminding and intervening in the subjective practices of specimen collectors, good results could be achieved.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fanfan Xing
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yunzhu Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shasha Li
- Division of Liver Disease, The Second People's Hospital of Fuyang City, Fuyang, China
| | - Qin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinyue Huang
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yafei Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowei Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Zhenjun Liu
- Department of Infectious Diseases, Anqing Municipal Hospital, Anqing, China
| | - Jianguo Rao
- Department of Infectious Diseases, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, China
| | - Rui Hong
- Department of Infectious Diseases, Tongling Municipal Hospital, Tongling, China
| | - Shuilin Tian
- Division of Liver Disease, Traditional Chinese Hospital of LuAn, Anhui University of Traditional Chinese Medicine, Lu'an, China
| | - Shuangyun Xiong
- Department of Infectious Diseases, Funan County People's Hospital, Fuyang, China
| | - Lin Tan
- Division of Liver Disease, The Second People's Hospital of Fuyang City, Fuyang, China
| | - Xinlei Chen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanwu Li
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei He
- Division of Liver Disease, Traditional Chinese Hospital of LuAn, Anhui University of Traditional Chinese Medicine, Lu'an, China
| | - Xiaodan Hong
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Wang B, Shao Y, Wang X, Li C. Identification and functional analysis of Toll-like receptor 2 from razor clam Sinonovacula constricta. Int J Biol Macromol 2024; 265:131029. [PMID: 38518946 DOI: 10.1016/j.ijbiomac.2024.131029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Toll-like receptor 2 (TLR2) is a member of TLR family that plays important roles in the innate immune system, such as pathogen recognition and inflammation regulation. In this study, the TLR2 homologue was cloned from razor clam Sinonovacula constricta (denoted as ScTLR2) and its immune function was explored. The full-length cDNA of ScTLR2 comprised 2890 nucleotides with a 5'-UTR of 218 bp, an open reading frame of 2169 bp encoding 722 amino acids and a 3'-UTR of 503 bp. The deduced amino acid of ScTLR2 showed similar structure to TLR2 homologue with a conserved signal peptide, four LRR domains, one LRR-TYP domain, one LRR-CT domain, one transmembrane domain and a conserved TIR domain. ScTLR2 mRNA was detected in all examined tissues with the highest expression in the gill. After Vibrio parahaemolyticus challenge, the mRNA expression of ScTLR2 was significantly induced both in gill and haemocytes. The recombinant ScTLR2-LRR protein could bind all tested PAMPs including LPS, PGN and MAN. Bacterial agglutination assay showed that rScTLR2 could agglutinate the six tested bacteria with a calcium dependent manner. More importantly, ScTLR2 silencing by siRNA transfection could significantly depress the mRNA expression of Myd88, NF-κB, Tollip, IRF1, and IRF8. The survival rate of S. constricta was markedly decreased after V. parahaemolyticus challenge under this condition. Our current study demonstrated that ScTLR2 served as a pattern recognition receptor to induce immune response against invasive pathogen.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Xuelei Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Yang Z, Zhao A, Teng M, Li M, Wang H, Wang X, Liu Z, Zeng Q, Hu L, Hu J, Bao Z, Huang X. Signatures of selection in Mulinia lateralis underpinning its rapid adaptation to laboratory conditions. Evol Appl 2024; 17:e13657. [PMID: 38357357 PMCID: PMC10866071 DOI: 10.1111/eva.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The dwarf surf clam, Mulinia lateralis, is considered as a model species for bivalves because of its rapid growth and short generation time. Recently, successful breeding of this species for multiple generations in our laboratory revealed its acquisition of adaptive advantages during artificial breeding. In this study, 310 individuals from five different generations were genotyped with 22,196 single nucleotide polymorphisms (SNPs) with the aim of uncovering the genetic basis of their adaptation to laboratory conditions. Results revealed that M. lateralis consistently maintained high genetic diversity across generations, characterized by high observed heterozygosity (H o: 0.2733-0.2934) and low levels of inbreeding (F is: -0.0244-0.0261). Population analysis indicated low levels of genetic differentiation among generations of M. lateralis during artificial breeding (F st <0.05). In total, 316 genomic regions exhibited divergent selection, with 168 regions under positive selection. Furthermore, 227 candidate genes were identified in the positive selection regions, which have functions including growth, stress resistance, and reproduction. Notably, certain selection signatures with significantly higher F st value were detected in genes associated with male reproduction, such as GAL3ST1, IFT88, and TSSK2, which were significantly upregulated during artificial breeding. This suggests a potential role of sperm-associated genes in the rapid evolutionary response of M. lateralis to selection in laboratory conditions. Overall, our findings highlight the phenotypic and genetic changes, as well as selection signatures, in M. lateralis during artificial breeding. This contributes to understanding their adaptation to laboratory conditions and underscores the potential for using this species to explore the adaptive evolution of bivalves.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Mingxuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xuefeng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Liping Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Yantai Marine Economic Research InstituteYantaiChina
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
5
|
Hu CM, Zhou CL, Wan JN, Guo T, Ji GY, Luo SZ, Ji KP, Cao Y, Tan Q, Bao DP, Yang RH. Selection and validation of internal control genes for quantitative real-time RT‒qPCR normalization of Phlebopus portentosus gene expression under different conditions. PLoS One 2023; 18:e0288982. [PMID: 37756330 PMCID: PMC10530043 DOI: 10.1371/journal.pone.0288982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/03/2023] [Indexed: 09/29/2023] Open
Abstract
Phlebopus portentosus (Berk. and Broome) Boedijn is an attractive edible mushroom and is considered the only bolete for which artificial cultivation in vitro has been achieved. Gene expression analysis has become widely used in research on edible fungi and is important for elucidating the functions of genes involved in complex biological processes. Selecting appropriate reference genes is crucial to ensuring reliable RT‒qPCR gene expression analysis results. In our study, a total of 12 candidate control genes were selected from 25 traditional housekeeping genes based on their expression stability in 9 transcriptomes of 3 developmental stages. These genes were further evaluated using geNorm, NormFinder, and RefFinder under different conditions and developmental stages. The results revealed that MSF1 domain-containing protein (MSF1), synaptobrevin (SYB), mitogen-activated protein kinase genes (MAPK), TATA-binding protein 1 (TBP1), and SPRY domain protein (SPRY) were the most stable reference genes in all sample treatments, while elongation factor 1-alpha (EF1), actin and ubiquitin-conjugating enzyme (UBCE) were the most unstably expressed. The gene SYB was selected based on the transcriptome results and was identified as a novel reference gene in P. portentosus. This is the first detailed study on the identification of reference genes in this fungus and may provide new insights into selecting genes and quantifying gene expression.
Collapse
Affiliation(s)
- Chen-Menghui Hu
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chen-Li Zhou
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jia-Ning Wan
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ting Guo
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guang-Yan Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Shun-Zhen Luo
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Kai-Ping Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Yang Cao
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Qi Tan
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Da-Peng Bao
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Rui-Heng Yang
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
6
|
Hu C, Dai W, Zhu X, Yao H, Lin Z, Dong Y, Lv L. Expression and Functional Analysis of AMT1 Gene Responding to High Ammonia Stress in Razor Clam ( Sinonovacula constricta). Animals (Basel) 2023; 13:ani13101638. [PMID: 37238069 DOI: 10.3390/ani13101638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Ammonium transporter 1 (AMT1), a member of ammonia (NH3/NH4+) transport proteins, has been found to have ammonia transport activity in plants and microorganisms. However, the functional characteristics and molecular mechanisms of AMT1 in mollusks remain unclear. The razor clam (Sinonovacula constricta) is a suitable model species to explore the molecular mechanism of ammonia excretion because of the high concentration of ambient ammonia it is exposed to in the clam-fish-shrimp polyculture system. Here, the expression of AMT1 in S. constricta (Sc-AMT1) in response to high ammonia (12.85 mmol/L NH4Cl) stress was identified by real-time quantitative PCR (qRT-PCR), Western blotting, RNA interference, and immunofluorescence analysis. Additionally, the association between the SNP_g.15211125A > T linked with Sc-AMT1 and ammonia tolerance was validated by kompetitive allele-specific PCR (KASP). A significant upregulated expression of Sc-AMT1 was observed during ammonia exposure, and Sc-AMT1 was found to be localized in the flat cells of gill. Moreover, the interference with Sc-AMT1 significantly upregulated the hemolymph ammonia levels, accompanied by the increased mRNA expression of Rhesus glycoprotein (Rh). Taken together, our findings imply that AMT1 may be a primary contributor to ammonia excretion in S. constricta, which is the basis of their ability to inhabit benthic water with high ammonia levels.
Collapse
Affiliation(s)
- Chenxin Hu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Xiaojie Zhu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Yinghui Dong
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Liyuan Lv
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| |
Collapse
|
7
|
Genome-wide characterization of the cytosolic sulfotransferase 1B member 1 (SULT1B1) family and its expression responses to sulfide stress in the razor clam Sinonovacula constricta. Gene 2023; 856:147136. [PMID: 36572072 DOI: 10.1016/j.gene.2022.147136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The razor clam (Sinonovacula constricta), a typical burrowing organism in the intertidal zones, is often exposed to sulfide environment and shows strong sulfide tolerance. Located downstream of the sulfur metabolism pathway, cytosolic sulfotransferase family 1B member 1 (SULT1B1) is a key enzyme catalysing the sulfonation reaction, and plays an important role in the biotransformation of endogenous substances such as thyroid hormones (THs). To investigate their roles in sulfide resistance, a systematic analysis of S. constricta SULT1B1s (ScSULT1B1s), including genomic distribution, phylogenetic relationships, gene structure, conserved motifs, and expression profiles under sulfide stress, was performed. A total of 10 ScSULT1B1 genes were found in the S. constricta genome. Sequence analysis showed that ScSULT1B1 gene family encoded 155-425 amino acids, containing four catalytic active sites (K, N, H, and S), one PAPS binding domain at the N-terminus, and one PAPS binding and dimerization domain at the C-terminus. The spatial-temporal expression patterns of ScSULT1B1s were further estimated by quantitative real-time PCR (qRT-PCR). Among them, partial ScSULT1B1s showed significantly high expression in the gill, hepatopancreas, and siphon. Furthermore, the response expression of certain ScSULT1B1s significantly fluctuated under sulfide stress. Together, our results suggest that ScSULT1B1s, by mediating the sulfonation reaction, may regulate THs levels to maintain basic metabolic and immune functions, making S. constricta highly sulfide tolerant.
Collapse
|
8
|
Sun G, Zhang H, Yao H, Dai W, Lin Z, Dong Y. Characteristics of glutathione peroxidase gene and its responses to ammonia-N stress in razor clam Sinonovacula constricta. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110752. [PMID: 35513263 DOI: 10.1016/j.cbpb.2022.110752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPX) is a crucial enzyme in the antioxidant defense system. However, the previous studies on the structure and functions of mollusk GPX genes are still very limited. Here, we investigated the GPX gene from Sinonovacula constricta (Sc-GPX), and its expression profiles, protein localization, gene function and association with ammonia tolerance. The full length of sequence of Sc-GPX was 1781 bp, containing an open reading frame (ORF) of 588 bp encoding 195 amino acids. Quantitative expression of seven adult tissues showed that Sc-GPX was most abundant in hepatopancreas, followed by gills. Furthermore, the enzyme activity of Sc-GPX in hepatopancreas increased significantly under different ammonia concentrations (100, 140, and 180 mg/L) (P < 0.01). Further, we explored the mRNA expression level, histological structure and histo-cellular localization in gills and hepatopancreas of Sc-GPX under 140 mg/L ammonia stress. The mRNA expression level in gills and hepatopancreas of Sc-GPX increased significantly (P < 0.05) and immunohistochemistry results suggested that the columnar cells of gills filaments and the endothelial cells of hepatopancreas were the major sites for the action of Sc-GPX protein. In addition, we performed western blotting (WB), RNA interference (RNAi) and single nucleotide polymorphisms (SNPs) in the hepatopancreas of Sc-GPX under ammonia stress (140 mg/L). WB results indicated that the protein expression of Sc-GPX increased significantly (P < 0.01) after ammonia challenge. In addition, expression of Sc-GPX mRNA were significantly downregulated at 24 and 48 h after RNAi (P < 0.01). The association analysis between ammonia-tolerance group and control group identified six SNPs in coding sequence (CDS) of Sc-GPX from 449 individuals. Among them, c.162A > C was missense mutation, which lead to the amino acid change from Lys to Asn. These findings revealed that Sc-GPX may play a critical role in clam ammonia detoxification.
Collapse
Affiliation(s)
- Gaigai Sun
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Huan Zhang
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China.
| | - Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China
| | - Yinghui Dong
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China.
| |
Collapse
|
9
|
Tang J, Liang G, Dong S, Shan S, Zhao M, Guo X. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization in Athetis dissimilis (Lepidoptera: Noctuidae) Under Different Conditions. Front Physiol 2022; 13:842195. [PMID: 35273523 PMCID: PMC8902415 DOI: 10.3389/fphys.2022.842195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Reference genes are the key to study gene expression patterns using quantitative real-time PCR (qRT-PCR). No studies on the reference genes of Athetis dissimilis, an important agricultural pest, have been reported. In order to determine the reference genes for qRT-PCR normalization in A. dissimilis under different conditions, 10 candidate genes [18S ribosomal protein (18S), 28S ribosomal protein (28S), arginine kinase (AK), elongation factor 1 alpha (EF1-α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L32 (RPL32), ribosomal protein L40 (RPL40), alpha-tubulin (α-TUB), beta-actin (β-ACT), and beta-tubulin (β-TUB)] of A. dissimilis were selected to evaluate their stability as reference genes under different biotic and abiotic conditions by using five tools, geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder. Furthermore, CSP1 and superoxide dismutase (SOD) were used as target genes to validate the candidate reference genes. The results showed that different reference genes were needed under different experimental conditions, among which, EF-1α, RPL40, and 18S are most suitable reference genes for studying genes related development stages of A. dissimilis, RPL40 and α-TUB for larval tissues, α-TUB and 28S for adult tissues, EF-1α and β-ACT for insecticidal treatments, β-ACT and 28S for temperature treatments, EF-1α and β-ACT for starvation treatments, RPL40 and 18S for dietary treatments, and 18S, 28S, and α-TUB for all the samples. These results provide suitable reference genes for studying gene expression in A. dissimilis under different experimental conditions, and also lay the foundation for further research into the function of related genes in A. dissimilis.
Collapse
Affiliation(s)
- Jinrong Tang
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoqi Dong
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Man Zhao
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xianru Guo
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
10
|
Sun G, Dong Y, Sun C, Yao H, Lin Z. Vital Role of Glutamate Dehydrogenase Gene in Ammonia Detoxification and the Association Between its SNPs and Ammonia Tolerance in Sinonovacula constricta. Front Physiol 2021; 12:664804. [PMID: 34025453 PMCID: PMC8131826 DOI: 10.3389/fphys.2021.664804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence has revealed accumulated ammonia will cause adverse effects on the growth, reproduction, and survival of aquatic animals. As a marine benthic mollusk, the razor clam Sinonovacula constricta shows better growth and survival under high ammonia nitrogen environment. However, little is known about its adaptation mechanisms to high ammonia stress in an integrated mariculture system. In this study, we analyzed the association between the polymorphism of glutamate dehydrogenase gene (GDH), a key gene involved in ammonia nitrogen detoxification, and ammonia tolerance. The results showed that 26 and 22 single-nucleotide polymorphisms (SNPs) of GDH in S. constricta (denoted as Sc-GDH) were identified from two geographical populations, respectively. Among them, two SNPs (c.323T > C and c.620C > T) exhibited a significant and strong association with ammonia tolerance, suggesting that Sc-GDH gene could serve as a potential genetic marker for molecular marker–assisted selection to increase survival rate and production of S. constricta. To observe the histological morphology and explore the histocellular localization of Sc-GDH, by paraffin section and hematoxylin–eosin staining, the gills were divided into gill filament (contains columnar and flattened cells) and gill cilia, whereas hepatopancreas was made up of individual hepatocytes. The results of immunohistochemistry indicated that the columnar cells of gill filaments and the endothelial cells of hepatocytes were the major sites for Sc-GDH secretion. Under ammonia stress (180 mg/L), the expression levels of Sc-GDH were extremely significantly downregulated at 24, 48, 72, and 96 h (P < 0.01) after RNA interference. Thus, we can speculate that Sc-GDH gene may play an important role in the defense process against ammonia stress. Overall, these findings laid a foundation for further research on the adaptive mechanisms to ammonia–nitrogen tolerance for S. constricta.
Collapse
Affiliation(s)
- Gaigai Sun
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Yinghui Dong
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China.,Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Changsen Sun
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China.,Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
11
|
Defense responses of sulfur dioxygenase to sulfide stress in the razor clam Sinonovacula constricta. Genes Genomics 2021; 43:513-522. [PMID: 33721282 DOI: 10.1007/s13258-021-01077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Sulfide is a well-known toxicant widely distributed in the culture environment. As a representative burrowing benthic bivalve, the razor clam Sinonovacula constricta is highly sulfide tolerant. Mitochondrial sulfide oxidation is an important way for sulfide detoxification, where sulfur dioxygenase (SDO) is the second key enzyme. OBJECTIVE To investigate the mechanism of sulfide tolerance in S. constricta, the molecular characterization of its SDO (designated as ScSDO) was studied. METHODS The cDNA sequence of ScSDO was cloned by RACE technique. The response of ScSDO in gills and livers of S. constricta was investigated during sulfide exposure (50, 150, and 300 μM sulfide) for 0, 3, 6, 12, 24, 48, 72, and 96 h by qRT-PCR. Moreover, the temporal expression of ScSDO protein in S. constricta gills after exposure to 150 μM sulfide was detected by Western blot. The subcellular location of ScSDO was identified by TargetP 1.1 prediction and Western Blot analysis. RESULTS The full-length cDNA of ScSDO was 2914 bp, encoding a protein of 304 amino acids. The deduced ScSDO protein was highly conserved, containing the signature HXHXDH motif of the metallo-β-lactamase superfamily and two metal-binding sites, of which metal-binding site I is known to be the catalytically active center. Subcellular localization confirmed that ScSDO was located only in the mitochondria. Responding to the sulfide exposure, distinct time-dependent increases in ScSDO expression were detected at both mRNA and protein levels. Moreover, the gills exhibited a higher ScSDO expression level than the livers. CONCLUSIONS All of our results suggest that ScSDO plays an important role in mitochondrial sulfide oxidation during sulfide stress, making S. constricta highly sulfide tolerant. In addition, as a respiratory tissue, the gills play a more critical role in sulfide detoxification.
Collapse
|
12
|
Zhang H, Sun G, Lin Z, Yao H, Dong Y. The razor clam Sinonovacula constricta uses the strategy of conversion of toxic ammonia to glutamine in response to high environmental ammonia exposure. Mol Biol Rep 2020; 47:9579-9593. [PMID: 33245503 DOI: 10.1007/s11033-020-06018-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/16/2020] [Indexed: 01/15/2023]
Abstract
High ammonia can inhibit the survival and growth, and even cause mortality of razor clam (S. constricta). The accumulation of ammonia to lethal concentrations in some invertebrates may be partially prevented by converting some of the ammonia into glutamine (Gln). Glutamine dehydrogenase (GDH) and glutamine synthetase (GS) have been widely implicated a central role in response to ammonia stress. However, the molecular and physiological response of GDH and GS to ammonia alterations has not yet been determined in clams. To investigate the possible participatory role of GDH and GS genes in altered ammonia conditions, we have cloned their gene sequences and examined the mRNA expression and western blotting under ammonia exposure in S. constricta (ScGDH and ScGS), and detected the levels of GS and GDH, and the content of glutamate (Glu) and Gln. The full-length cDNA of ScGDH was 3924 bp, with a 1629 bp open reading frame (ORF) encoding a 542 amino-acid polypeptide. The complete cDNA sequence for ScGS had 2739 bp with an ORF of 1110 bp encoding 369 amino acids. To investigate ammonia detoxification strategies, the clams were exposed to ammonia for 96 h at four different concentrations (0, 100, 140, and 180 mg/L). Exposure to ammonia resulted in a significant increase of glutamate concentration and Gln in the haemocytes. GDH activity, GDH relative mRNA and protein expression, GS activity, GS relative mRNA and protein expression increased significantly and showed a pronounced time and dosage interaction in the liver. The results suggested that the protective strategies of Gln formation existed in S. constricta, which could convert ammonia to non- or less toxic nitrogenous compounds on the exposure of ammonia. Glutamate content in the haemocytes increased significantly, which is to ensure sufficient Glu to meet the needs for GS to catalyze the conversion of ammonia to Gln. We proposed that the induction of Glu synthesis-related genes and the subsequent formation of the active protein occurred in preparation for the increased capacity of the body to convert ammonia, into Gln. The results of this study suggested that GDH and GS play an important role in the synthesis of Gln, emphasizing, the protective strategies of Gln formation in S. constricta convert ammonia to nontoxic or less toxic nitrogenous compounds upon exposure to ammonia.
Collapse
Affiliation(s)
- Huan Zhang
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Gaigai Sun
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China.,Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ninghai, 315604, China
| | - Hanhan Yao
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Yinghui Dong
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China.
| |
Collapse
|
13
|
Shen Y, Chen J, Shen W, Chen C, Lin Z, Li C. Molecular characterization of a novel sulfide:quinone oxidoreductase from the razor clam Sinonovacula constricta and its expression response to sulfide stress. Comp Biochem Physiol B Biochem Mol Biol 2020; 239:110367. [DOI: 10.1016/j.cbpb.2019.110367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/10/2019] [Accepted: 10/03/2019] [Indexed: 01/16/2023]
|
14
|
Chen F, Wu P, Shen M, He M, Chen L, Qiu C, Shi H, Zhang T, Wang J, Xie K, Dai G, Wang J, Zhang G. Transcriptome Analysis of Differentially Expressed Genes Related to the Growth and Development of the Jinghai Yellow Chicken. Genes (Basel) 2019; 10:genes10070539. [PMID: 31319533 PMCID: PMC6678745 DOI: 10.3390/genes10070539] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
The growth traits are important traits in chickens. Compared to white feather broiler breeds, Chinese local broiler breeds have a slow growth rate. The main genes affecting the growth traits of local chickens in China are still unclear and need to be further explored. This experiment used fast-growth and slow-growth groups of the Jinghai Yellow chicken as the research objects. Three males and three females with similar body weights were selected from the two groups at four weeks old and eight weeks old, respectively, with a total of 24 individuals selected. After slaughter, their chest muscles were taken for transcriptome sequencing. In the differentially expressed genes screening, all of the genes obtained were screened by fold change ≥ 2 and false discovery rate (FDR) < 0.05. For four-week-old chickens, a total of 172 differentially expressed genes were screened in males, where there were 68 upregulated genes and 104 downregulated genes in the fast-growth group when compared with the slow-growth group. A total of 31 differentially expressed genes were screened in females, where there were 11 upregulated genes and 20 downregulated genes in the fast-growth group when compared with the slow-growth group. For eight-week-old chickens, a total of 37 differentially expressed genes were screened in males. The fast-growth group had 28 upregulated genes and 9 downregulated genes when compared with the slow-growth group. A total of 44 differentially expressed genes were screened in females. The fast-growth group had 13 upregulated genes and 31 downregulated genes when compared with the slow-growth group. Through gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, many genes were found to be related to cell proliferation and differentiation, muscle growth, and cell division such as SNCG, MCL1, ARNTL, PLPPR4, VAMP1, etc. Real-time PCR results were consistent with the RNA-Seq data and validated the findings. The results of this study will help to understand the regulation mechanism of the growth and development of Jinghai Yellow chicken and provide a theoretical basis for improving the growth rate of Chinese local chicken breeds.
Collapse
Affiliation(s)
- Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Manman Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cong Qiu
- Jiangsu Jinghai Poultry Group Co., Ltd., Nantong 226100, China
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Nantong 226100, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiahong Wang
- Upper School, Rutgers Preparatory School, NJ 08873, USA
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|