1
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
2
|
Chávez-Hernández JA, Velarde-Salcedo AJ, Navarro-Tovar G, Gonzalez C. Safe nanomaterials: from their use, application, and disposal to regulations. NANOSCALE ADVANCES 2024; 6:1583-1610. [PMID: 38482025 PMCID: PMC10929592 DOI: 10.1039/d3na01097j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 09/15/2024]
Abstract
Nanomaterials are structures with a wide range of applications in the medical, pharmaceutical, food, textile, and electronic industries, reaching more customers worldwide. As a relatively new technological field, the information about the associated risk of nanomaterials in environmental and human health must be addressed and consolidated to develop accurate legislations, frameworks, and guidelines to standardise their use in any field. This review aims to display and context the global applications of nanomaterials, their final disposal, as well as the perspective of the current efforts formulated by various countries (including Mexico and Latin American countries), international official departments and organisations directed to implement regulations on nanomaterials, nanotechnology, and nanoscience matters. In addition, the compiled information includes the tools, initiatives, and strategies to develop regulatory frameworks, such as life cycle assessments, risk assessments, technical tools, and biological models to evaluate their effects on living organisms. Finally, the authors point out the importance of implementing global regulations to promote nanotechnological research according to a precautionary principle focused on an environmental and health protection approach to ensure the use and application of nanotechnologies safely, and responsibly.
Collapse
Affiliation(s)
- Jorge Antonio Chávez-Hernández
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
| | - Aída Jimena Velarde-Salcedo
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
| | - Gabriela Navarro-Tovar
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
- Consejo Nacional de Humanidades, Ciencias y Tecnologias Insurgentes Sur 1582, Credito Constructor, Benito Juarez 03940 Mexico City Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
| |
Collapse
|
3
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
5
|
Pastor F, Rodriguez JC, Barrera JM, García-Menocal JAD, Brizuela A, Puigdollers A, Espinar E, Gil J. Effect of Fluoride Content of Mouthwashes on the Metallic Ion Release in Different Orthodontics Archwires. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2780. [PMID: 36833476 PMCID: PMC9956897 DOI: 10.3390/ijerph20042780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Metal ion release studies were carried out on three of the most commonly used orthodontic wires in the clinic: austenitic stainless steel, Ti-Mo, and superelastic NiTi, using three mouthwashes with different fluoride concentrations: 130, 200, and 380 ppm. Immersions were carried out in these mouthwashes at 37 °C for 1, 4, 7, and 14 days, and the ions released were determined by inductively coupled plasma-mass spectrometry (ICP-MS). All wires were observed by scanning electron microscopy (SEM). The results showed a moderate ion release in the stainless steel wires, with nickel and chromium values of 500 and 1000 ppb in the worst conditions for the wires: concentrations of 380 ppm fluoride and 14 days of immersion. However, in the Ti-Mo and NiTi alloys, an abrupt change in release was observed when the samples were immersed in 380 ppm fluoride concentrations. Titanium releases in Ti-Mo wires reached 200,000 ppb, creating numerous pits on the surface. Under the same conditions, the release of Ni and Ti ions from the superelastic wires also exceeded 220,000 ppb and 180,000 ppb, respectively. This release of ions causes variations in the chemical composition of the wires, causing the appearance of martensite plates in the austenitic matrix after 4 days of immersion. This fact causes it to lose its superelastic properties at a temperature of 37 °C. In the case of immersion in 380 ppm mouthwashes for more than 7 days, rich-nickel precipitates can be seen. These embrittle the wire and lose all tooth-correcting properties. It should be noted that the release of Ni ions can cause hypersensitivity in patients, particularly women. The results indicate that the use of mouthwashes with a high content of fluoride should not be recommended with orthodontic archwires.
Collapse
Affiliation(s)
- Francisco Pastor
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Juan Carlos Rodriguez
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José María Barrera
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José Angel Delgado García-Menocal
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Andreu Puigdollers
- Department Ortodoncia, Facultad de Odontología, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Eduardo Espinar
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| |
Collapse
|
6
|
Pastor F, Rodríguez JC, Barrera JM, Delgado García-Menocal JA, Brizuela A, Puigdollers A, Espinar E, Gil J. Effect of Fluoride Content of Mouthwashes on Superelastic Properties of NiTi Orthodontic Archwires. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196592. [PMID: 36233934 PMCID: PMC9573170 DOI: 10.3390/ma15196592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 06/01/2023]
Abstract
The influence of sodium fluoride (NaF) concentration in mouthwashes on the properties of superelastic NiTi orthodontic wires has been studied. In this work, 55.8%Ni and 44.2%Ti (in weight) wires were introduced in commercial mouthwashes with different NaF contents (0, 130, 200 and 380 ppm). The release of Ni2+ and Ti4+ ions was by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at 1, 4, 7 and 14 days. Superelastic orthodontic wires present at oral temperature the austenitic phase which is transformed into a plastic phase (martensite) by cooling. The temperatures at which this occurs are influenced by the chemical composition. The release of ions from the wire will produce variations in the temperatures and stresses of the stress-induced martensitic transformation. Ms, Mf, As, Af were determined by Differential Scanning Calorimeter (DSC). The transformation stresses (austenite to stress induce martensite) were determined with a servo-hydraulic testing machine at 37 °C. The surfaces for the different times and mouthwash were observed by Scanning Electron Microscope (SEM). The release of Ni2+ in mouthwashes with 380 ppm NaF concentrations reaches 230,000 ppb in 14 days and for Ti4+ 175,000 ppb. When NaF concentrations are lower than 200 ppm the release of Ni and Ti ions is around 1500 ppb after 14 days. This variation in compositions leads to variations in Ms from 27 °C to 43.5 °C in the case of higher NaF concentration. The increasing immersion time and NaF concentrations produce a decrease of Ni in the wires, increasing Ms which exceed 37 °C with the loss of superelasticity. In the same way, the stresses (tooth position corrective) decrease from 270 MPa to 0 MPa due to the martensitic phase. The degradation can produce the growth of precipitates rich in Ti (Ti2Ni). These results are of great interest in the orthodontic clinic in order to avoid the loss of the therapeutic properties of superelastic NiTi due to long immersion in fluoride mouthwashes.
Collapse
Affiliation(s)
- Francisco Pastor
- Departamento Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Juan Carlos Rodríguez
- Departamento Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José María Barrera
- Departamento Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José Angel Delgado García-Menocal
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Andreu Puigdollers
- Departamento Ortodoncia, Facultad de Odontología, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Eduardo Espinar
- Departamento Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| |
Collapse
|
7
|
Arnold AM, Bradley AM, Taylor KL, Kennedy ZC, Omberg KM. The Promise of Emergent Nanobiotechnologies for In Vivo Applications and Implications for Safety and Security. Health Secur 2022; 20:408-423. [PMID: 36286588 PMCID: PMC9595614 DOI: 10.1089/hs.2022.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
Abstract
Nanotechnology, the multidisciplinary field based on the exploitation of the unique physicochemical properties of nanoparticles (NPs) and nanoscale materials, has opened a new realm of possibilities for biological research and biomedical applications. The development and deployment of mRNA-NP vaccines for COVID-19, for example, may revolutionize vaccines and therapeutics. However, regulatory and ethical frameworks that protect the health and safety of the global community and environment are lagging, particularly for nanotechnology geared toward biological applications (ie, bionanotechnology). In this article, while not comprehensive, we attempt to illustrate the breadth and promise of bionanotechnology developments, and how they may present future safety and security challenges. Specifically, we address current advancements to streamline the development of engineered NPs for in vivo applications and provide discussion on nano-bio interactions, NP in vivo delivery, nanoenhancement of human performance, nanomedicine, and the impacts of NPs on human health and the environment.
Collapse
Affiliation(s)
- Anne M. Arnold
- Anne M. Arnold, PhD, is a Materials Scientist, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| | - Ashley M. Bradley
- Ashley M. Bradley is a Biomedical Scientist, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| | - Karen L. Taylor
- Karen L. Taylor, MPH, is a Senior Technical Advisor, National Security Directorate, Pacific Northwest National Laboratory, Seattle, WA
| | - Zachary C. Kennedy
- Zachary C. Kennedy, PhD, is a Materials Scientist, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| | - Kristin M. Omberg
- Kristin M. Omberg, PhD, is Group Leader, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| |
Collapse
|
8
|
Vimalkumar K, Sangeetha S, Felix L, Kay P, Pugazhendhi A. A systematic review on toxicity assessment of persistent emerging pollutants (EPs) and associated microplastics (MPs) in the environment using the Hydra animal model. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109320. [PMID: 35227876 DOI: 10.1016/j.cbpc.2022.109320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Emerging pollutants (EPs) are causative for teratogenic and reproductive effects. EPs are detected in all the environmental matrices at higher levels. A suitable model for aquatic toxicity assessment is Hydra, because of morphological, behavioral, reproductive (sexual and asexual), and biochemical changes. Many researchers have used Hydra for toxicity assessment of organic chemicals (BPA), heavy metals, pharmaceuticals, nanomaterials and microplastics. Various Hydra species were used for environmental toxicity studies; however H. magnipapillata was predominantly used due to the availability of its genome and proteome sequences. Teratogenic and reproductive changes in Hydra are species specific. Teratogenic effects were studied using sterozoom dissecting microscope, acridine orange (AO) and 4',6-diamidino-2-phenylindole (DPAI) staining. Reactive oxygen species (ROS) generation by EPs had been understood by the Dichlorodihydrofluorescein Diacetate (DCFDA) staining and comet assay. Multiple advanced techniques would aid to understand the effects at molecular level, such as real-time PCR, rapid amplification of cDNA end- PCR. EPs modulated the major antioxidant enzyme levels, therefore, defense mechanism was affected by the higher generation of reactive oxygen species. Genome sequencing helps to know the mode of action of pollutants, role of enzymes in detoxification, defense genes and stress responsive genes. Molecular techniques were used to obtain the information for evolutionary changes of genes and modulation of gene expression by EPs.
Collapse
Affiliation(s)
| | - Seethappan Sangeetha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Lewisoscar Felix
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Paul Kay
- School of Geography, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
9
|
Ghahfarokhi MR, Dini G, Movahedi B. Fabrication of Chitosan-coated Mesoporous Silica Nanoparticles Bearing Rosuvastatin as Drug Delivery System. Curr Drug Deliv 2021; 19:64-73. [PMID: 34151762 DOI: 10.2174/1567201818666210609165630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
AIM In this work, to improve the solubility and bioavailability of the rosuvastatin (RSV) drug, chitosan-coated mesoporous silica nanoparticles (CS-MSNs) as drug delivery systems were fabricated. METHODS To do this, first MSNs with a maximum specific surface area were synthesized from sodium silicate as silica source and different molar ratios of cethyl trimethylammonium bromide (CTAB) and pluronics (P123, PEO20PPO17PEO20) as surfactants via the sol-gel process. Then, the synthesized MSNs were coated by CS polymer with the help of (3-glycidoxypropyl)methyldiethoxysilane (GPTMS) as a linker between MSNs and CS. Subsequently, the RSV drug was loaded into the synthesized CS-coated MSNs. The products were characterized by different techniques, including X-ray diffraction (XRD), the Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). The in vitro drug release profile of the fabricated DDS was evaluated in a typical phosphate-buffered saline (PBS) solution at different pH values (i.e., 4, 6, and 7.4) for 48 h. To assess the cytotoxicity, the viability of the human fibroblast cells exposed to the fabricated DDS was also examined. RESULTS The results showed that at an optimal molar ratio of P123/CTAB, the amorphous MSNs with a specific surface area of about 1080 m2/g, a pore diameter of 4 nm, a pore volume of 1.1 cm3/g, and an average size of about 30 nm were synthesized. Also, the presence of all the components, including the CS coating and the RSV drug, was confirmed in the structure of the fabricated DDS by FTIR analysis. Due to the pH-responsive feature of the CS coating, the RSV drug release from the fabricated DDS showed a reasonable environmental response; as the pH value of the PBS solution decreased, the degree of drug release increased. CONCLUSION The CS coating enhanced the cytotoxicity of the fabricated DDS and led to sustainable drug release behavior, which would provide a beneficial approach for drug delivery technology.
Collapse
Affiliation(s)
| | - Ghasem Dini
- Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Behrooz Movahedi
- Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
10
|
Scola S, Blasco J, Campana O. "Nanosize effect" in the metal-handling strategy of the bivalve Scrobicularia plana exposed to CuO nanoparticles and copper ions in whole-sediment toxicity tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143886. [PMID: 33340740 DOI: 10.1016/j.scitotenv.2020.143886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
To date, the occurrence, fate and toxicity of metal-based NPs in the environment is under investigated. Their unique physicochemical, biological and optical properties, responsible for their advantageous application, make them intrinsically different from their bulk counterpart, raising the issue of their potential toxic specificity or "nanosize effect". The aim of this study was to investigate copper bioaccumulation, subcellular distribution and toxic effect in the marine benthic species Scrobicularia plana exposed to two forms of sediment-associated copper, as nanoparticles (CuO NPs) and as soluble ions (CuCl2). Results showed that the exposure to different copper forms activated specific organism's metal handling strategies. Clams bioaccumulated soluble copper at higher concentrations than those exposed to sediment spiked with CuO NPs. Moreover, CuO NPs exposure elicited a stronger detoxification response mediated by a prompt mobilization of CuO NPs to metal-containing granules as well as a delayed induction of MT-like proteins, which conversely, sequestered soluble copper since the beginning of the exposure at levels significantly different from the control. Eventually, exposure to high concentrations of either copper form led to the same acute toxic effect (100% mortality) but the outcome was delayed in bivalves exposed to CuO NPs suggesting that the mechanisms underlying toxicity were copper form-specific. Indeed, while most of soluble copper was associated to the mitochondrial fraction suggesting an impairment of the ATP synthesis capacity at mitochondrial level, CuO NPs toxicity was most likely caused by the oxidative stress mediated by their bioaccumulation in the enzymatic and mitochondrial metabolically available fractions.
Collapse
Affiliation(s)
- Silvia Scola
- Departamento de Ecología y Gestión Costera - Instituto sde Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Julián Blasco
- Departamento de Ecología y Gestión Costera - Instituto sde Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Olivia Campana
- Universidad de Cádiz, INMAR, Campus Rio San Pedro, 11510 Puerto Real, Spain.
| |
Collapse
|
11
|
Oksel Karakus C, Bilgi E, Winkler DA. Biomedical nanomaterials: applications, toxicological concerns, and regulatory needs. Nanotoxicology 2020; 15:331-351. [PMID: 33337941 DOI: 10.1080/17435390.2020.1860265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advances in cutting-edge technologies such as nano- and biotechnology have created an opportunity for re-engineering existing materials and generating new nano-scale products that can function beyond the limits of conventional ones. While the step change in the properties and functionalities of these new materials opens up new possibilities for a broad range of applications, it also calls for structural modifications to existing safety assessment processes that are primarily focused on bulk material properties. Decades after the need to modify existing risk management practices to include nano-specific behaviors and exposure pathways was recognized, relevant policies for evaluating, and controlling health risks of nano-enabled materials is still lacking. This review provides an overview of current progress in the field of nanobiotechnology rather than intentions and aspirations, summarizes long-recognized but still unresolved issues surrounding materials safety at the nanoscale, and discusses key barriers preventing generation and integration of reliable data in bio/nano-safety domain. Particular attention is given to nanostructured materials that are commonly used in biomedical applications.
Collapse
Affiliation(s)
| | - Eyup Bilgi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.,Latrobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,School of Pharmacy, University of Nottingham, Nottingham, UK.,CSIRO Data61, Pullenvale, Australia
| |
Collapse
|
12
|
Health and Safety Concerns Related to CNT and Graphene Products, and Related Composites. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4030106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of Carbon Nanotubes (CNT) and Graphene increased in the last decade and it is likely to keep increasing in the near future. The attractiveness of their properties, particularly the possibility to enhance the composites performance using a tailor made methodology, brings new materials, processes and products for highly demanding industrial applications and to the market. However, there are quite a lot of health/safety issues, as well as lack of understanding and standards to evaluate their effects. This paper starts with a general description of materials, processes and products dealing with CNT and graphene. Then, an overview of concerns related to the health and safety when handling, researching, producing and using products that include these materials is presented. It follows a risk management approach with respect to simulation and evaluation tools, and considering the consensual limits already existing for research, industry and consumers. A general discussion integrating the relevant aspects of health and safety with respect to CNT and graphene is also presented. A proactive view is presented with the intention to contribute with some guidelines on installation, maintenance, evaluation, personal protection equipment (PPE) and personnel training to deal with these carbon-based nanomaterials in research, manufacture, and use with composite materials.
Collapse
|
13
|
Lu T, Qu Q, Lavoie M, Pan X, Peijnenburg WJGM, Zhou Z, Pan X, Cai Z, Qian H. Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113727. [PMID: 31838393 DOI: 10.1016/j.envpol.2019.113727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used because of their excellent antibacterial properties. They are, however, easily discharged into the water environment, causing potential adverse environmental effects. Meta-transcriptomic analyses are helpful to study the transcriptional response of prokaryotic and eukaryotic aquatic microorganisms to AgNPs. In the present study, microcosms were used to investigate the toxicity of AgNPs to a natural aquatic microbial community. It was found that a 7-day exposure to 10 μg L-1 silver nanoparticles (AgNPs) dramatically affected the structure of the microbial community. Aquatic micro eukaryota (including eukaryotic algae, fungi, and zooplankton) and bacteria (i.e., heterotrophic bacteria and cyanobacteria) responded differently to the AgNPs stress. Meta-transcriptomic analyses demonstrated that eukaryota could use multiple cellular strategies to cope with AgNPs stress, such as enhancing nitrogen and sulfur metabolism, over-expressing genes related to translation, amino acids biosynthesis, and promoting bacterial-eukaryotic algae interactions. By contrast, bacteria were negatively affected by AgNPs with less signs of detoxification than in case of eukaryota; various pathways related to energy metabolism, DNA replication and genetic repair were seriously inhibited by AgNPs. As a result, eukaryotic algae (mainly Chlorophyta) dominated over cyanobacteria in the AgNPs treated microcosms over the 7-d exposure. The present study helps to understand the effects of AgNPs on aquatic microorganisms and provides insights into the contrasting AgNPs toxicity in eukaryota and bacteria.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Michel Lavoie
- Quebec-Ocean and Takuvik Joint International Research Unit, Université Laval, Québec, G1VOA6, Canada
| | - Xiangjie Pan
- Zhejiang Fangyuan Test Group Co Ltd, Hangzhou, 310013, Zhejiang, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology and Biotechnology, School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, 213164, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
14
|
Elshaarawy RF, Seif GA, El-Naggar ME, Mostafa TB, El-Sawi EA. In-situ and ex-situ synthesis of poly-(imidazolium vanillyl)-grafted chitosan/silver nanobiocomposites for safe antibacterial finishing of cotton fabrics. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Taboada-López MV, Alonso-Seijo N, Herbello-Hermelo P, Bermejo-Barrera P, Moreda-Piñeiro A. Determination and characterization of silver nanoparticles in bivalve molluscs by ultrasound assisted enzymatic hydrolysis and sp-ICP-MS. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Yamindago A, Lee N, Woo S, Choi H, Mun JY, Jang SW, Yang SI, Anton-Erxleben F, Bosch TCG, Yum S. Acute toxic effects of zinc oxide nanoparticles on Hydra magnipapillata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:130-139. [PMID: 30384194 DOI: 10.1016/j.aquatox.2018.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are increasingly used in various products as coating and additive materials for household goods, personal-care products, and drug delivery systems. Because of their broad applications, the potential risks to nontarget organisms associated with their input into aquatic environments have generated much concern. We investigated the acute toxicity, morphological responses, and potential impact on physiology and metabolism in polyps exposed to spherical ZnO NPs of either 20 nm (ZnO NP20) or 100 nm (ZnO NP100). The median lethal concentrations (LC50) of ZnO NP20 were 55.3, 8.7, and 7.0 μg/mL after exposure for 48, 72, and 96 h, respectively; and those of ZnO NP100 were 262.0, 14.9, and 9.9 μg/mL, respectively. The morphological responses of the hydra polyps to a range of ZnO NP concentrations suggest that ZnO NPs may negatively affect neurotransmission in Hydra. ZnO NPs may also induce abnormal regeneration in the polyps by affecting the expression of several genes related to the Wnt signaling pathway. The presence of ZnO NP20 in the hydra tissue was confirmed with electron microscopy. A Gene Ontology analysis of the genes differentially expressed in hydra polyps after exposure to ZnO NP20 for 12 or 24 h revealed changes in various processes, including cellular and metabolic process, stress response, developmental process, and signaling. A KEGG pathway analysis of hydra polyps after exposure of ZnO NP20 or ZnO NP100 for 12 or 24 h demonstrated various changes, including in the DNA replication and repair, endocytosis, lysosomes, Wnt signaling, and natural killer-cell-mediated cytotoxicity pathways, suggesting the mechanisms that maintain cellular homeostasis in response to ZnO NPs. Progesterone-mediated oocyte maturation was also affected by the ZnO NPs nanoparticles, suggesting that they are potential endocrine disruptors. This study should increase our concern regarding the dispersal of ZnO NPs in aquatic environments.
Collapse
Affiliation(s)
- Ade Yamindago
- South Sea Environment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea; Faculty of Marine Environmental Science, University of Science and Technology (UST), Geoje 53201, Republic of Korea; Faculty of Fisheries and Marine Science, Brawijaya University, Malang 65145, Indonesia
| | - Nayun Lee
- South Sea Environment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea
| | - Seonock Woo
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Hyosun Choi
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Ji Young Mun
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Dong-gu, Daegu 41068, Republic of Korea
| | - Seok-Won Jang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sung Ik Yang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | | | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Kiel D-24118, Germany
| | - Seungshic Yum
- South Sea Environment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea; Faculty of Marine Environmental Science, University of Science and Technology (UST), Geoje 53201, Republic of Korea.
| |
Collapse
|
17
|
Lee MY. Essential Oils as Repellents against Arthropods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6860271. [PMID: 30386794 PMCID: PMC6189689 DOI: 10.1155/2018/6860271] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022]
Abstract
The development of effective and safe repellents against arthropods is very important, because there are no effective vaccines against arthropod-borne viruses (arboviruses) and parasites. Arboviruses and parasites are transmitted to humans from arthropods, and mosquitoes are the most common arthropods associated with dengue, malaria, and yellow fever. Enormous efforts have been made to develop effective repellents against arthropods, and thus far synthetic repellents have been widely used. However, the use of synthetic repellents has raised several concerns in terms of environmental and human health risks and safety. Thus, plant essential oils (EOs) have been widely used as an alternative to synthetic repellents. In this review, we briefly introduce and summarize recent studies that have investigated EOs as insect repellents. Current technology and research trends to develop effective and safe repellents from plant EOs are also described in this review.
Collapse
Affiliation(s)
- Mi Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, 22 Soonchunhyang–ro, Asan, Chungnam 31537, Republic of Korea
| |
Collapse
|
18
|
Ultrasound assisted enzymatic hydrolysis for isolating titanium dioxide nanoparticles from bivalve mollusk before sp-ICP-MS. Anal Chim Acta 2018; 1018:16-25. [DOI: 10.1016/j.aca.2018.02.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/30/2022]
|
19
|
Park HG, Kim JI, Chang KH, Lee BC, Eom IC, Kim P, Nam DH, Yeo MK. Trophic transfer of citrate, PVP coated silver nanomaterials, and silver ions in a paddy microcosm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:435-445. [PMID: 29310087 DOI: 10.1016/j.envpol.2017.12.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
We used replicated paddy microcosm systems to estimate the tropic transfer of citrate-coated silver nanoparticles (AgNP citrate), polyvinylpyrrolidone (PVP)-coated AgNP (AgNP PVP), and silver ions (AgNO3) for 14 days under two exposure regimes (a single high-dose exposure; 60 μg L-1 and a sequential low-dose exposure at 1 h, 4 days and 9 days; 20 μg L-1 × 3 = 60 μg L-1). Most Ag ions from AgNO3 had dispersed in the water and precipitated partly on the sediment, whereas the two Ag NPs rapidly coagulated and precipitated on the sediment. The bioconcentration factors (BCFs) of Ag from AgNPs and AgNO3 in Chinese muddy loaches and biofilms were higher than those of river snails in both exposure conditions. These BCFs were more prominent for 14 days exposure (7.30 for Chinese muddy loach; 4.48 for biofilm) in the low-dose group than in the single high-dose group. Their retention of AgNPs and Ag ions differed between the two exposure conditions, and uptake and elimination kinetics of Ag significantly differed between AgNP citrate and AgNP PVP in the sequential low-dose exposure. Stable isotopes analyses indicated that the trophic levels between Chinese muddy loaches and biofilms and between river snails and biofilms were 2.37 and 2.27, respectively. The biomagnification factors (BMFs) of AgNPs and AgNO3 between Chinese muddy loaches and biofilms were significantly higher than those between river snails and biofilms under both exposure settings. The BMFs of AgNP citrate and AgNO3 between Chinese muddy loaches and biofilms were greater than those of AgNP PVP for 14 days in the single high-dose group, whereas the BMFs of AgNP PVP were greater than those of AgNP citrate and AgNO3 in the sequential low-dose group. These microcosm data suggest that AgNPs have the potential to impact on ecological receptors and food chains.
Collapse
Affiliation(s)
- Hyung-Geun Park
- Department of Environmental Science and Environmental Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jung In Kim
- Department of Environmental Science and Environmental Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Kwang-Hyeon Chang
- Department of Environmental Science and Environmental Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Byoung-Cheun Lee
- Risk Assessment Division, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 404-708, Republic of Korea
| | - Ig-Chun Eom
- Risk Assessment Division, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 404-708, Republic of Korea
| | - Pilje Kim
- Risk Assessment Division, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 404-708, Republic of Korea
| | - Dong-Ha Nam
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro Bukgu, Gwangju 61186, Republic of Korea.
| | - Min-Kyeong Yeo
- Department of Environmental Science and Environmental Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
20
|
Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydr Polym 2017; 177:187-193. [DOI: 10.1016/j.carbpol.2017.08.129] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022]
|
21
|
Mikolajczyk A, Sizochenko N, Mulkiewicz E, Malankowska A, Nischk M, Jurczak P, Hirano S, Nowaczyk G, Zaleska-Medynska A, Leszczynski J, Gajewicz A, Puzyn T. Evaluating the toxicity of TiO 2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2171-2180. [PMID: 29114443 PMCID: PMC5669235 DOI: 10.3762/bjnano.8.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/18/2017] [Indexed: 05/25/2023]
Abstract
Titania-supported palladium, gold and bimetallic nanoparticles (second-generation nanoparticles) demonstrate promising photocatalytic properties. However, due to unusual reactivity, second-generation nanoparticles can be hazardous for living organisms. Considering the ever-growing number of new types of nanoparticles that can potentially contaminate the environment, a determination of their toxicity is extremely important. The main aim of presented study was to investigate the cytotoxic effect of surface modified TiO2-based nanoparticles, to model their quantitative nanostructure-toxicity relationships and to reveal the toxicity mechanism. In this context, toxicity tests for surface-modified TiO2-based nanoparticles were performed in vitro, using Gram-negative bacteria Escherichia coli and Chinese hamster ovary (CHO-K1) cells. The obtained cytotoxicity data were analyzed by means of computational methods (quantitative structure-activity relationships, QSAR approach). Based on a combined experimental and computational approach, predictive models were developed, and relationships between cytotoxicity, size, and specific surface area (Brunauer-Emmett-Teller surface, BET) of nanoparticles were discussed.
Collapse
Affiliation(s)
- Alicja Mikolajczyk
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Natalia Sizochenko
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Interdisciplinary Center for Nanotoxicity, Jackson State University, 39217, Jackson, MS, USA
| | - Ewa Mulkiewicz
- Department of Environmental Analytics, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Anna Malankowska
- Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Michal Nischk
- Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Przemyslaw Jurczak
- Department of Biomedical Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Seishiro Hirano
- Center for Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 16-2 Onogawa, Ibaraki 305-8506, Japan
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Adriana Zaleska-Medynska
- Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Jackson State University, 39217, Jackson, MS, USA
| | - Agnieszka Gajewicz
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
22
|
|