1
|
Gao M, Liu W, Li T, Song Z, Wang X, Zhang X. Identifying Genetic Signatures Associated with Oncogene-Induced Replication Stress in Osteosarcoma and Screening for Potential Targeted Drugs. Biochem Genet 2024; 62:1690-1715. [PMID: 37672187 DOI: 10.1007/s10528-023-10497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/07/2023] [Indexed: 09/07/2023]
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor. Due to the lack of selectivity and sensitivity of chemotherapy drugs to tumor cells, coupled with the use of large doses, chemotherapy drugs often have systemic toxicity. The use of modern sequencing technology to screen tumor markers in a large number of tumor samples is a common method for screening highly specific and selective anti-tumor drugs. This study aims to identify potential biomarkers using the latest reported gene expression signatures of oncogene-induced replication stress (ORS) in aggressive cancers, and potential anti-osteosarcoma drugs were screened in different drug databases. In this study, we obtained 89 osteosarcoma-related samples in the TARGET database, all of which included survival information. According to the median expression of each of six reported ORS gene markers (NAT10/DDX27/ZNF48/C8ORF33/MOCS3/MPP6), we divided 89 osteosarcoma gene expression datasets into a high expression group and a low expression group and then performed a differentially expressed gene (DEG) analysis. The coexisting genes of 6 groups of DEGs were used as replication stress-related genes (RSGs) of osteosarcoma. Then, key RSGs were screened using LASSO regression, a Cox risk proportional regression prognostic model and a tenfold cross-validation test. GSE21257 datasets collected from the Gene Expression Omnibus (GEO) database were used to verify the prognostic model. The final key RSGs selected were used in the L1000PWD and DGIdb databases to mine potential drugs. After further validation by the prognostic model, we identified seven genes associated with ORS in osteosarcoma as key RSGs, including transcription factor 7 like 2 (TCF7L2), solute carrier family 27 member 4 (SLC27A4), proprotein convertase subtilisin/kexin type 5 (PCSK5), nucleolar protein 6 (NOL6), coiled-coil-coil-coil-coil-helix domain containing 4 (CHCHD4), eukaryotic translation initiation factor 3 subunit B (EIF3B), and synthesis of cytochrome C oxidase 1 (SCO1). Then, we screened the seven key RSGs in two drug databases and found six potential anti-osteosarcoma drugs (D GIdb database: repaglinide, tacrolimus, sirolimus, cyclosporine, and hydrochlorothiazide; L1000PWD database: the small molecule VU-0365117-1). Seven RSGs (TCF7L2, SLC27A4, PCSK5, NOL6, CHCHD4, EIF3B, and SCO1) may be associated with the ORS gene signatures in osteosarcoma. Repaglinide, tacrolimus, sirolimus, cyclosporine, hydrochlorothiazide and the small molecule VU-0365117-1 are potential therapeutic drugs for osteosarcoma.
Collapse
Affiliation(s)
- Meng Gao
- School of Medicine, Nankai University, Tianjin, China
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Haidian District, 51 Fucheng Road, Beijing, 100048, China
| | - Weibo Liu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Haidian District, 51 Fucheng Road, Beijing, 100048, China
| | - Teng Li
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Haidian District, 51 Fucheng Road, Beijing, 100048, China
| | - ZeLong Song
- School of Medicine, Nankai University, Tianjin, China
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Haidian District, 51 Fucheng Road, Beijing, 100048, China
| | - XiangYu Wang
- Department of Pain Medicine, First Medical Center, PLA General Hospital, Beijing, 100000, China.
| | - XueSong Zhang
- School of Medicine, Nankai University, Tianjin, China.
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Haidian District, 51 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
2
|
Chen-Xi G, Jin-Fu X, An-Quan H, Xiao Y, Ying-Hui W, Suo-Yuan L, Cong S, Tian-Ming Z, Jun S. Long non-coding RNA PRR7-AS1 promotes osteosarcoma progression via binding RNF2 to transcriptionally suppress MTUS1. Front Oncol 2023; 13:1227789. [PMID: 38033505 PMCID: PMC10687407 DOI: 10.3389/fonc.2023.1227789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Osteosarcoma is a common bone malignant tumor in adolescents with high mortality and poor prognosis. At present, the progress of osteosarcoma and effective treatment strategies are not clear. This study provides a new potential target for the progression and treatment of osteosarcoma. Methods The relationship between lncRNA PRR7-AS1 and osteosarcoma was analyzed using the osteosarcoma databases and clinical sample testing. Cell function assays and tumor lung metastasis were employed to study the effects of PRR7-AS1 on tumorigenesis in vivo and in vitro. Potential downstream RNF2 of PRR7-AS1 was identified and explored using RNA pulldown and RIP. The GTRD and KnockTF database were used to predict the downstream target gene, MTUS1, and ChIP-qPCR experiments were used to verify the working mechanismy. Rescue experiments were utilized to confirm the role of MTUS1 in the pathway. Results Deep mining of osteosarcoma databases combined with clinical sample testing revealed a positive correlation between lncRNA PRR7-AS1 and osteosarcoma progression. Knockdown of PRR7-AS1 inhibited osteosarcoma cell proliferation and metastasis in vitro and in vivo. Mechanistically, RNA pulldown and RIP revealed that PRR7-AS1 may bind RNF2 to play a cancer-promoting role. ChIP-qPCR experiments were utilized to validate the working mechanism of the downstream target gene MTUS1. RNF2 inhibited the transcription of MTUS1 through histone H2A lysine 119 monoubiquitin. Rescue experiments confirmed MTUS1 as a downstream direct target of PRR7-AS1 and RNF2. Discussion We identified lncRNA PRR7-AS1 as an important oncogene in osteosarcoma progression, indicating that it may be a potential target for diagnosis and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Gu Chen-Xi
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xu Jin-Fu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Huang An-Quan
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yu Xiao
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wu Ying-Hui
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Li Suo-Yuan
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shen Cong
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zou Tian-Ming
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shen Jun
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
3
|
Selective Effects of Cold Atmospheric Plasma on Bone Sarcoma Cells and Human Osteoblasts. Biomedicines 2023; 11:biomedicines11020601. [PMID: 36831137 PMCID: PMC9952933 DOI: 10.3390/biomedicines11020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The use of cold atmospheric plasma (CAP) in oncology has been intensively investigated over the past 15 years as it inhibits the growth of many tumor cells. It is known that reactive oxidative species (ROS) produced in CAP are responsible for this effect. However, to translate the use of CAP into medical practice, it is essential to know how CAP treatment affects non-malignant cells. Thus, the current in vitro study deals with the effect of CAP on human bone cancer cells and human osteoblasts. Here, identical CAP treatment regimens were applied to the malignant and non-malignant bone cells and their impact was compared. METHODS Two different human bone cancer cell types, U2-OS (osteosarcoma) and A673 (Ewing's sarcoma), and non-malignant primary osteoblasts (HOB) were used. The CAP treatment was performed with the clinically approved kINPen MED. After CAP treatment, growth kinetics and a viability assay were performed. For detecting apoptosis, a caspase-3/7 assay and a TUNEL assay were used. Accumulated ROS was measured in cell culture medium and intracellular. To investigate the influence of CAP on cell motility, a scratch assay was carried out. RESULTS The CAP treatment showed strong inhibition of cell growth and viability in bone cancer cells. Apoptotic processes were enhanced in the malignant cells. Osteoblasts showed a higher potential for ROS resistance in comparison to malignant cells. There was no difference in cell motility between benign and malignant cells following CAP treatment. CONCLUSIONS Osteoblasts show better tolerance to CAP treatment, indicated by less affected viability compared to CAP-treated bone cancer cells. This points toward the selective effect of CAP on sarcoma cells and represents a further step toward the clinical application of CAP.
Collapse
|
4
|
Hadjimichael AC, Foukas AF, Papadimitriou E, Kaspiris A, Peristiani C, Chaniotakis I, Kotsari M, Pergaris A, Theocharis S, Sarantis P, Christopoulou M, Psyrri A, Mavrogenis AF, Savvidou OD, Papagelopoulos PJ, Armakolas A. Doxycycline inhibits the progression of metastases in early-stage osteosarcoma by downregulating the expression of MMPs, VEGF and ezrin at primary sites. Cancer Treat Res Commun 2022; 32:100617. [PMID: 36027697 DOI: 10.1016/j.ctarc.2022.100617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Osteosarcoma (OS) is the most common primary osseous malignant tumour, with high propensity to metastasise in lungs. Pulmonary micro-metastases are present in up to 80% of patients at initial diagnosis and they are associated with significantly worse prognosis. Doxycycline (Dox) is a synthetic tetracycline that has been shown to have anti-cancer properties in vitro and in vivo, and inhibit angiogenesis - effects that may prove beneficial for several types of cancer. The aim of the present work was to study how Dox affects OS cell growth in vitro and in vivo and OS-driven pulmonary metastasis in vivo. METHODS In vitro, the effect of Dox was measured in MG-63 and 143B human OS cell viability, apoptosis, invasion and migration. In vivo, highly metastatic 143B cells were orthotopically implanted into the tibia of SCID mice. The tumour growth and pulmonary metastases between Dox treated and untreated, non-amputated and early amputated xenografts were examined. RESULTS In vitro, Dox decreased viability, inhibited invasion, migration, and induced the apoptosis of OS cells. In vivo, Dox significantly enhanced tumour necrosis at primary OS sites, similarly to its in vitro effect, and downregulated the expression of Ki67, MMP2, MMP9, VEGFA and ezrin. It also decreased circulating VEGFA and MMP9 protein levels, in line with the decreased metastatic burden in Dox-treated mice (non-amputated and early-amputated). CONCLUSIONS Reprofiling of Dox can prevent the evolvement of pulmonary micro-metastases to clinically detectable macro-metastases and suppress the lethal progress of OS by inhibiting the expression of MMPs, VEGFA and ezrin at primary sites.
Collapse
Affiliation(s)
- Argyris C Hadjimichael
- Department of Orthopaedics, St Mary's Hospital, Imperial College Healthcare NHS Trust, Praed Street, W2 1NY, London, UK.
| | - Athanasios F Foukas
- Third Department of Orthopaedic surgery, "KAT" General Hospital of Athens, 2, Nikis Street, 14561, Kifissia, Greece.
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504, Patras, Greece.
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504, Patras, Greece.
| | - Chrysostomi Peristiani
- Medical School, National and Kapodistrian University of Athens,75, Mikras Asias Street, Goudi, 11527, Athens, Greece.
| | - Ioannis Chaniotakis
- Healthcare Directorate of the Hellenic Air Force General Staff, Athens, 3, P. Kanellopoulou Street, 11525, Athens, Greece.
| | - Maria Kotsari
- Physiology Laboratory, Athens Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Physiology Lab, Bld 16, Goudi, 11527, Athens, Greece..
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece.
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece.
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece.
| | - Magdalini Christopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504, Patras, Greece.
| | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital,1 Rimini Street, Chaidari, 12462, Athens, Greece.
| | - Andreas F Mavrogenis
- First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Faculty of Medicine, Attikon University hospital, Athens,1 Rimini Street, Chaidari,12462, Athens, Greece..
| | - Olga D Savvidou
- First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Faculty of Medicine, Attikon University hospital, Athens,1 Rimini Street, Chaidari,12462, Athens, Greece..
| | - Panayiotis J Papagelopoulos
- First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Faculty of Medicine, Attikon University hospital, Athens,1 Rimini Street, Chaidari,12462, Athens, Greece..
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Physiology Lab, Bld 16, Goudi, 11527, Athens, Greece..
| |
Collapse
|
5
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
6
|
Chen Z, Wang J, Lu Y, Lai C, Qu L, Zhuo Y. Ezrin expression in circulating tumor cells is a predictor of prostate cancer metastasis. Bioengineered 2022; 13:4076-4084. [PMID: 35156523 PMCID: PMC8974175 DOI: 10.1080/21655979.2021.2014710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metastatic prostate cancer (PCa) remains incurable and fatal. Previous studies have proven that circulating tumor cells (CTCs) and Ezrin are involved in PCa progression, metastasis, diagnosis, and prognosis. Therefore, we aimed to investigate the roles of CTCs and Ezrin in PCa metastasis. The expression of Ezrin was measured by qRT–PCR and immunohistochemical staining. The migration and invasion of PCa cells were evaluated. Additionally, clinical data from PCa patients were collected to analyze the potential roles of Ezrin expression in CTCs of PCa. The results showed that Ezrin expression was significantly upregulated in PCa tissues and 22RV1 and PC-3 cell samples. The overexpression of Ezrin promoted the migratory and invasive abilities of 22RV1 and PC-3 cells. Finally, the clinical data revealed that the expression of Ezrin in CTCs of PCa patients was significantly upregulated with the metastatic degree. Furthermore, after radical prostatectomy, CTCs from Ezrin-positive PCa patients were susceptible to tumor metastasis. Therefore, these results indicated that Ezrin expression in CTCs may offer novel insights into the prognosis and management of PCa.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jue Wang
- Department of Pathology, The FirstAffiliated Hospital of Sun Yet-Sen University, Guangzhou, China
| | - Yangbai Lu
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Departments of Urology, Zhongshan City People’s Hospital, Zhongshan, China
| | - Caiyong Lai
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Lijun Qu
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yumin Zhuo
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Song Y, Ma X, Zhang M, Wang M, Wang G, Ye Y, Xia W. Ezrin Mediates Invasion and Metastasis in Tumorigenesis: A Review. Front Cell Dev Biol 2020; 8:588801. [PMID: 33240887 PMCID: PMC7683424 DOI: 10.3389/fcell.2020.588801] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ezrin, as encoded by the EZR gene, is a member of the Ezrin/Radixin/Moesin (ERM) family. The ERM family includes three highly related actin filament binding proteins, Ezrin, Radixin, and Moesin. These three members share similar structural properties containing an N-terminal domain named FERM, a central helical linker region, and a C-terminal domain that mediates the interaction with F-actin. Ezrin protein is highly regulated through the conformational change between a closed, inactivate form and an open, active form. As a membrane-cytoskeleton linker protein, Ezrin facilitates numerous signal transductions in tumorigenesis and mediates diverse essential functions through interactions with a variety of growth factor receptors and adhesion molecules. Emerging evidence has demonstrated that Ezrin is an oncogene protein, as high levels of Ezrin are associated with metastatic behavior in various types of cancer. The diverse functions attributed to Ezrin and the understanding of how Ezrin drives the deadly process of metastasis are complex and often controversial. Here by reviewing recent findings across a wide spectrum of cancer types we will highlight the structures, protein interactions and oncogenic roles of Ezrin as well as the emerging therapeutic agents targeting Ezrin. This review provides a comprehensive framework to guide future studies of Ezrin and other ERM proteins in basic and clinical studies.
Collapse
Affiliation(s)
- Yanan Song
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaokun Ma
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Menghan Wang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Ye
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm 2020; 148:88-106. [PMID: 31958514 DOI: 10.1016/j.ejpb.2019.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Osteosarcoma(OS) represents the main cancer affecting bone tissue, and one of the most frequent in children. In this review we discuss the major pathological hallmarks of this pathology, its current therapeutics, new active biomolecules, as well as the nanotechnology outbreak applied to the development of innovative strategies for selective OS targeting. Small RNA molecules play a role as key-regulator molecules capable of orchestrate different responses in what concerns cancer initiation, proliferation, migration and invasiveness. Frequently associated with lung metastasis, new strategies are urgent to upgrade the therapeutic outcomes and the life-expectancy prospects. Hence, the prominent rise of micelleplexes as multifaceted and efficient structures for nucleic acid delivery and selective drug targeting is revisited here with special emphasis on ligand-mediated active targeting. Future landmarks toward the development of novel nanostrategies for both OS diagnosis and OS therapy improvements are also discussed.
Collapse
|
10
|
Zhang XD, Huang GW, Xie YH, He JZ, Guo JC, Xu XE, Liao LD, Xie YM, Song YM, Li EM, Xu LY. The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Res 2019; 46:1793-1809. [PMID: 29253179 PMCID: PMC5829580 DOI: 10.1093/nar/gkx1259] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/05/2017] [Indexed: 01/11/2023] Open
Abstract
EZR, a member of the ezrin-radixin-moesin (ERM) family, is involved in multiple aspects of cell migration and cancer. SMYD3, a histone H3–lysine 4 (H3–K4)-specific methyltransferase, regulates EZR gene transcription, but the molecular mechanisms of epigenetic regulation remain ill-defined. Here, we show that antisense lncRNA EZR-AS1 was positively correlated with EZR expression in both human esophageal squamous cell carcinoma (ESCC) tissues and cell lines. Both in vivo and in vitro studies revealed that EZR-AS1 promoted cell migration through up-regulation of EZR expression. Mechanistically, antisense lncRNA EZR-AS1 formed a complex with RNA polymerase II to activate the transcription of EZR. Moreover, EZR-AS1 could recruit SMYD3 to a binding site, present in a GC-rich region downstream of the EZR promoter, causing the binding of SMYD3 and local enrichment of H3K4me3. Finally, the interaction of EZR-AS1 with SMYD3 further enhanced EZR transcription and expression. Our findings suggest that antisense lncRNA EZR-AS1, as a member of an RNA polymerase complex and through enhanced SMYD3-dependent H3K4 methylation, plays an important role in enhancing transcription of the EZR gene to promote the mobility and invasiveness of human cancer cells.
Collapse
Affiliation(s)
- Xiao-Dan Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Guo-Wei Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Ying-Hua Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Jian-Zhong He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Jin-Cheng Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Yang-Min Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yong-Mei Song
- The Affiliated Nanshan People's Hospital of Shenzhen University, Shenzhen Municipal Sixth People's Hospital, Shenzhen 518060, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| |
Collapse
|
11
|
Cai W, Xu Y, Yin J, Zuo W, Su Z. miR-552-5p facilitates osteosarcoma cell proliferation and metastasis by targeting WIF1. Exp Ther Med 2019; 17:3781-3788. [PMID: 30988764 DOI: 10.3892/etm.2019.7361] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
miR-552 promotes tumor growth and metastasis in colorectal cancer. However, the function of miR-552 in osteosarcoma remains unclear. The current study investigated the role and mechanism of miR-552-5p in the proliferation, migration and invasion of osteosarcoma cells. miR-552-5p was significantly upregulated in osteosarcoma tissues and cell lines compared with adjacent normal tissues and normal osteoblast cells. Knockdown of miR-552-5p significantly reduced the proliferation of MG63 and U2OS cells, and inhibited cell migration and invasion. Wnt inhibitory factor 1 (WIF1) was the direct target gene of miR-552-5p in osteosarcoma cells. Overexpression of miR-552-5p markedly decreased the expression of WIF1 in MG63 and U2OS cells. A negative association was identified between the expression levels of miR-552-5p and WIF1 in osteosarcoma tissues. Furthermore, the expression of WIF1 was downregulated in osteosarcoma tissues and cell lines. Finally, knockdown of WIF1 in MG63 and U2OS cells treated with miR-552-5p inhibitors rescued their ability to proliferate, migrate and invade. Overall, the results indicated that miR-552-5p promoted osteosarcoma development and progression by inhibiting WIF1. Therefore, miR-552-5p may serve as a new therapeutic target for treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Wei Cai
- Orthopedics Department, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yong Xu
- Orthopedics Department, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jian Yin
- Orthopedics Department, The Affiliated Jiangning Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Wenshan Zuo
- Orthopedics Department, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhen Su
- Anesthesiology Department, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
12
|
Chen R, Huang LH, Gao YY, Yang JZ, Wang Y. Identification of differentially expressed genes in MG63 osteosarcoma cells with drug‑resistance by microarray analysis. Mol Med Rep 2018; 19:1571-1580. [PMID: 30569145 PMCID: PMC6390052 DOI: 10.3892/mmr.2018.9774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/09/2018] [Indexed: 11/24/2022] Open
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor, with extremely poor prognosis in patients with metastatic disease and resistance to therapy, such as multidrug regimens. The mechanisms of drug resistance are quite complex and have not been fully elucidated; thus, novel therapeutic targets should be identified to alleviate drug resistance in osteosarcoma. In the present study, the transcriptomes of the human osteosarcoma cell line MG63 and vincristine (VCR)-resistant MG63 cells were compared by microarray analysis. A total of 1,300 genes (602 upregulated and 698 downregulated) were reported to be differentially expressed in MG63/VCR compared with MG63 cells. Bioinformatics analysis predicted that the differentially expressed genes were mainly enriched in the B cell receptor, UVA-induced mitogen-activated protein kinases and receptor tyrosine kinase 2/3 signaling pathways. In the present study, 10 of the dysregulated genes, including roundabout homolog 1, death-associated protein kinase 1 and A-kinase anchor protein 12 were further evaluated by reverse transcription-quantitative polymerase chain reaction. These results may aid the validation of candidate biomarkers for the treatment and prognosis of osteosarcoma, and provide novel insight into the molecular mechanisms underlying the drug resistance of osteosarcoma cells.
Collapse
Affiliation(s)
- Rui Chen
- Department of Nuclear Medicine; Changhai Hospital of Shanghai, Shanghai 200433, P.R. China
| | - Li-Hong Huang
- Geriatric Department, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yi-Yao Gao
- Science Research Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| | - Jian-Zeng Yang
- Henan Medical Key Laboratory of Molecular Imaging, Nuclear Medicine Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yan Wang
- Science Research Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| |
Collapse
|
13
|
Hou M, Huang Z, Chen S, Wang H, Feng T, Yan S, Su Y, Zuo G. Synergistic antitumor effect of suberoylanilide hydroxamic acid and cisplatin in osteosarcoma cells. Oncol Lett 2018; 16:4663-4670. [PMID: 30197679 DOI: 10.3892/ol.2018.9224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Cisplatin, as a first-line chemotherapy drug, has been widely applied for therapy of osteosarcoma. However, its application is limited by drug resistance and serious side effects, including nephrotoxicity and ototoxicity. Suberoylanilide hydroxamic acid (SAHA) is a newly developed histone deacetylase (HDAC) inhibitor, which is the first Food and Drug Administration-approved HDAC inhibitor for the treatment of cutaneous manifestations of T-cell lymphoma. However, SAHA as a monotherapy was revealed to be limited, particularly in solid tumors. In the present study, 143B osteosarcoma cells were treated with multiple concentrations of SAHA or cisplatin, either alone or combined. The morphological characteristics of the treated cells were observed using an inverted microscope. The cytotoxicity effects of the combination of SAHA and cisplatin on 143B cells were analyzed by MTT assay, colony formation assay, wound healing cell migration assay, cell apoptosis assay and cell cycle analysis. Western blot analysis was performed to detect the protein expression levels of B cell lymphoma-2 (Bcl-2)-associated X protein (Bax), Bcl-2, cleaved-caspase-3, cleaved-caspase-8 and cleaved-poly (ADP-ribose) polymerase (PARP). The experimental data indicated that the inhibition of cell proliferation in the combination group was significantly increased compared with that in single drug groups. Expression levels of pro-apoptotic protein were upregulated, whereas anti-apoptotic Bcl-2 was downregulated significantly in 143B cells following SAHA/cisplatin treatment. Taken together, the results revealed that the combination of SAHA and cisplatin inhibited the proliferation of 143B cells and induced their apoptosis synergistically, and this effectiveness may be mediated by caspase activation.
Collapse
Affiliation(s)
- Mengyi Hou
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhenglan Huang
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Sicheng Chen
- Department of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hao Wang
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tianyu Feng
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shujuan Yan
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuxi Su
- Key Laboratory of Child Development and Disorders of Ministry of Education, Department II of Orthopedics, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
14
|
Cai W, Xu Y, Yin J, Zuo W, Su Z. miR‑590‑5p suppresses osteosarcoma cell proliferation and invasion via targeting KLF5. Mol Med Rep 2018; 18:2328-2334. [PMID: 29916536 DOI: 10.3892/mmr.2018.9173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/22/2018] [Indexed: 11/05/2022] Open
Abstract
Recently, microRNA (miR)‑590‑5p has been shown to inhibit tumorigenesis in colorectal and breast cancer; however, its function in osteosarcoma (OS) requires further investigation. In the present study miR‑590‑5p expression was poorly expressed in OS samples and cell lines when compared with that observed in normal cells. In addition, overexpression of miR‑590‑5p significantly reduced the proliferation, migration and invasion of SAOS2 and U2OS cells in vitro, as well as inhibiting tumor sizes in vivo. The results revealed that miR‑590‑5p directly targeted Kruppel‑like factor 5 (KLF5) in SAOS2 and U2OS cells. Their expression was inversely correlated with OS tissues. Finally, it was demonstrated that overexpression of KLF5 rescued the inhibitory effects of miR‑590‑5p on cell proliferation, migration and invasion. Overall, the results of the present study suggested that the miR‑590‑5p/KLF5 axis may regulate OS progression and thus, may be a novel therapeutic target for the treatment of patients with OS.
Collapse
Affiliation(s)
- Wei Cai
- Orthopedics Department, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yong Xu
- Orthopedics Department, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jian Yin
- Orthopedics Department, The Affiliated Jiangning Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Wenshan Zuo
- Orthopedics Department, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhen Su
- Anesthesiology Department, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
15
|
Cai W, Jiang H, Yu Y, Xu Y, Zuo W, Wang S, Su Z. RETRACTED: miR-367 regulation of DOC-2/DAB2 interactive protein promotes proliferation, migration and invasion of osteosarcoma cells. Biomed Pharmacother 2017; 95:120-128. [PMID: 28837878 DOI: 10.1016/j.biopha.2017.07.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/13/2017] [Accepted: 07/30/2017] [Indexed: 02/03/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors, who have informed the Editor-in-Chief that miR-367 overexpression did not significantly reduce the DAB2IP level in MG-63 cells as shown in Figures 4C and 4D of the published article. Furthermore, the effects of miR-367 overexpression and DAB2IP knockdown on the proliferation and metastasis of MG-63 cells in Figure 2 and Figure 6 are also no longer repeatable. Subsequent analysis showed that the MG-63 cells used in this study were contaminated with HeLa cells, identified by short tandem repeat analysis. The authors believe cell contamination may be the main reason why the reported results are not reproducible. The authors no longer have confidence in the reliability of the results and would like to apologize for any inconvenience caused. The Editor-in-Chief agreed to retract the article.
Collapse
Affiliation(s)
- Wei Cai
- Orthopedics Department, Huai'an, Jiangsu Province 223300, China
| | - Haitao Jiang
- Orthopedics Department, Huai'an, Jiangsu Province 223300, China
| | - Yifan Yu
- Orthopedics Department, Huai'an, Jiangsu Province 223300, China
| | - Yong Xu
- Orthopedics Department, Huai'an, Jiangsu Province 223300, China
| | - Wenshan Zuo
- Orthopedics Department, Huai'an, Jiangsu Province 223300, China
| | - Shouguo Wang
- Orthopedics Department, Huai'an, Jiangsu Province 223300, China
| | - Zhen Su
- Anesthesiology Department, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province 223300, China.
| |
Collapse
|
16
|
Lin H, Hao Y, Zhao Z, Tong Y. Sirtuin 6 contributes to migration and invasion of osteosarcoma cells via the ERK1/2/MMP9 pathway. FEBS Open Bio 2017; 7:1291-1301. [PMID: 28904859 PMCID: PMC5586348 DOI: 10.1002/2211-5463.12265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of sirtuin 6 (SIRT6) is actively involved in tumor progression. High levels of SIRT6 have been associated with hepatocellular carcinoma and non‐small cell lung cancer, and SIRT6 facilitates growth and metastasis of cancer cells. However, the clinical significance and biological function of SIRT6 are not known for osteosarcoma (OS). Here, we report that SIRT6 was notably overexpressed in OS tissues compared with non‐cancerous specimens. The high level of SIRT6 was prominently correlated with malignant clinical parameters and poor prognosis of OS patients. SIRT6 was also up‐regulated in OS cells. SIRT6 knockdown inhibited the invasion and migration of Saos‐2 and U2OS cells in vitro, while SIRT6 restoration increased these cellular biological behaviors in MG‐63 cells. Mechanistically, SIRT6 up‐regulated expression of matrix metallopeptidase 9 (MMP9) in OS cells. MMP9 restoration partially abolished the effects of SIRT6 knockdown on OS cells, with increased cell migration and invasion. MMP9 knockdown reduced migration and invasion of SIRT6‐overexpressing MG‐63 cells. Furthermore, SIRT6 positively modulated the levels of phosphorylated extracellular signal‐regulated kinases 1 and 2 (ERK1/2). PD098059 and PD0325901, inhibitors of mitogen‐activated protein kinase kinase (MEK), blocked the regulatory effects of SIRT6 on p‐ERK1/2 and MMP9 levels, suggesting that SIRT6 regulated MMP9 abundance probably through the MEK–ERK1/2 pathway. These results suggest that SIRT6 may act as a prognostic predictor and a drug target for OS patients.
Collapse
Affiliation(s)
- Hang Lin
- Department of Orthopedics Zhejiang Hospital Hangzhou China
| | - Yi Hao
- Department of Orthopedics Zhejiang Hospital Hangzhou China
| | - Zhengxu Zhao
- Department of Orthopedics Zhejiang Hospital Hangzhou China
| | - Yongjun Tong
- Department of Orthopedics Zhejiang Hospital Hangzhou China
| |
Collapse
|
17
|
Osteosarcoma Metastases With Direct Cardiac Invasion: A Case Report and Review of the Pediatric Literature. J Pediatr Hematol Oncol 2017; 39:188-193. [PMID: 28267087 DOI: 10.1097/mph.0000000000000808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metastatic osteosarcoma with direct cardiac involvement is an exceptionally rare finding, with only 63 total reported cases in the English literature over the past 123 years. Although the precise incidence is unknown, we estimate that direct cardiac involvement currently occurs in <2% of metastatic osteosarcoma cases. We also find that before the adoption of adjuvant chemotherapy as a standard of care therapy for osteosarcoma, metastatic osteosarcoma to the heart was much more common than it is today, as cardiac involvement occurred in ∼20% of cases of metastatic osteosarcoma before the 1980s. This suggests that adjuvant chemotherapy has not only improved the overall prognosis of osteosarcoma, but also altered the metastatic pattern of disease. In this paper we present the case of an 11-year-old boy with metastatic osteosarcoma to the cardiac interventricular septum, as well as review 20 other previously reported pediatric cases of metastatic osteosarcoma to the heart. We also analyzed the cardiac surgical outcomes for 11 pediatric patients with metastatic osteosarcoma to the heart. The median disease-free survival time was 12 months, demonstrating that metastatic osteosarcoma to the heart is currently a rare occurrence with a poor prognosis.
Collapse
|
18
|
Min L, Garbutt C, Tu C, Hornicek F, Duan Z. Potentials of Long Noncoding RNAs (LncRNAs) in Sarcoma: From Biomarkers to Therapeutic Targets. Int J Mol Sci 2017; 18:E731. [PMID: 28353666 PMCID: PMC5412317 DOI: 10.3390/ijms18040731] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 02/05/2023] Open
Abstract
Sarcoma includes some of the most heterogeneous tumors, which make the diagnosis, prognosis and treatment of these rare yet diverse neoplasms especially challenging. Long noncoding RNAs (lncRNAs) are important regulators of cancer initiation and progression, which implies their potential as neoteric prognostic and diagnostic markers in cancer, including sarcoma. A relationship between lncRNAs and sarcoma pathogenesis and progression is emerging. Recent studies demonstrate that lncRNAs influence sarcoma cell proliferation, metastasis, and drug resistance. Additionally, lncRNA expression profiles are predictive of sarcoma prognosis. In this review, we summarize contemporary advances in the research of lncRNA biogenesis and functions in sarcoma. We also highlight the potential for lncRNAs to become innovative diagnostic and prognostic biomarkers as well as therapeutic targets in sarcoma.
Collapse
Affiliation(s)
- Li Min
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, Sichuan, China.
| | - Cassandra Garbutt
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, Sichuan, China.
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| |
Collapse
|
19
|
Wang X, Zheng H, Shou T, Tang C, Miao K, Wang P. Effectiveness of multi-drug regimen chemotherapy treatment in osteosarcoma patients: a network meta-analysis of randomized controlled trials. J Orthop Surg Res 2017; 12:52. [PMID: 28356114 PMCID: PMC5372345 DOI: 10.1186/s13018-017-0544-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/28/2017] [Indexed: 12/04/2022] Open
Abstract
Background Osteosarcoma is the most common malignant bone tumour. Due to the high metastasis rate and drug resistance of this disease, multi-drug regimens are necessary to control tumour cells at various stages of the cell cycle, eliminate local or distant micrometastases, and reduce the emergence of drug-resistant cells. Many adjuvant chemotherapy protocols have shown different efficacies and controversial results. Therefore, we classified the types of drugs used for adjuvant chemotherapy and evaluated the differences between single- and multi-drug chemotherapy regimens using network meta-analysis. Methods We searched electronic databases, including PubMed (MEDLINE), EmBase, and the Cochrane Library, through November 2016 using the keywords “osteosarcoma”, “osteogenic sarcoma”, “chemotherapy”, and “random*” without language restrictions. The major outcome in the present analysis was progression-free survival (PFS), and the secondary outcome was overall survival (OS). We used a random effect network meta-analysis for mixed multiple treatment comparisons. Results We included 23 articles assessing a total of 5742 patients in the present systematic review. The analysis of PFS indicated that the T12 protocol (including adriamycin, bleomycin, cyclophosphamide, dactinomycin, methotrexate, cisplatin) plays a more critical role in osteosarcoma treatment (surface under the cumulative ranking (SUCRA) probability 76.9%), with a better effect on prolonging the PFS of patients when combined with ifosfamide (94.1%) or vincristine (81.9%). For the analysis of OS, we separated the regimens to two groups, reflecting the disconnection. The T12 protocol plus vincristine (94.7%) or the removal of cisplatinum (89.4%) is most likely the best regimen. Conclusions We concluded that multi-drug regimens have a better effect on prolonging the PFS and OS of osteosarcoma patients, and the T12 protocol has a better effect on prolonging the PFS of osteosarcoma patients, particularly in combination with ifosfamide or vincristine. The OS analysis showed that the T12 protocol plus vincristine or the T12 protocol with the removal of cisplatinum might be a better regimen for improving the OS of patients. However, well-designed randomized controlled trials of chemotherapeutic protocols are still necessary. Electronic supplementary material The online version of this article (doi:10.1186/s13018-017-0544-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Medical Oncology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Hong Zheng
- Department of Medical Oncology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Tao Shou
- Department of Medical Oncology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Chunming Tang
- Department of Medical Oncology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Kun Miao
- Department of Medical Oncology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Ping Wang
- Department of Thoracic Surgery, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032, Yunnan Province, China.
| |
Collapse
|
20
|
Heng L, Jia Z, Bai J, Zhang K, Zhu Y, Ma J, Zhang J, Duan H. Molecular characterization of metastatic osteosarcoma: Differentially expressed genes, transcription factors and microRNAs. Mol Med Rep 2017; 15:2829-2836. [DOI: 10.3892/mmr.2017.6286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/09/2017] [Indexed: 11/05/2022] Open
|
21
|
Sun W, Wang W, Lei J, Li H, Wu Y. Actin-like protein 6A is a novel prognostic indicator promoting invasion and metastasis in osteosarcoma. Oncol Rep 2017; 37:2405-2417. [PMID: 28260090 DOI: 10.3892/or.2017.5473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma harbors highly metastatic properties, accounting for postoperative recurrence and metastasis. Actin-like protein 6A (ACTL6A) regulates cell proliferation, migration and differentiation. However, the biologic role of ACTL6A in osteosarcoma remains unknown. In this study, the results showed that, by analysis of frozen fresh primary tumor tissues, matched non-cancerous bone tissues (NCBTs) and biopsy lung metastatic nodule tissues from 30 osteosarcoma patients after radical surgical resection, ACTL6A was overexpressed in osteosarcoma tissues compared with matched NCBTs, and its expression level was associated with osteosarcoma metastasis. Immunohistochemical analyses of osteosarcoma tissue samples from two independent cohorts of formaldehyde-fixed, paraffin-embedded osteosarcoma tissue samples from total of 186 osteosarcoma patients showed that high ACTL6A expression correlated with malignant clinicopathological features such as larger tumor size, high Ennecking grade, high histologic grade, and advanced tumor node metastasis stage. High ACTL6A expression was associated with poor prognosis for patients with osteosarcoma, and an independent and significant risk factor for disease-free survival and overall survival after radical tumor resection. Both in vitro and in vivo assays showed that ACTL6A overexpression promoted osteosarcoma cell invasion and metastasis, whereas knockdown of ACTL6A expression reduced osteosarcoma cell malignant behavior such as invasion and metastasis. Furthermore, we proved that ACTL6A promoted osteosarcoma cells of metastasis through facilitating epithelial-mesenchymal transition (EMT). In conclusion, data from the present study demonstrated that ACTL6A was associated with poor survival and promoted osteosarcoma cell metastasis through EMT, suggesting that ACTL6A may be a novel prognostic biomarker and therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Wei Sun
- Department of Orthopedics Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wanchun Wang
- Department of Orthopedics Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jian Lei
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hui Li
- Department of Orthopedics Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yi Wu
- Department of Orthopedics Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
22
|
Disorazoles Block Group A Streptococcal Invasion into Epithelial Cells Via Interference with the Host Factor Ezrin. Cell Chem Biol 2017; 24:159-170. [DOI: 10.1016/j.chembiol.2016.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/07/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022]
|
23
|
Jiang X, Li X, Wu F, Gao H, Wang G, Zheng H, Wang H, Li J, Chen C. Overexpression of miR-92a promotes the tumor growth of osteosarcoma by suppressing F-box and WD repeat-containing protein 7. Gene 2017; 606:10-16. [PMID: 28069547 DOI: 10.1016/j.gene.2017.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) have been reported to be critical players in osteosarcoma (OS). Among numerous cancer-related miRNAs, the expression level of miR-92a and its potential role in OS has not been investigated. Here, We showed that overexpression of miR-92a was identified in OS specimens and cells compared to normal bone tissues. The high level of miR-92a was correlated with high T classification and advanced clinical stages of OS patients. Notably, miR-92a highly expressing OS patients showed a notably reduced survival rate. In vitro experiments showed that loss of miR-92a inhibited U2OS cell proliferation and cell-cycle progression while induced apoptosis. In turn, its restoration facilitated MG-63 cell growth and suppressed apoptosis. Experimental nude mice showed that miR-92a silencing prohibited the in vivo growth of OS cells. Furthermore, bioinformatics software predicted that F-box and WD repeat-containing protein 7 (FBXW7) was a direct target of miR-92a. We then observed the negative regulation of miR-92a on FBXW7 expression and the direct binding between them was further verified by dual-luciferase assays in OS cells. Forced expression of FBXW7 resulted in reduced proliferation, cell cycle arrest at G1 phase and increased apoptosis in miR-92a overexpressing MG-63 cells. In summary, this study demonstrates miR-92a probably functions as a driver of tumor progression by targeting FBXW7, and highlights the potential effects of miR-92a on prognosis and treatment of OS.
Collapse
Affiliation(s)
- Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Xiongfeng Li
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Fengfeng Wu
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Hongliang Gao
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Guorong Wang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Hua Zheng
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Huajun Wang
- Department of Orthopedics, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China.
| | - Chao Chen
- Department of Orthopedics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
24
|
Yao Q, Pei Y, Zhuo H, Xie B. Influence of ezrin-shRNA in combination with HSP70 on the apoptosis and proliferation of osteosarcoma cells. Oncol Lett 2016; 12:3441-3448. [PMID: 27900018 PMCID: PMC5103965 DOI: 10.3892/ol.2016.5103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/26/2016] [Indexed: 12/04/2022] Open
Abstract
Ezrin and heat shock protein (HSP)70 have been reported to regulate cell apoptosis and tumor development of osteosarcoma. However, there has not been reported the synergy effect of knocking down ezrin and overexpressing HSP70. In the present study, two vectors, pGFP-V-RS-shRNA and pGFP-V-RS-shRNA-HSP70, were constructed and transfected into LM8 cells [denoted as small hairpin (sh)RNA group and dual group, respectively]. The apoptosis rates in these two transfected groups were significantly higher than those in the control group (empty vector) (P=0.036), while significantly lower proliferation rates were observed in these two groups (P=0.023). The cytotoxic T lymphocyte activity on target LM8 tumor cells in the dual group was significantly higher than in other groups, with cytotoxicity as high as 55.56±2.10%. Further studies revealed that the transfection of ezrin-shRNA/HSP70 also suppressed tumor formation in vivo in nude mice. A lower cluster of differentiation (CD)4/CD8 ratio was detected in the tumor formed by injecting cells in the dual group (P=0.006). Furthermore, the serum level of interleukin-4 in the dual group was significantly decreased, while the serum level of interferon-γ was significantly increased, compared with the other two groups (P=0.004). Simultaneously knocking down ezrin and overexpressing HSP70 promotes cellular apoptosis and suppresses the proliferation of osteosarcoma cells in vitro, and enhances the tumor killing effects of HSP70-induced immune killing.
Collapse
Affiliation(s)
- Qin Yao
- Central Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yihua Pei
- Central Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Huiqin Zhuo
- Central Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bozhen Xie
- Department of Spine Surgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
25
|
Huang Y, Zhao S, Zhang Y, Zhang C, Li X. Downregulation of coding transmembrane protein 35 gene inhibits cell proliferation, migration and cell cycle arrest in osteosarcoma cells. Exp Ther Med 2016; 12:581-588. [PMID: 27446247 PMCID: PMC4950176 DOI: 10.3892/etm.2016.3381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/26/2016] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OSA) is the most common primary tumor of the bone. Resistance to chemotherapy and the fast rapid development of metastatic lesions are major issues responsible for treatment failure and poor survival rates in OSA patients. Tetraspanins comprise a family of transmembrane receptor glycoproteins that affect tumor cell migration through tetraspanin-integrin interaction. The present study focused on a four-pass transmembrane protein gene, transmembrane protein 35 (TMEM35) gene, and examined its role in the growth, migration and cell cycle progression of OSA cells. In addition, the study discussed whether the TMEM35 gene, which encodes the TMEM35 protein, may be a potential therapeutic target for OSA. In the current study, reverse transcription-quantitative polymerase chain reaction was performed to examine TMEM35 expression in OSA and matched healthy tissues. Small interfering RNAs (siRNAs) were transfected into SaOS2 and U2OS cells to knockdown the TMEM35 expression. Soft-agar colony formation assay was performed to evaluate cell growth, and cell cycle progression was analyzed by flow cytometry. Wound-healing and Boyden chamber assays were also performed to investigate cell invasion and migration by the SaOS2 and U2OS cells. TMEM35 protein was analyzed in a functional protein interaction networks database (STRING database) to predict the functional interaction partner proteins of TMEM35. The results indicated that TMEM35 was abnormally expressed in OSA tissues. Of the 37 examined patients, TMEM35 expression was significantly increased in the OSA tissues of 24 patients (64.86%; P<0.05), when compared with the expression in normal tissues. Furthermore, TMEM35 knockdown following transfection with siRNAs inhibited the colony formation ability of SaOS2 and U2OS cells in soft agar. Flow cytometric analysis also revealed that TMEM35 knockdown by RNA interference may result in G1 phase arrest and a decreased cell population at the S phase. TMEM35 knockdown inhibited cell migration in SaOS2 and U2OS cells in wound-healing assays. In conclusion, TMEM35, a member of the tetraspanin family, serves an important role in the growth of OSA cells.
Collapse
Affiliation(s)
- Yinjun Huang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Shichang Zhao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yadong Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiaolin Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
26
|
Gebhard C, Gabriel C, Walter I. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures. Anat Histol Embryol 2016; 45:219-30. [PMID: 26287450 PMCID: PMC4949528 DOI: 10.1111/ahe.12190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/28/2015] [Indexed: 12/15/2022]
Abstract
Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- C Gebhard
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Vienna, Austria
| | - C Gabriel
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Vienna, Austria
| | - I Walter
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Vienna, Austria
- Vienna VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
27
|
Ma C, Zhan C, Yuan H, Cui Y, Zhang Z. MicroRNA-603 functions as an oncogene by suppressing BRCC2 protein translation in osteosarcoma. Oncol Rep 2016; 35:3257-64. [PMID: 27035098 DOI: 10.3892/or.2016.4718] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/18/2015] [Indexed: 11/05/2022] Open
Abstract
The present study was conducted to investigate the expression of miR-603 in osteosarcoma cells, and the effect of miR-603 on the biological behavior and expression of breast cancer cell 2 (BRCC2) in osteosarcoma cells. In the present study, qRT-PCR was used to measure the levels of miRNA and mRNA. The results showed that miR-603 was significantly upregulated in human osteosarcoma tissues and cell lines. MTT and colony formation assays were employed to evaluate the role of miR-603 in the regulation of osteosarcoma cell proliferation. The results showed that overexpression of miR-603 promoted the proliferation of MG-63 and U2OS cells. Furthermore, a nude mouse subcutaneous tumor model indicated that miR-603 promoted osteosarcoma growth in vivo. Moreover, miR-603 expression levels were increased in patients with distant metastasis in comparison with levels in patients without distant metastasis. We discovered that BRCC2 may be a target of miR-603. Our results demonstrated that overexpression of miR-603 suppressed BRCC2 protein expression, and an miR-603 inhibitor enhanced BRCC2 protein expression as determined by western blot assay and immunohistochemical analysis. Luciferase reporter assays confirmed that BRCC2 is a direct target of miR-603 in osteosarcoma cells, and the results suggest that miR-603 downregulates BRCC2 expression in osteosarcoma via translational inhibition. Finally, we found that the reduction in BRCC2 expression induced by miR-603 was responsible for the enhanced colony formation and proliferative ability noted in the MG-63 and U2OS cells. In conclusion, miR-603 enhanced osteosarcoma growth by downregulation of BRCC2 expression via translational inhibition.
Collapse
Affiliation(s)
- Chengbin Ma
- Department of Spinal Surgery, Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Huanggu District, Shenyang 110032, P.R. China
| | - Chuan Zhan
- Department of Spinal Surgery, Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Huanggu District, Shenyang 110032, P.R. China
| | - Hongmou Yuan
- Department of Traumatology Surgery, Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Huanggu District, Shenyang 110032, P.R. China
| | - Yan Cui
- Department of Joint Surgery, Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Huanggu District, Shenyang 110032, P.R. China
| | - Zhiyu Zhang
- Department of Joint Surgery and Surgical Oncology, Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Huanggu District, Shenyang 110032, P.R. China
| |
Collapse
|
28
|
Huang Y, Zhao S, Zhang C, Li X. Downregulation of connective tissue growth factor reduces migration and invasiveness of osteosarcoma cells. Mol Med Rep 2015; 13:1888-94. [PMID: 26707502 DOI: 10.3892/mmr.2015.4701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 09/18/2015] [Indexed: 11/05/2022] Open
Abstract
As one of the most serious types of primary bone tumor, osteosarcoma (OSA) features metastatic lesions, and resistance to chemotherapy is common. The underlying mechanisms of these characteristics may account for the failure of treatments and the poor prognosis of patients with OSA. It has been reported that inhibition of Cyr61 suppresses OSA cell proliferation as it represents a target of statins. In addition to cystein‑rich protein 61 (Cyr61) and nephroblastoma overexpression, connective tissue growth factor (CTGF) is a member of the CCN family and may therefore exhibit effects on human OSA cells similar to those of Cyr61. In the current study, acridine orange/ethidium bromide staining were used to determine the rate of apoptosis. The present study demonstrated that small interfering RNA‑mediated silencing of CTGF promoted cell death and suppressed OSA cell migration and invasion, as indicated by wound healing and Transwell assays, while lentivirus‑mediated overexpression of CTGF reversed these effects. Furthermore, a colorimetric caspase assay demonstrated that CTGF knockdown enhanced the efficacy of chemotherapeutic drugs. The results of the present study provided a novel molecular target which may be utilized for the treatment of metastatic OSA.
Collapse
Affiliation(s)
- Yinjun Huang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Shichang Zhao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiaolin Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
29
|
Li YS, Deng ZH, Zeng C, Lei GH. JNK pathway in osteosarcoma: pathogenesis and therapeutics. J Recept Signal Transduct Res 2015; 36:465-70. [PMID: 26669256 DOI: 10.3109/10799893.2015.1122045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The c-Jun NH2-terminal kinase (JNK) is a member of the mitogen-activated protein kinase super family. JNK can phosphorylate a number of activator protein-1 components, activating several transcription factors, and thus, JNK signaling pathway is being involved in several carcinogenic mechanisms. OBJECTIVE In this study, we have reviewed the recent updates of the association of JNK pathway with osteosarcoma (OS), which is one of the most common and aggressive bone malignancies. METHODS In this review, we have explored the databases like PubMed, Google Scholar, MEDLINE, etc., and collected the most relevant papers of JNK signaling pathway involved in the pathogenesis and therapeutics of OS. RESULTS Evidence showed that JNK is a master protein kinase that plays an important role in osteoblast proliferation, differentiation and apoptosis. Interesting reports showed that chemical JNK inhibitors reduce OS cell proliferation and metastasis. Many of the components of this pathway have now been identified and the application of JNK inhibitors has been proven to work in vivo in human and in animal models; however, JNK pathway has not been translated into clinical use. CONCLUSION Therapeutic interventions of potent and selective inhibitors of JNK might provide promising therapeutic approaches for the treatment of OS, and could improve the survival rate and quality of life of OS patients.
Collapse
Affiliation(s)
- Yu-Sheng Li
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| | - Zhen-Han Deng
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| | - Chao Zeng
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| | - Guang-Hua Lei
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| |
Collapse
|
30
|
Yang Z, Zhang Y, Zhang X, Zhang M, Liu H, Zhang S, Qi B, Sun X. Serum microRNA-221 functions as a potential diagnostic and prognostic marker for patients with osteosarcoma. Biomed Pharmacother 2015; 75:153-8. [DOI: 10.1016/j.biopha.2015.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/26/2015] [Indexed: 02/06/2023] Open
|
31
|
Yu N, Fu S, Liu Y, Xu Z, Liu Y, Hao J, Wang B, Zhang A. miR-96 suppresses renal cell carcinoma invasion via downregulation of Ezrin expression. J Exp Clin Cancer Res 2015; 34:107. [PMID: 26419932 PMCID: PMC4588898 DOI: 10.1186/s13046-015-0224-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study examined the role of microRNA (miR)-96 in renal cell carcinoma (RCC) invasion. METHODS The expression of miR-96 was detected by quantitative reverse transcription-polymerase chain reaction in human RCC cell lines with high (Caki-1) and low (786-O) metastatic potential. Invasive ability and Ezrin expression were assessed in Caki-1 and 786-O cells transfected with a miR-96 mimic or inhibitor using wound healing assays, Transwell assays and western blotting. Expression of miR-96 and Ezrin was also examined in primary RCC samples from 17 patients with metastatic disease and 46 patients who maintained remission during a follow-up period of 37 months. RESULTS miR-96 expression was significantly lower in Caki-1compared to786-O cells. The invasive ability of Caki-1 and 786-O cells increased following transfection of cells with miR-96 inhibitor, whereas it decreased following transfection with miR-96 mimic. Ezrin levels were negatively correlated with miR-96 in RCC, and inhibition of Ezrin expression suppressed the miR-96-induced change in invasive ability. The negative correlation between miR-96 and metastasis/Ezrin expression was also observed in human RCC specimens. CONCLUSIONS These results suggest that miR-96 suppresses RCC invasion by modulating Ezrin expression.
Collapse
Affiliation(s)
- Nengwang Yu
- Urology Department, General Hospital of Jinan Military Command, 25 Shifan Road, Jinan, Shandong, 250031, China.
| | - Shuai Fu
- Shandong Cancer Hospital & Institute, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, China.
| | - Yubao Liu
- Department of urology, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, 168 Litang Road, Dongxiaokou Town, Changqing District, Beijing, 102218, China.
| | - Zhonghua Xu
- Urology Department, Qilu Hospital, 107 West Wenhua Road, Jinan, Shandong, 250012, China.
| | - Yi Liu
- Urology Department, General Hospital of Jinan Military Command, 25 Shifan Road, Jinan, Shandong, 250031, China.
| | - Junwen Hao
- Urology Department, General Hospital of Jinan Military Command, 25 Shifan Road, Jinan, Shandong, 250031, China.
| | - Baocheng Wang
- Oncology Department, General Hospital of Jinan Military Command, 25 Shifan Road, Jinan, Shandong, 250031, China.
| | - Aimin Zhang
- Urology Department, General Hospital of Jinan Military Command, 25 Shifan Road, Jinan, Shandong, 250031, China.
| |
Collapse
|
32
|
Liu K, He Q, Liao G, Han J. Identification of critical genes and gene interaction networks that mediate osteosarcoma metastasis to the lungs. Exp Ther Med 2015; 10:1796-1806. [PMID: 26640552 PMCID: PMC4665845 DOI: 10.3892/etm.2015.2767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma (OS) is the most commonly diagnosed bone tumor in young adults under the age of 20. Metastasis is considered an important factor underlying cancer-associated morbidity and mortality, and, as a result, the survival rate of patients with metastatic OS is low. In spite of this, the mechanisms underlying metastasis in OS are currently not well understood. The present study compared gene expression levels between five non-metastatic and four metastatic OS tumor samples, using an Affymetrix microarray. A total of 282 genes were differentially expressed in the metastatic samples, as compared with the non-metastatic samples. Of these differentially expressed genes (DEGs), 212 were upregulated and 70 were downregulated. The following DEGs were associated with metastasis: Homeobox only protein; lysosomal-associated membrane protein-3; chemokine (C-C motif) ligand-18; carcinoembryonic antigen-related cell adhesion molecule-6; keratin-19; prostaglandin-endoperoxide synthase-2; clusterin; and nucleoside diphosphate kinase-1. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses were conducted, which identified 529 biological processes (P<0.01) and 10 KEGG pathways (P<0.05) that were significantly over-represented in the metastatic samples, as compared with the non-metastatic samples. Interaction networks for the DEGs were constructed using the corresponding GO terms and KEGG pathways, and these identified numerous genes that may contribute to OS metastasis. Among the enriched biological processes, four DEGs were consistently over-represented: Jun proto-oncogene, caveolin-1, nuclear factor-κB-inhibitor-α and integrin alpha-4; thus suggesting that they may have key roles in OS metastasis, and may be considered potential therapeutic targets in the treatment of patients with OS.
Collapse
Affiliation(s)
- Kegui Liu
- Department of Osteoarticular Surgery, Yantai Shan Hospital, Yantai, Shandong 264000, P.R. China
| | - Qunhui He
- Department of Anesthesiology, Yuhuang Ding Hospital, Yantai, Shandong 264000, P.R. China
| | - Guangjun Liao
- Department of Orthopedic Surgery, Yantai Shan Hospital, Yantai, Shandong 264000, P.R. China
| | - Jian Han
- Department of Orthopedic Surgery, Yantai Shan Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
33
|
Yuan H, Gao Y. MicroRNA-1908 is upregulated in human osteosarcoma and regulates cell proliferation and migration by repressing PTEN expression. Oncol Rep 2015; 34:2706-14. [PMID: 26328886 DOI: 10.3892/or.2015.4242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/27/2015] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma is a high-grade malignant bone neoplasm. Although the introduction of chemotherapy has reduced its mortality, >50% of patients develop chemoresistance and have an extremely poor prognosis due to pulmonary metastasis. Several molecular pathways contributing to osteosarcoma development and progression have recently been identified. Various studies have addressed the genes involved in the metastasis of osteosarcoma. However, the highly complex molecular mechanisms of metastasis remain to be elucidated. Recent studies have emphasized causative links between aberrant microRNA expression patterns and osteosarcoma progression. miR-1908 is dysregulated in certain human types of cancer. The expression pattern, clinical significance and biological role of miR-1908 in osteosarcoma, however, remain largely undefined. In the present study, we showed that miR-1908 was markedly upregulated in osteosarcoma cells and tissues compared with normal bone tissues using RT-qPCR. miR-1908 upregulation in osteosarcoma tissues was significantly associated with cell proliferation, invasion, advanced TNM stage and tumor growth. Both gain- and loss-of-function studies showed that miR-1908 markedly increased the ability of osteosarcoma cells to proliferate and to invade through Matrigel in vitro. Analyses using mouse xenograft model revealed that xenografts of miR-1908 stable-expressing osteosarcoma cells exhibited a significant increase in tumor volume and weight, compared with the control group. Subsequent investigations revealed that miR-1908 directly inhibited the expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Using a luciferase reporter carrying the 3'-untranslated region (3'-UTR) of PTEN, we identified PTEN as a direct target of miR-1908. Collectively, the results showed that, miR-1908 promotes proliferation and invasion of osteosarcoma cells by repressing PTEN expression.
Collapse
Affiliation(s)
- Hongmou Yuan
- Department of Orthopaedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Yanjun Gao
- Department of Orthopaedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
34
|
Yi B, Chen L, Zeng J, Cui J, Wang G, Qian G, Belguise K, Wang X, Lu K. Ezrin Regulating the Cytoskeleton Remodeling is Required for Hypoxia-Induced Myofibroblast Proliferation and Migration. Front Cardiovasc Med 2015; 2:10. [PMID: 26664882 PMCID: PMC4671398 DOI: 10.3389/fcvm.2015.00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/17/2015] [Indexed: 12/25/2022] Open
Abstract
Background: Hypoxia pulmonary arterial hypertension (HPAH) is a disease of the small vessels characterized by sustained vasoconstriction, thickening of arterial walls, vascular remodeling, and progressive increase in pulmonary vascular resistance, thus leading to right heart failure and finally death. Recent evidence demonstrated that massive pulmonary artery smooth muscle-like cells (PASMLCs) accumulating in the intima might also be developed from the differentiation of pulmonary myofibroblast (PMF) of tunica media. And PMF appeared the phenomenon of the cytoskeleton remodeling. So, it would be important in the clarification of the pivotal factors controlling this cytoskeleton structure change. Methods: PMFs were cultured from the normal rats and then divided into three groups and incubated by normal or hypoxic conditions respectively. mRNA level was evaluated by real-time reverse transcription polymerase chain reaction, and protein expression was detected by western blot. Cell proliferation was determined by the MTT and thymidine incorporation assay. Results: Here, we report that the hypoxia increased the expression levels of ezrin mRNA and protein in PMFs, which might explain that the expression of cytoskeletal proteins (destrin, a1-actin, and a1-tubulin) in PMFs was significantly induced by hypoxia. After inhibiting ezrin in PMFs by siRNA transfection, we found the over-expression of cytoskeletal proteins induced by hypoxia was significantly suppressed at all time-points. Additionally, we found that hypoxia or over-expression of ezrin through adenovirus-mediated ezrin gene transfection significantly increases the proliferation and migration of PMFs, and which could be inverted by the transfection of siRNA. Conclusion: These findings suggest that ezrin regulating of aberrant dysregulation of cytoskeletal proteins may be the major cause of PMFs’ proliferation and migration under the condition of hypoxia and may, therefore, play a fundamental role in the accumulation of PASMLCs of HPAH.
Collapse
Affiliation(s)
- Bin Yi
- Department of Anesthesia, Southwest Hospital, Third Military Medical University , Chongqing , China ; LBCMCP, CNRS, Université P. Sabatier Toulouse III , Toulouse , France
| | - Lin Chen
- Department of Anesthesia, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Jing Zeng
- Department of Anesthesia, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Jian Cui
- Department of Anesthesia, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Guansong Wang
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Guisheng Qian
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Karine Belguise
- LBCMCP, CNRS, Université P. Sabatier Toulouse III , Toulouse , France
| | - Xiaobo Wang
- LBCMCP, CNRS, Université P. Sabatier Toulouse III , Toulouse , France
| | - Kaizhi Lu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
35
|
Meng G, Li Y, Lv Y, Dai H, Zhang X, Guo QN. Preliminary screening of differentially expressed genes involved in methyl-CpG-binding protein 2 gene-mediated proliferation in human osteosarcoma cells. Tumour Biol 2015; 36:3009-15. [PMID: 25613065 DOI: 10.1007/s13277-014-2935-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is essential in human brain development and has been linked to several cancer types and neuro-developmental disorders. This study aims to screen the MeCP2 related differentially expressed genes and discover the therapeutic targets for osteosarcoma. CCK8 assay was used to detect the proliferation and SaOS2 and U2OS cells. Apoptosis of cells was detected by flow cytometry analysis that monitored Annexin V-APC/7-DD binding and 7-ADD uptake simultaneously. Denaturing formaldehyde agarose gel electrophoresis was employed to examine the quality of total RNA 18S and 28S units. Gene chip technique was utilized to discover the differentially expressed genes correlated with MeCP2 gene. Differential gene screening criteria were used to screen the changed genes. The gene up-regulation or down-regulation more than 1.5 times was regarded as significant differential expression genes. The CCK8 results indicated that the cell proliferation of MeCP2 silencing cells (LV-MeCP2-RNAi) was significantly decreased compared to non-silenced cells (LV-MeCP2-RNAi-CN) (P < 0.05). MeCP2 silencing could also induce significant apoptosis compared to non-silenced cells (P < 0.05); 107 expression changed genes were screened from a total of 49,395 transcripts. Among the total 107 transcripts, 34 transcripts were up-regulated and 73 transcripts were down-regulated. There were five significant differentially expressed genes, including IGFBP4, HOXC8, LMO4, MDK, and CTGF, which correlated with the MeCP2 gene. The methylation frequency of CpG in IGFBP4 gene could achieve 55%. In conclusion, the differentially expressed IGFBP4, HOXC8, LMO4, MDK, and CTGF genes may be involved in MeCP2 gene-mediated proliferation and apoptosis in osteosarcoma cells.
Collapse
Affiliation(s)
- Gang Meng
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Osteosarcoma is the most common malignant bone tumor in children and characterized by aggressive biologic behavior of metastatic propensity to the lung. Change of treatment paradigm brings survival benefit; however, 5-year survival rate is still low in patients having metastastatic foci at diagnosis for a few decades. Metastasis-associated protein (MTA) family is a group of ubiquitously expressed coregulators, which influences on tumor invasiveness or metastasis. MTA1 has been investigated in various cancers including osteosarcoma, and its overexpression is associated with high-risk features of cancers. In this review, we described various molecular studies of osteosarcoma, especially associated with MTA1.
Collapse
Affiliation(s)
- Sung Sun Kim
- Department of Pathology, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 501-757, Korea,
| | | |
Collapse
|
37
|
Martin-Liberal J, Cameron AJ, Claus J, Judson IR, Parker PJ, Linch M. Targeting protein kinase C in sarcoma. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:547-59. [PMID: 25453364 DOI: 10.1016/j.bbcan.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/19/2014] [Accepted: 10/08/2014] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC) is a family of serine/threonine tyrosine kinases that regulate many cellular processes including division, proliferation, survival, anoikis and polarity. PKC is abundant in many human cancers and aberrant PKC signalling has been demonstrated in cancer models. On this basis, PKC has become an attractive target for small molecule inhibition within oncology drug development programmes. Sarcoma is a heterogeneous group of mesenchymal malignancies. Due to their relative insensitivity to conventional chemotherapies and the increasing recognition of the driving molecular events of sarcomagenesis, sarcoma provides an excellent platform to test novel therapeutics. In this review we provide a structure-function overview of the PKC family, the rationale for targeting these kinases in sarcoma and the state of play with regard to PKC inhibition in the clinic.
Collapse
Affiliation(s)
- J Martin-Liberal
- Sarcoma Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - A J Cameron
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Claus
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - I R Judson
- Sarcoma Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - P J Parker
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Division of Cancer Studies, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - M Linch
- Department of Oncology, University College London Cancer Institute, London, UK.
| |
Collapse
|
38
|
Dirik Y, Çınar A, Yumrukçal F, Eralp L. Popliteal lymph node metastasis of tibial osteoblastic osteosarcoma. Int J Surg Case Rep 2014; 5:840-4. [PMID: 25462047 PMCID: PMC4245687 DOI: 10.1016/j.ijscr.2014.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 11/04/2022] Open
Abstract
Lymph node metastasis of osteosarcoma, which is a rare entity. Metastatic patterns could not be clearly explained. The effects of lymph node metastasis on prognosis are also not clearly defined and further studies are needed.
INTRODUCTION We report a case with lymph node metastasis of osteosarcoma, which is a rare entity in comparison to hematogeneous lung or bone metastasis. PRESENTATION OF CASE Twenty-seven years old male patient referred to our clinic complaining of ongoing left knee pain and swelling since one month without a history of prior trauma. Magnetic resonance imaging (MRI) revealed a mass of malignant nature which causes more prominent expansion and destruction of the bone distally with periosteal reaction. A lymphadenomegaly 16 mm × 13 mm in diameter was also present in the popliteal fossa having the same signal pattern with the primary lesion. Thirteen weeks following the first referral of the patient, wide resection and reconstruction with modular tumor prosthesis was performed. Popliteal lymph node was excised through the same incision. Pathologic examination of the resected speciman reported osteoblastic osteosarcoma. The lymph node extirpated from the popliteal fossa was reported to be a metastasis of the primary tumor. DISCUSSION Osteosarcoma of the long bones is the most common primary malignant bone neoplasm of both childhood and adulthood. Osteosarcomas commonly metastasize hematogeneously to the lungs and bones. Lymph node metastasis is a rare entity. Similar studies report rates between 2.3% and 4%. It is not clearly explained, how lymph node metastasis in osteosarcoma occurs despite lack of lymphatic drainage in normal cortical and spongious bone. CONCLUSION Lymph node metastasis of osteosarcoma is a rare entity and metastatic patterns could not be clearly explained. On the other hand, the effects of lymph node metastasis on prognosis are also not clearly defined and further studies are needed.
Collapse
Affiliation(s)
- Yalın Dirik
- Memorial Şişli Hospital, Orthopaedics and Traumatology, Piyalepaşa Bulv., Okmeydanı, Şişli, 34385 İstanbul, Turkey.
| | - Arda Çınar
- Memorial Şişli Hospital, Orthopaedics and Traumatology, Piyalepaşa Bulv., Okmeydanı, Şişli, 34385 İstanbul, Turkey.
| | - Feridun Yumrukçal
- Memorial Şişli Hospital, Orthopaedics and Traumatology, Piyalepaşa Bulv., Okmeydanı, Şişli, 34385 İstanbul, Turkey.
| | - Levent Eralp
- Istanbul University, Istanbul School of Medicine Orthopaedics and Traumatology, Turgut Özal Millet Caddesi, Çapa Tıp Fakültesi, Çapa - Cerrahpaşa, Fatih, Pk: 34098 İstanbul, Turkey.
| |
Collapse
|