1
|
Transketolase promotes colorectal cancer metastasis through regulating AKT phosphorylation. Cell Death Dis 2022; 13:99. [PMID: 35110545 PMCID: PMC8810869 DOI: 10.1038/s41419-022-04575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 01/05/2023]
Abstract
Transketolase (TKT) which is an important metabolic enzyme in the pentose phosphate pathway (PPP) participates in maintaining ribose 5-phosphate levels. TKT is necessary for maintaining cell growth. However, we found that in addition to this, TKT can also affect tumor progression through other ways. Our previous study indicate that TKT could promote the development of liver cancer by affecting bile acid metabolism. And in this study, we discovered that TKT expression was remarkably upregulated in colorectal cancer, abnormal high expression of TKT is associated with poor prognosis of colorectal cancer. Additionally, TKT promoted colorectal cancer cell growth and metastasis. Further study demonstrated that TKT interacted with GRP78 and promoted colorectal cancer cell glycolysis through increasing AKT phosphorylation, thereby enhancing colorectal cancer cell metastasis. Thus, TKT is expected to become an indicator for judging the prognosis of colorectal cancer, and provide a theoretical basis for drug development of new treatment targets for colorectal cancer.
Collapse
|
2
|
Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081194. [PMID: 31426412 PMCID: PMC6721600 DOI: 10.3390/cancers11081194] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men worldwide. Heat shock proteins (HSPs) are molecular chaperones that are widely implicated in the pathogenesis, diagnosis, prognosis, and treatment of many cancers. The role of HSPs in PCa is complex and their expression has been linked to the progression and aggressiveness of the tumor. Prominent chaperones, including HSP90 and HSP70, are involved in the folding and trafficking of critical cancer-related proteins. Other members of HSPs, including HSP27 and HSP60, have been considered as promising biomarkers, similar to prostate-specific membrane antigen (PSMA), for PCa screening in order to evaluate and monitor the progression or recurrence of the disease. Moreover, expression level of chaperones like clusterin has been shown to correlate directly with the prostate tumor grade. Hence, targeting HSPs in PCa has been suggested as a promising strategy for cancer therapy. In the current review, we discuss the functions as well as the role of HSPs in PCa progression and further evaluate the approach of inhibiting HSPs as a cancer treatment strategy.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
3
|
Jia L, Zhu Z, Li H, Li Y. RETRACTED ARTICLE: Shikonin inhibits proliferation, migration, invasion and promotes apoptosis in NCI-N87 cells via inhibition of PI3K/AKT signal pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2662-2669. [PMID: 31257936 DOI: 10.1080/21691401.2019.1632870] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Liushun Jia
- Department of General Surgery, Jining Traditional Chinese Medicine Hospital, Jining, China
| | - Zhen Zhu
- Department of Gastrointestinal Surgery, Jining No.1 People's Hospital, Jining, China
| | - Hongbo Li
- Department of General Surgery, Traditional Chinese Medicine Hospital of Sishui County, Jining, China
| | - Yaofeng Li
- Department of Gastrointestinal Surgery, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
4
|
Shikonin derivatives for cancer prevention and therapy. Cancer Lett 2019; 459:248-267. [PMID: 31132429 DOI: 10.1016/j.canlet.2019.04.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022]
Abstract
Phytochemicals gained considerable interest during the past years as source to develop new treatment options for chemoprevention and cancer therapy. Motivated by the fact that a majority of established anticancer drugs are derived in one way or another from natural resources, we focused on shikonin, a naphthoquinone with high potentials to be further developed as preventive or therapeutic drug to fight cancer. Shikonin is the major chemical component of Lithospermum erythrorhizon (Purple Cromwell) roots. Traditionally, the root extract has been applied to cure dermatitis, burns, and wounds. Over the past three decades, the anti-inflammatory and anticancer effects of root extracts, isolated shikonin as well as semi-synthetic and synthetic derivatives and nanoformulations have been described. In vitro and in vivo experiments were conducted to understand the effect of shikonin at cellular and molecular levels. Preliminary clinical trials indicate the potential of shikonin for translation into clinical oncology. Shikonin exerts additive and synergistic interactions in combination with established chemotherapeutics, immunotherapeutic approaches, radiotherapy and other treatment modalities, which further underscores the potential of this phytochemical to be integrated into standard treatment regimens.
Collapse
|
5
|
Luo C, Fan W, Jiang Y, Zhou S, Cheng W. Glucose-Related Protein 78 Expression and Its Effects on Cisplatin-Resistance in Cervical Cancer. Med Sci Monit 2018; 24:2197-2209. [PMID: 29650944 PMCID: PMC5916091 DOI: 10.12659/msm.906413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background GRP78, the 78-kDa glucose-regulated protein, occupies a significant position in endoplasmic reticulum stress. Emerging evidences have shown that GRP78 induces chemoresistance in several tumors; however, the role of GRP78 in cervical cancer (CVC) still needs to be elucidated clearly. Material/Methods In the present study, we evaluated the expression levels of GRP78 in CVC tissues collected from patients through immunocytochemistry, western blot, and real-time PCR. To explore the exact role of GRP78 in CVC cells in the presence of cisplatin, we generated GRP78 knockdown CVC cells through small interfering RNA. After transfection, the apoptosis rate was assessed by flow cytometry. Then the expression levels of caspase-3, CHOP, and Bcl-2 in GRP78 knockdown cells were determined by western blot. Results The GRP78 levels in CVC tissues were increased significantly. Three types of CVC cells HeLa, SiHa, and C33A were treated with different concentrations of cisplatin and cultured for 12 hours, 24 hours, and 48 hours respectively. And SiHa cells exhibited the highest resistance to cisplatin at all time. Specifically, after 25 μM cisplatin treatment, more than 80% of C33A cells underwent apoptosis, whereas the apoptotic rate of SiHa cells was only 30–40%. Data suggested that GRP78 silencing increased chemo-sensitivity and improved the effects of cisplatin-induced apoptosis in SiHa cells. Moreover, inhibition of GRP78 could upregulate caspase-3 and CHOP expression and downregulate Bcl-2 expression. Conclusions GRP78 may represent a key bio-marker of CVC and silencing GRP78 may strengthen the resistance against cisplatin. GRP78 may be a potential molecular target for CVC therapies in future.
Collapse
Affiliation(s)
- Chengyan Luo
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wen Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Yi Jiang
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Shulin Zhou
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wenjun Cheng
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
6
|
Lin HY, Han HW, Sun WX, Yang YS, Tang CY, Lu GH, Qi JL, Wang XM, Yang YH. Design and characterization of α -lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. Eur J Med Chem 2018; 144:137-150. [DOI: 10.1016/j.ejmech.2017.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
|
7
|
Han HW, Zheng CS, Chu SJ, Sun WX, Han LJ, Yang RW, Qi JL, Lu GH, Wang XM, Yang YH. The evaluation of potent antitumor activities of shikonin coumarin-carboxylic acid, PMMB232 through HIF-1α-mediated apoptosis. Biomed Pharmacother 2017; 97:656-666. [PMID: 29101810 DOI: 10.1016/j.biopha.2017.10.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/30/2017] [Accepted: 10/28/2017] [Indexed: 10/18/2022] Open
Abstract
In current study, a series of shikonin derivatives were synthesized and its anticancer activity was evaluated. As a result, PMMB232 showed the best antiproliferation activity with an IC50 value of 3.25±0.35μM. Further, treatment of HeLa cells with a variety of concentrations of target drug resulted in dose-dependent event marked by apoptosis. What's more, the mitochondrial potential (Δym) analysis was consistent with the apoptosis result. In addition, PARP was involved in the progress of apoptosis revealed by western blotting. To identify the detailed role and mechanism of PMMB232 in the progression of human cervical cancer, we detected the expression of HIF-1α and E-cadherin in HeLa cells. Results showed that expression of HIF-1α was downregulated, while E-cadherin protein was upregulated. Meanwhile, glycolysis related protein PDK1 was decreased in HeLa cells. Conversely, the expression of PDH-E1α was upregulated. Docking simulation results further indicate that PMMB232 could be well bound to HIF-1α. Taken together, our data indicate that compound PMMB232 could be developed as a potential anticancer agent.
Collapse
Affiliation(s)
- Hong-Wei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Chao-Sai Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Shu-Juan Chu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Wen-Xue Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Lu-Jing Han
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China.
| |
Collapse
|
8
|
Kuang XY, Jiang HS, Li K, Zheng YZ, Liu YR, Qiao F, Li S, Hu X, Shao ZM. The phosphorylation-specific association of STMN1 with GRP78 promotes breast cancer metastasis. Cancer Lett 2016; 377:87-96. [PMID: 27130664 DOI: 10.1016/j.canlet.2016.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022]
Abstract
Metastasis is a major cause of death in patients with breast cancer. Stathmin1 (STMN1) is a phosphoprotein associated with cancer metastasis. It exhibits a complicated phosphorylation pattern in response to various extracellular signals, but its signaling mechanism is poorly understood. In this study, we report that phosphorylation of STMN1 at Ser25 and Ser38 is necessary to maintain cell migration capabilities and is associated with shorter disease-free survival (DFS) in breast cancer. In addition, we report that glucose-regulated protein of molecular mass 78 (GRP78) is a novel phospho-STMN1 binding protein upon STMN1 Ser25/Ser38 phosphorylation. This phosphorylation-dependent interaction is regulated by MEK kinase and is required for STMN1-GRP78 complex stability and STMN1-mediated migration. We also propose a prognostic model based on phospho-STMN1 and GRP78 to assess metastatic risk in breast cancer patients.
Collapse
Affiliation(s)
- Xia-Ying Kuang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - He-Sheng Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Zi Zheng
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Rong Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Qiao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Huang CY, Chang YJ, Luo SD, Uyanga B, Lin FY, Tai CJ, Huang MT. Maspin mediates the gemcitabine sensitivity of hormone-independent prostate cancer. Tumour Biol 2015; 37:4075-82. [PMID: 26490978 DOI: 10.1007/s13277-015-4083-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/13/2015] [Indexed: 12/25/2022] Open
Abstract
Androgen deprivation therapy has constituted the main treatment for prostate cancer; however, tumors ultimately progress to hormone-independent prostate cancer (HIPC), and suitable therapeutic strategies for HIPC are not available. Maspin, which is also known as mammary serine protease inhibitor, has been suggested to be a valuable focus for targeted cancer therapy. Specifically, maspin has been shown to be upregulated after androgen ablation therapy. Gemcitabine is used as a first-line therapy for metastatic castration-resistant prostate cancer, but its disease control rate is low. Furthermore, the role of maspin in the therapeutic efficacy of gemcitabine for HIPC remains unclear. The expression levels of maspin in PC-3 and DU145 cells were determined by real-time PCR and Western blotting. Furthermore, the expression of maspin was silenced using shRNA technology to generate maspin-KD cells. The cytotoxicity of gemcitabine to prostate cancer cells was assessed using 3-[4,5-dimethylthiazol-2-yl]-3,5-diphenyl tetrazolium bromide (MTT) assays, whereas flow cytometry analyses and annexin V-propidium iodide (PI) apoptosis assays were used to assess the ability of gemcitabine to induce apoptosis in maspin-KD and control cells. Additionally, the expression patterns of anti-apoptosis proteins (myeloid cell leukemia 1 (Mcl-1) and B cell lymphoma 2 (Bcl-2)) and pro-apoptosis proteins (Bcl-2-associated death promoter (Bad) and Bcl-2-associated X protein (Bax)) were determined by Western blotting. In this study, PC-3 cells were more resistant to gemcitabine administration than DU145 cells, which correlated with the higher expression levels of maspin observed in PC-3 cells. Furthermore, maspin knockdown enhanced gemcitabine-induced cell death, as evidenced by the increased number of apoptotic cells. Gemcitabine treatment upregulated the levels of anti-apoptosis proteins (Mcl-2 and Bcl-2) in both scrambled control and maspin-KD cells; however, the fold changes in Mcl-1 and Bcl-2 expression were larger in gemcitabine-treated scrambled control cells than in maspin-KD cells. Finally, our findings indicate for the first time that maspin may mediate the therapeutic efficacy of gemcitabine in HIPC. Our results demonstrate that maspin knockdown enhanced the sensitivity of androgen-independent prostate cancer cells to gemcitabine. Therefore, combining gemcitabine with a drug that targets maspin might constitute a valuable strategy for prostate cancer treatment.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Batzorig Uyanga
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Cheng-Jeng Tai
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Ming-Te Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|