1
|
Chen A, Hart SL, Lannon M, Hawkins C, Reddy KKV, Lu JQ. Meningiomas in Rubinstein-Taybi syndrome: A case report and comprehensive review. J Neuropathol Exp Neurol 2024:nlae135. [PMID: 39740655 DOI: 10.1093/jnen/nlae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Rubinstein-Taybi syndrome (RTS) is a congenital disorder with characteristic clinical manifestations. In the vast majority of cases, it is caused by mutations of the gene encoding the transcriptional co-activator cAMP-response element binding protein (CBP)-binding protein (CREBBP). It has been thought to be a tumor predisposition syndrome as RTS patients have an increased risk of developing tumors including meningiomas. However, RTS-associated meningiomas are rarely reported. We report a unique RTS-associated meningioma in which an oncogenic CREBBP mutation is identified. We also comprehensively review the reported RTS-associated meningiomas, from epidemiology and pathogenesis to clinicopathological characteristics and treatment. All RTS patients with meningiomas are female and have the exclusive mutations of CREBBP. In population-based studies RTS-associated meningiomas seem to develop at younger ages. Their pathogenesis may be driven by the CREBBP/CBP alterations resulting in aberrant signal transduction in the CBP-mediated signaling pathways. Meningiomas in RTS patients have common clinicopathological characteristics including comorbidity with other tumors, radiologically intra-osseous growth, and uncommon histopathology such as ossifying and secretory features. Given the genetic nature and rarity of RTS-associated meningiomas, further investigation of their characteristics may define molecular targets for improved therapeutic options for RTS patients.
Collapse
Affiliation(s)
- Andrea Chen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shannon Louise Hart
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Melissa Lannon
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kesava K V Reddy
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Randeni N, Xu B. New insights into signaling pathways of cancer prevention effects of polysaccharides from edible and medicinal mushrooms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155875. [PMID: 39029136 DOI: 10.1016/j.phymed.2024.155875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Despite extensive efforts, empirical techniques have yielded limited progress in finding effective anticancer medications, with chemotherapy drugs often associated with drug resistance and serious side effects. Thus, there is a pressing need for novel agents with minimal adverse effects. Natural substances, widely used in treating various illnesses, including cancer, offer promising alternatives. Among these, mushrooms, rich in low molecular weight secondary metabolites, polysaccharides, and polysaccharide-protein complexes, have gained attention for their potential anticancer properties. RESULTS Mushroom polysaccharides have been found to impede oncogenesis and tumor metastasis by directly inhibiting tumor cell growth and indirectly enhancing immune system functions. These polysaccharides engage with numerous cell signaling pathways that influence cancer development and progression. They affect pathways that control cell survival, growth, and differentiation, and they also play a role in adjusting the tumor immune microenvironment. CONCLUSION This review highlights the potential of mushroom polysaccharides as promising anticancer agents due to their ability to modulate cell signaling pathways crucial for cancer development. Understanding the mechanisms underlying their effects on these pathways is essential for harnessing their therapeutic potential and developing novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
3
|
Gv V, Ranganathan P, Palati S. Tangeretin's Anti-apoptotic Signaling Mechanisms in Oral Cancer Cells: In Vitro Anti-cancer Activity. Cureus 2023; 15:e47452. [PMID: 38022093 PMCID: PMC10660419 DOI: 10.7759/cureus.47452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Citrus fruit peels contain Tangeretin, a natural chemical flavonoid that reinforces plant cell walls and serves as a defense mechanism. Apoptosis, growth inhibition, anti-oxidant, anti-diabetic, and anti-cancer activities are only a few of its many qualities. Tangeretin's principal function is to shield healthy cells or tissues from the harmful effects of chemotherapy. The purpose of this study was to investigate the apoptotic activity of Tangeretin's impact on KB (oral cancer cells) cell lines. Materials and method This study employed Tangeritin, in investigating its effects on oral cancer cells. Oral cancer cells were cultured in Dulbecco's modified Eagle's medium (DMEM), with 10% fetal bovine serum at 37°C in a 5% CO2 environment. Cell viability was assessed by seeding oral cancer cells in 96-well plates, exposing them to varying Tangeritin concentrations (50 µM, 100 µM, and 200 µM) with growth inhibition of KB cell viability in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological changes in cells were observed under an inverted light microscope at 10x magnification. The results were reported as mean ± standard error mean (SEM) using one-way analysis of variance through IBM SPSS Statistics for Windows, Version 23 (Released 2015; IBM Corp., Armonk, New York, United States). Result MTT assay showed a significant reduction in KB cell viability when treated with Tangeretin. With a significant decrease in mRNA levels of the anti-apoptotic genes Bcl-2 and Bcl-xL. At 50 µM, 100 µM, and 200 µM, the levels of Bcl-2 were 0.85 ± 0.09, 0.62 ± 0.05, and 0.67 ± 0.05, respectively. Similarly, the mRNA expression of Bcl-xL was 0.82 ± 0.07 for 50 µM, 0.7 ± 0.06 for 100 µM, and 0.77 ± 0.06for 200 µM. The mRNA expression levels of Bax were 1.1 ± 0.09 for 50 µM, 1.4 ± 0.12for 100 µM, and 1.3 ± 0.11 for 200 µM, respectively. Conclusion Tangeretin showed a promising apoptotic activity in KB cells suggesting its utility as an anti-cancer compound. It prevented the growth and proliferation of cancer cells by acting on pro-apoptotic and anti-apoptotic genes. However, this conclusion is mostly based on the in vitro study. Therefore in vivo animal studies were needed to confirm the findings.
Collapse
Affiliation(s)
- Venkatakarthikeswari Gv
- Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Priyadharshini Ranganathan
- Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sinduja Palati
- Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
4
|
Graillon T, Tabouret E, Salgues B, Horowitz T, Padovani L, Appay R, Farah K, Dufour H, Régis J, Guedj E, Barlier A, Chinot O. Innovative treatments for meningiomas. Rev Neurol (Paris) 2023; 179:449-463. [PMID: 36959063 DOI: 10.1016/j.neurol.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Multi-recurrent high-grade meningiomas remain an unmet medical need in neuro-oncology when iterative surgeries and radiation therapy sessions fail to control tumor growth. Nevertheless, the last 10years have been marked by multiple advances in the comprehension of meningioma tumorigenesis via the discovery of new driver mutations, the identification of activated intracellular signaling pathways, and DNA methylation analyses, providing multiple potential therapeutic targets. Today, Anti-VEGF and mTOR inhibitors are the most used and probably the most active drugs in aggressive meningiomas. Peptide radioactive radiation therapy aims to target SSTR2A receptors, which are strongly expressed in meningiomas, but have an insufficient effect in most aggressive meningiomas, requiring the development of new techniques to increase the dose applied to the tumor. Based on the multiple potential intracellular targets, multiple targeted therapy clinical trials targeting Pi3K-Akt-mTOR and MAP kinase pathways as well as cell cycle and particularly, cyclin D4-6 are ongoing. Recently discovered driver mutations, SMO, Akt, and PI3KCA, offer new targets but are mostly observed in benign meningiomas, limiting their clinical relevance mainly to rare aggressive skull base meningiomas. Therefore, NF2 mutation remains the most frequent mutation and main challenging target in high-grade meningioma. Recently, inhibitors of focal adhesion kinase (FAK), which is involved in tumor cell adhesion, were tested in a phase 2 clinical trial with interesting but insufficient activity. The Hippo pathway was demonstrated to interact with NF2/Merlin and could be a promising target in NF2-mutated meningiomas with ongoing multiple preclinical studies and a phase 1 clinical trial. Recent advances in immune landscape comprehension led to the proposal of the use of immunotherapy in meningiomas. Except in rare cases of MSH2/6 mutation or high tumor mass burden, the activity of PD-1 inhibitors remains limited; however, its combination with various radiation therapy modalities is particularly promising. On the whole, therapeutic management of high-grade meningiomas is still challenging even with multiple promising therapeutic targets and innovations.
Collapse
Affiliation(s)
- T Graillon
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France.
| | - E Tabouret
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| | - B Salgues
- Nuclear Medicine Department, Groupe Hospitalier Pitié-Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - T Horowitz
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - L Padovani
- AP-HM, Timone Hospital, Radiotherapy Department, Marseille, France
| | - R Appay
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France; Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - K Farah
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - H Dufour
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France
| | - J Régis
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - E Guedj
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - A Barlier
- Aix-Marseille University, AP-HM, Inserm, MMG, Laboratory of Molecular Biology Hospital La Conception, Marseille, France
| | - O Chinot
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| |
Collapse
|
5
|
Peng W, Wu P, Yuan M, Yuan B, Zhu L, Zhou J, Li Q. Potential Molecular Mechanisms of Recurrent and Progressive Meningiomas: A Review of the Latest Literature. Front Oncol 2022; 12:850463. [PMID: 35712491 PMCID: PMC9196588 DOI: 10.3389/fonc.2022.850463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas, the most frequent primary intracranial tumors of the central nervous system in adults, originate from the meninges and meningeal spaces. Surgical resection and adjuvant radiation are considered the preferred treatment options. Although most meningiomas are benign and slow-growing, some patients suffer from tumor recurrence and disease progression, eventually resulting in poorer clinical outcomes, including malignant transformation and death. It is thus crucial to identify these "high-risk" tumors early; this requires an in-depth understanding of the molecular and genetic alterations, thereby providing a theoretical foundation for establishing personalized and precise treatment in the future. Here, we review the most up-to-date knowledge of the cellular biological alterations involved in the progression of meningiomas, including cell proliferation, neo-angiogenesis, inhibition of apoptosis, and immunogenicity. Focused genetic alterations, including chromosomal abnormalities and DNA methylation patterns, are summarized and discussed in detail. We also present latest therapeutic targets and clinical trials for meningiomas' treatment. A further understanding of cellular biological and genetic alterations will provide new prospects for the accurate screening and treatment of recurrent and progressive meningiomas.
Collapse
Affiliation(s)
- Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
| | - Bo Yuan
- Department of Nephrology, The Dazu District People’s Hospital, Chongqing, China
| | - Lian Zhu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Jiesong Zhou
- Department of Plastic Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Yu X, Cong Z, Wang C, Wang S, Yan Z, Wang B, Liu X, Li Z, Gao P, Kang H. Comprehensive Metabolism Study of Tangeretin in Rat Plasma, Urine and Faeces Using Ultra-High Performance Liquid Chromatography-Q Exactive Hybrid Quadrupole- Orbitrap High-Resolution Accurate Mass Spectrometry. Curr Drug Metab 2022; 23:973-990. [PMID: 36424804 DOI: 10.2174/1389200224666221124103611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Tangeretin, present in citrus fruits, is a polymethoxy flavone with extensive pharmacological effects. It has been widely used in the clinic, but there were no detailed studies on the in vivo metabolism of tangeretin. OBJECTIVE This study aimed to establish a rapid and effective strategy to identify the metabolites of tangeretin and evaluate the biotransformation pathways of tangeretin in rats. METHODS The ultra-high performance liquid chromatography (UHPLC) equipped with a Q-Exactive Orbitrap mass spectrometer was used to identify the metabolites of tangeretin in plasma, urine and faeces of rats after intragastric administration. Based on high-resolution extracted ion chromatograms (HREICs) and parallel reaction monitoring mode (PRM), metabolites of tangeretin were identified by comparing the accurate mass, chromatographic retention times, diagnostic product ions (DPIs) and neutral loss fragments (NLFs) with those of tangeretin reference standard. Isomers were distinguished by ClogP values. RESULTS An efficient and integrated strategy was established for the comprehensive screening and characterizing of tangeretin metabolites through Rapid Profiling. Based on this strategy, a total of 52 metabolites were detected and identified, among which 25 metabolites were found in rat plasma, while 48 and 16 metabolites were characterized from rat urine and faeces, respectively. These metabolites were produced by demethylation, demethoxylation, hydroxylation, methoxylation, glucuronidation, glycosylation, sulfation, and their composite reactions. Interestingly, tangeretin is easy to lose methyl in vivo and becomes an intermediate product, and then other phase I and phase II reactions occur. Moreover, the characteristic fragmentation pathways of tangeretin were summarized for the subsequent metabolite identification. CONCLUSION The analytical method based on UHPLC-Q-Exactive mass spectrometer has the ability to quickly clarify unknown metabolism. And the the comprehensive metabolism study of tangeretin provided an overall metabolic profile, which will be of great scientific basis for further studies on tangeretin in determining its pharmacokinetics, the bioactivity of the metabolites, and clinical applications.
Collapse
Affiliation(s)
- Xiaojun Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Zhufeng Cong
- Shandong Cancer Hospital & Institute, Jinan, Shandong Province, China
| | - Changlin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Zhi Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Bin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xiaonan Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Zhen Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Huaixing Kang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
7
|
Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J Pharm Sci 2021; 17:53-69. [PMID: 35261644 PMCID: PMC8888139 DOI: 10.1016/j.ajps.2021.05.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Nanotechnologies have been successfully applied to the treatment of various diseases. Plant-derived exosome-like nanoparticles (PENs) are expected to become effective therapeutic modalities for treating disease or in drug-delivery. PENs are minimally cytotoxic to healthy tissues, with which they show excellent biocompatibility, and are biased towards tumors by targeting specific tissues through special endocytosis mechanisms. Thus, the use of these PENs may expand the scope of drug therapies while reducing the off-target effects. In this review, we summarize the fundamental features and bioactivities of PENs extracted from the grape, grapefruit, ginger, lemon, and broccoli and discuss the applications of these particles as therapeutics and nanocarriers.
Collapse
|
8
|
Therapeutic Implications of a Polymethoxylated Flavone, Tangeretin, in the Management of Cancer via Modulation of Different Molecular Pathways. Adv Pharmacol Pharm Sci 2021; 2021:4709818. [PMID: 33748757 PMCID: PMC7954633 DOI: 10.1155/2021/4709818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Chemotherapeutics can induce oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, and abnormalities in neurotransmitter metabolism leading to toxicity. Because there have been no therapeutic strategies developed to target inflammation and oxidative stress, there is a continuing need for new and improved therapy. As a result, there has been increasing interest in complementary and alternative medicine with anticancer potential. Studies have shown that the antioxidant activities and anti-inflammatory effects of citrus fruits are promising natural phytochemicals in the development of new anticancer agents. Tangeretin is a naturally polymethoxylated flavone compound extracted from the citrus peel that has shown significant intestinal absorption and adequate bioavailability, with the added benefit of promoting longevity. In addition, tangeretin is known to exhibit considerable selective toxicity to many types of cancer cell proliferation such as ovarian, brain, blood, and skin cancer. Evidence indicates that tangeretin acts through several mechanisms including growth inhibition, induction of apoptosis, autophagy, antiangiogenesis, and estrogenic-like effects. Furthermore, tangeretin works through mitigating levels of inflammatory mediators in the immune system. Using tangeretin in combination with clinically applied anticancer drugs could be a good strategy for increasing the efficiency of these agents and protecting noncancerous cells from damage caused by chemotherapy. The purpose of this review is to highlight the protective effects of a novel natural product, tangeretin against chemotherapeutic-induced toxicity. The development of chemoprevention strategies can lead to significant health care improvement in cancer survivors. Thus, study outcomes may attract more investigators to conduct tangeretin-related research and find out potentially significant impacts on health care of cancer patients and decreased health problems associated with chemotherapeutics-induced toxicity.
Collapse
|
9
|
Shi YS, Zhang Y, Li HT, Wu CH, El-Seedi HR, Ye WK, Wang ZW, Li CB, Zhang XF, Kai GY. Limonoids from Citrus: Chemistry, anti-tumor potential, and other bioactivities. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Song C, Chen J, Li X, Yang R, Cao X, Zhou L, Zhou Y, Ying H, Zhang Q, Sun Y. Limonin ameliorates dextran sulfate sodium-induced chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and NF-κB signaling. Int Immunopharmacol 2020; 90:107161. [PMID: 33168409 DOI: 10.1016/j.intimp.2020.107161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammation regulated by intricate mechanisms. Limonin, a natural tetracyclic triterpenoid compound, possesses multiple bioactivities including anti-inflammation, anti-cancer and so on. However, the therapeutic potential and the underlying mechanism of limonin on IBD remain unclear. Here, we probe into the effect of limonin on chronic colitis induced by dextran sulfate sodium (DSS) and illustrated the potential mechanisms. We found that limonin relieved the risk and severity of DSS-induced chronic colitis in mice through various aspects including increasing body weight and colon length, decreasing the mortality rate, inhibiting MPO activity and improving colon pathology. Limonin also decreased the production of proinflammatory cytokines TNF-α, IL-1β, IL-6 and the expression of inflammatory proteins COX-2, iNOS in colon tissues from DSS-induced colitis mice. Moreover, limonin attenuated DSS-induced chronic colitis by inhibiting PERK-ATF4-CHOP pathway of endoplasmic reticulum (ER) stress and NF-κB signaling. In vitro, limonin not only decreased LPS-induced higher production of pro-inflammatory cytokines and inflammatory proteins mentioned above by inhibiting NF-κB signaling in macrophage cells RAW264.7, but also suppressed PERK-ATF4-CHOP pathway of ER stress. In summary, our study demonstrated that limonin mitigated DSS-induced chronic colitis via inhibiting PERK-ATF4-CHOP pathway of ER stress and NF-κB signaling. All of this study provides the possibility for limonin as an effective drug for chronic colitis of IBD in the future.
Collapse
Affiliation(s)
- Changqin Song
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, People's Republic of China
| | - Runyu Yang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaomei Cao
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, People's Republic of China
| | - Lvqi Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yanfen Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
11
|
Malami I, Jagaba NM, Abubakar IB, Muhammad A, Alhassan AM, Waziri PM, Yakubu Yahaya IZ, Mshelia HE, Mathias SN. Integration of medicinal plants into the traditional system of medicine for the treatment of cancer in Sokoto State, Nigeria. Heliyon 2020; 6:e04830. [PMID: 32939417 PMCID: PMC7479351 DOI: 10.1016/j.heliyon.2020.e04830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/04/2020] [Accepted: 08/27/2020] [Indexed: 01/28/2023] Open
Abstract
This study was designed to explore and record various medicinal plants integrated into the traditional system of medicine for the treatment of cancer. The traditional system of medicine is a routine practiced among the indigenous ethnic groups of Sokoto state. A semi-structured questionnaire was designed and used for data collection around the selected Local Government Areas. A substantial number of plant species were identified, recorded, and collected for preservation. Data collected for each specie was analysed to assess its frequent use among the medicinal plants. A total of 67 species belonging to 31 families have been identified and recorded. Out of the 473 frequency of citation (FC), Acacia nilotica was the most frequently cited specie (32 FC, 64% FC, 0.6 RFC), followed by Guiera senegalensis (27 FC, 54% FC, 0.5 RFC), Erythrina sigmoidea (17 FC, 34% FC, 0.3 RFC), and subsequently Combretum camporum (15 FC, 30% FC, 0.3 RFC). The most common parts of the plants used include the barks (55.2%), the roots (53.2%), and the leaves (41.8%). Additionally, decoction (74.6%), powdered form (49.3%), and maceration (46.3%) are the most frequently used mode of preparation. The historical knowledge of a traditional system of medicine practiced by the native traditional healers of Sokoto for the treatment of cancer has been documented. The present study further provides a baseline for future pharmacological investigations into the beneficial effects of such medicinal plants for the treatment of cancer.
Collapse
Affiliation(s)
- Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
- Corresponding author.
| | - Nasiru Muhammad Jagaba
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, PMB 1144, Kebbi State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810271, Nigeria
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Peter Maitama Waziri
- Department of Biochemistry, Kaduna State University, Main Campus, PMB 2336, Kaduna, Nigeria
| | - Ibrahim Zakiyya Yakubu Yahaya
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Halilu Emmanuel Mshelia
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Sylvester Nefy Mathias
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| |
Collapse
|
12
|
Das A, Martinez Santos JL, Alshareef M, Porto GBF, Infinger LK, Vandergrift WA, Lindhorst SM, Varma AK, Patel SJ, Cachia D. In Vitro Effect of Dovitinib (TKI258), a Multi-Target Angiokinase Inhibitor on Aggressive Meningioma Cells. Cancer Invest 2020; 38:349-355. [PMID: 32441531 DOI: 10.1080/07357907.2020.1773844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Meningiomas represent ∼30% of primary central nervous system (CNS) tumors. Although advances in surgery and radiotherapy have significantly improved survival, there remains an important subset of patients whose tumors have more aggressive behavior and are refractory to conventional therapy. Recent advances in molecular genetics and epigenetics suggest that this aggressive behavior may be due to the deletion of the DNA repair and tumor suppressor gene, CHEK2, neurofibromatosis Type 2 (NF2) mutation on chromosome 22q12, and genetic abnormalities in multiple RTKs including FGFRs. Management of higher-grade meningiomas, such as anaplastic meningiomas (AM: WHO grade III), is truly challenging and there isn't an established chemotherapy option. We investigate the effect of active multi tyrosine receptor kinase inhibitor Dovitinib at stopping AM cell growth in in vitro with either frequent codeletion or mutated CHEK2 and NF2 gene.Methods: Treatment effects were assessed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, western blot analysis, caspases assay, and DNA fragmentation assay.Results: Treatment of CH157MN and IOMM-Lee cells with Dovitinib suppressed multiple angiokinases-mainly FGFRs, leading to suppression of downstream signaling by RAS-RAF-MAPK molecules and PI3K-AKT molecules which are involved in cell proliferation, cell survival, and tumor invasion. Furthermore, Dovitinib induced apoptosis via downregulation of survival proteins (Bcl-XL), and over-expression of apoptotic factors (Bax and caspase-3) regardless of CHEK2 and NF2 mutation status.Conclusions: This study establishes the groundwork for the development of Dovitinib as a therapeutic agent for high-grade AM with either frequent codeletion or mutated CHEK2 and NF2, an avenue with high translational potential.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jaime L Martinez Santos
- Department of Neurosurgery and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mohammed Alshareef
- Department of Neurosurgery and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Guilherme Bastos Ferreira Porto
- Department of Neurosurgery and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Libby Kosnik Infinger
- Department of Neurosurgery and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - William A Vandergrift
- Department of Neurosurgery and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Scott M Lindhorst
- Department of Neurosurgery and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Abhay K Varma
- Department of Neurosurgery and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sunil J Patel
- Department of Neurosurgery and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Cachia
- Department of Neurosurgery and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
13
|
Geng XQ, Ma A, He JZ, Wang L, Jia YL, Shao GY, Li M, Zhou H, Lin SQ, Ran JH, Yang BX. Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacol Sin 2020; 41:670-677. [PMID: 31804606 PMCID: PMC7468553 DOI: 10.1038/s41401-019-0324-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
Renal fibrosis is considered as the pathway of almost all kinds of chronic kidney diseases (CKD) to the end stage of renal diseases (ESRD). Ganoderic acid (GA) is a group of lanostane triterpenes isolated from Ganoderma lucidum, which has shown a variety of pharmacological activities. In this study we investigated whether GA exerted antirenal fibrosis effect in a unilateral ureteral obstruction (UUO) mouse model. After UUO surgery, the mice were treated with GA (3.125, 12.5, and 50 mg· kg-1 ·d-1, ip) for 7 or 14 days. Then the mice were sacrificed for collecting blood and kidneys. We showed that GA treatment dose-dependently attenuated UUO-induced tubular injury and renal fibrosis; GA (50 mg· kg-1 ·d-1) significantly ameliorated renal disfunction during fibrosis progression. We further revealed that GA treatment inhibited the extracellular matrix (ECM) deposition in the kidney by suppressing the expression of fibronectin, mainly through hindering the over activation of TGF-β/Smad signaling. On the other hand, GA treatment significantly decreased the expression of mesenchymal cell markers alpha-smooth muscle actin (α-SMA) and vimentin, and upregulated E-cadherin expression in the kidney, suggesting the suppression of tubular epithelial-mesenchymal transition (EMT) partially via inhibiting both TGF-β/Smad and MAPK (ERK, JNK, p38) signaling pathways. The inhibitory effects of GA on TGF-β/Smad and MAPK signaling pathways were confirmed in TGF-β1-stimulated HK-2 cell model. GA-A, a GA monomer, was identified as a potent inhibitor on renal fibrosis in vitro. These data demonstrate that GA or GA-A might be developed as a potential therapeutic agent in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Qiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jin-Zhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Liang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ying-Li Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guang-Ying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shu-Qian Lin
- Fuzhou Institute of Green Valley Bio-Pharm Technology, Fuzhou, 350002, China
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Hua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
14
|
Das A, Alshareef M, Martinez Santos JL, Porto GBF, McDonald DG, Infinger LK, Vandergrift WA, Lindhorst SM, Varma AK, Patel SJ, Cachia D. Evaluating anti-tumor activity of palbociclib plus radiation in anaplastic and radiation-induced meningiomas: pre-clinical investigations. Clin Transl Oncol 2020; 22:2017-2025. [PMID: 32253706 DOI: 10.1007/s12094-020-02341-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE Meningiomas are common brain tumors, the majority of which are considered benign. Despite surgery and/or radiation therapy, recurrence rates are approximately 8-10%. One likely cause is the dysregulation of cyclin D-cyclin-dependent kinases 4 and 6 (CDK4/6)-retinoblastoma (Rb) pathway, which controls the cell cycle restriction point. This pathway is commonly dysregulated in anaplastic meningioma cell lines (AM) and radiation-induced meningioma cells (RIM), making it a rational target for anti-meningioma therapy. In this study, we investigate the effect of a CDK4/6 inhibitor, palbociclib, with radiation in relevant pre-clinical models. METHODS In vitro cell culture, ex vivo slice culture and in vivo cell line-derived orthotopic xenograft animal models of AM/RIM were utilized to assess treatment efficacy with palbociclib plus radiation. Treatment effects were examined by immunoblot, cell viability, apoptosis, and cell cycle progression. RESULTS The in vitro and ex vivo studies demonstrate that palbociclib plus radiation treatment reduced proliferation and has additional effects on cell cycling, including induction of an RB-associated G (1) arrest in Rb+ AM and RIM cells, but not in Rb- cells. Our results also demonstrated reduced CDK4 and CDK6 expression as well as reduced E2F target gene expression (CCNA2 and CCNE2) with the combination therapy. MRI results in vivo demonstrated reduced tumor size at 5 weeks when treated with 14 days palbociclib (10 mg/kg) plus 6 Gy radiation compared to saline-treated tumors. Finally, no hepatic toxicity was found after treatments. CONCLUSION A pre-clinical murine model provides preclinical evidence for use of palbociclib plus radiation as a therapeutic agent for Rb+ meningiomas.
Collapse
Affiliation(s)
- A Das
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, SC, USA.
| | - M Alshareef
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, SC, USA
| | - J L Martinez Santos
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, SC, USA
| | - G B F Porto
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, SC, USA
| | - D G McDonald
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - L K Infinger
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, SC, USA
| | - W A Vandergrift
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, SC, USA
| | - S M Lindhorst
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, SC, USA
| | - A K Varma
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, SC, USA
| | - S J Patel
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, SC, USA
| | - D Cachia
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with HPLC and Artificial Neural Network Analysis for Ganoderma lucidum. Molecules 2020; 25:molecules25061309. [PMID: 32183001 PMCID: PMC7144108 DOI: 10.3390/molecules25061309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 11/30/2022] Open
Abstract
Ganoderma lucidum is widely used in traditional Chinese medicine (TCM). Ganoderic acid A and D are the main bioactive components with anticancer effects in G. lucidum. To obtain the maximum content of two compounds from G. lucidum, a novel extraction method, an ionic liquid-based ultrasonic-assisted method (ILUAE) was established. Ionic liquids (ILs) of different types and parameters, including the concentration of ILs, ultrasonic power, ultrasonic time, rotational speed, solid–liquid ratio, were optimized by the orthogonal experiment and variance analysis. Under these optimal conditions, the total extraction yield of the two compounds in G. lucidum was 3.31 mg/g, which is 36.21% higher than that of the traditional solvent extraction method. Subsequently, an artificial neural network (ANN) was developed to model the performance of the total extraction yield. The Levenberg–Marquardt back propagation algorithm with the sigmoid transfer function (logsig) at the hidden layer and a linear transfer function (purelin) at the output layer were used. Results showed that single hidden layer with 9 neurons presented the best values for the mean squared error (MSE) and the correlation coefficient (R), with respectively corresponding values of 0.09622 and 0.93332.
Collapse
|
16
|
Regulation of cancer cell signaling pathways as key events for therapeutic relevance of edible and medicinal mushrooms. Semin Cancer Biol 2020; 80:145-156. [DOI: 10.1016/j.semcancer.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022]
|
17
|
Deng J, Hua L, Han T, Tian M, Wang D, Tang H, Sun S, Chen H, Cheng H, Zhang T, Xie Q, Wan L, Zhu H, Gong Y. The CREB-binding protein inhibitor ICG-001: a promising therapeutic strategy in sporadic meningioma with NF2 mutations. Neurooncol Adv 2020; 2:vdz055. [PMID: 32642722 PMCID: PMC7212891 DOI: 10.1093/noajnl/vdz055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Meningiomas with Neurofibromin 2 gene mutations (NF2-mutant meningiomas) account for ~40% of the sporadic meningiomas. However, there is still no effective drug treatment for the disease. Methods Expression profile of Merlin protein was explored through immunohistochemistry in a meningioma patient cohort (n = 346). A 20-agent library covering a wide range of meningioma relevant targets was tested using meningioma cell lines IOMM-Lee (NF2 wildtype) and CH157-MN (NF2 deficient). Therapeutic effects and biological mechanisms of the identified compound, ICG-001, in NF2-mutant meningiomas were further characterized in vitro and in patient-derived xenograft (PDX) models. Results Low Merlin expression was associated with meningioma proliferation and poor clinical outcomes in a large patient series. ICG-001, a cAMP-responsive element binding (CREB)-binding protein (CBP) inhibitor, selectively suppressed tumor growth of cells with low Merlin expression. Besides, ICG-001 mediated CH157-MN and IOMM-Lee growth inhibition primarily through robust induction of the G1 cell-cycle arrest. Treatment with ICG-001 alone significantly reduced the growth of NF2-mutant xenografts in mice, as well. We also provide further evidence that ICG-001 inhibits proliferation of NF2-mutant meningioma cells at least partly through attenuating the FOXM1-mediated Wnt/β-catenin signaling. Conclusions This study highlights the importance of ligand-mediated Wnt/β-catenin signaling as well as its drugable potency in NF2-mutant meningioma.
Collapse
Affiliation(s)
- Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Han
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Chen
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hongda Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Kaewnoonual N, Itharat A, Pongsawat S, Nilbu-Nga C, Kerdput V, Pradidarcheep W. Anti-angiogenic and anti-proliferative effects of Benja-ummarit extract in rats with hepatocellular carcinoma. Biomed Rep 2020; 12:109-120. [PMID: 32042419 PMCID: PMC7006111 DOI: 10.3892/br.2020.1272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
The herbal extract Benja-ummarit (BU) is a traditional Thai medicine with a putative cancer-suppressing effect. However, this effect has only been tested in vitro in human hepatocarcinoma cell lines. The present study determined the efficacy of a BU extract to treat hepatocellular carcinoma (HCC) in rats in vivo and established its anti-angiogenic and anti-proliferative properties. The BU extract was prepared in 95% ethanol and its composition determined using liquid chromatography-mass spectrometry. HCC was induced in Wistar rats by an injection of diethylnitrosamine (DEN), followed 2 weeks later by injections of thioacetamide (TAA) thrice weekly for 4 weeks. Following 2 months, the DEN-TAA-treated rats were divided into 6 groups that were treated orally for another 2 months with: i) No treatment; ii) vehicle; iii) 30 mg/kg sorafenib (SF); iv) 1 mg/kg BU; v) 10 mg/kg BU; or vi) 50 mg/kg BU. Liver samples were collected for gross morphological, histological, reverse transcription-quantitative PCR and western blot analyses, and serum samples were collected for liver function tests. The size and number of the cancer nodules were reduced ~10-fold in BU-treated HCC groups and ~14-fold in the SF-treated group compared with the HCC group. Furthermore, the serum parameters of liver damage were lower in BU-compared with SF-treated rats. These results indicate that while each of these formulations strongly reduce HCC expansion, BU extract results in less liver damage. Vascular endothelial growth factor expression was reduced significantly in the BU-and SF-treated HCC groups compared with the HCC group (P<0.05). BU extract antagonizes HCC growth in vivo potently through inhibiting tumor angiogenesis. BU, therefore, qualifies as a promising medical herb requiring further evaluation as a treatment of HCC.
Collapse
Affiliation(s)
- Nattpawit Kaewnoonual
- Biomedical Science Program, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Arunporn Itharat
- Center of Excellence in Applied Thai Traditional Medicine Research, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Suriya Pongsawat
- Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Cheng Nilbu-Nga
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Vichununt Kerdput
- Biomedical Science Program, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
19
|
Burnett BA, Womeldorff MR, Jensen R. Meningioma: Signaling pathways and tumor growth. HANDBOOK OF CLINICAL NEUROLOGY 2020; 169:137-150. [PMID: 32553285 DOI: 10.1016/b978-0-12-804280-9.00009-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Meningiomas are the most common primary intracranial brain tumor in adult humans; however, our understanding of meningioma tumorigenesis is relatively limited in comparison with the body of research available for other intracranial tumors such as gliomas. Here we briefly describe the current understanding of aberrant signaling pathways and tumor growth mechanisms responsible for meningioma differentiation, cellular growth, development, inhibition, and death. Numerous cellular functions impacted by these signaling pathways are critical for angiogenesis, proliferation, and apoptosis. Ultimately, a further understanding of the signaling pathways involved in meningioma tumorigenesis will lead to better treatment modalities in the future.
Collapse
Affiliation(s)
- Brian Andrew Burnett
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | | | - Randy Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
20
|
Das A, Alshareef M, Henderson F, Martinez Santos JL, Vandergrift WA, Lindhorst SM, Varma AK, Infinger L, Patel SJ, Cachia D. Ganoderic acid A/DM-induced NDRG2 over-expression suppresses high-grade meningioma growth. Clin Transl Oncol 2019; 22:1138-1145. [PMID: 31732915 DOI: 10.1007/s12094-019-02240-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE N-myc downstream-regulated gene 2 (NDRG2) is down-regulated in grade-III meningioma [anaplastic meningioma (AM)] and associated with clinically aggressive behavior. Current therapies in the treatment of high-grade meningioma are lacking with limited success. This study aims to validate the effect of NDRG2-targeted therapy using structurally related bioactive triterpene compounds derived from the edible mushroom Ganoderma lucidum (ganoderic acid A:GA-A/ganoderic acid DM:GA-DM) in human AM in relevant pre-clinical models. METHODS Tissue samples from the AM tumor regions of three human patients and control non-tumor samples were used to analyze the expression pattern of NDRG2. In vitro cell culture and in vivo cell-line-derived orthotopic xenograft animal models of AM were utilized to assess efficacy of treatment with GA-A/DM. RESULTS Downregulation of NDRG2 expression was observed in surgically resected high-grade meningiomas compared to normal brain. These results prompt us to use NDRG2-targeting agents GA-A/DM. In vitro results showed that 72-h treatments of 25 µM GA-A/DM induced AM cell death, upregulate NDRG2 protein expression, downregulate NDRG2 promoter methylation in meningioma cells as compared to azacitidine and decitabine, the most commonly used demethylating agents. Our results also demonstrated that GA-A/DM does not have any detrimental effect on normal human neurons and arachnoid cells. GA-A/DM promoted apoptotic factors (Bax) while suppressing MMP-9, p-P13K, p-AKT, p-mTOR, and Wnt-2 protein expression. RNAi-mediated knockdown of NDRG2 protein expression increased tumor proliferation, while forced expression of wt-NDRG2 decreased proliferation in an in vitro model. Magnetic resonance (MR) imaging and Hematoxylin (H&E) staining demonstrated gross reduction of tumor volume in GA-A/DM treated mice at 5 weeks when compared with saline-treated orthotopic AM xenografted controls. There was an overall decrease in tumor cell proliferation with increased survival in GA-A/DM-treated animals. Enzyme assays showed that GA-A/DM did not negatively impact hepatic function. CONCLUSION GA-A/DM may be a promising natural therapeutic reagent in the treatment of AM by suppressing growth via NDRG2 modulation and altering of intracellular signal pathways. We have shown it could potentially be an effective treatment for AM with decreased cellular proliferation in vitro, decreased tumor volume and increased survival in vivo.
Collapse
Affiliation(s)
- A Das
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - M Alshareef
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - F Henderson
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - J L Martinez Santos
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - W A Vandergrift
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - S M Lindhorst
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - A K Varma
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - L Infinger
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - S J Patel
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - D Cachia
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
21
|
Limonin: A Review of Its Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2019; 24:molecules24203679. [PMID: 31614806 PMCID: PMC6832453 DOI: 10.3390/molecules24203679] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 01/15/2023] Open
Abstract
Limonin is a natural tetracyclic triterpenoid compound, which widely exists in Euodia rutaecarpa (Juss.) Benth., Phellodendron chinense Schneid., and Coptis chinensis Franch. Its extensive pharmacological effects have attracted considerable attention in recent years. However, there is no systematic review focusing on the pharmacology, toxicity, and pharmacokinetics of limonin. Therefore, this review aimed to provide the latest information on the pharmacology, toxicity, and pharmacokinetics of limonin, exploring the therapeutic potential of this compound and looking for ways to improve efficacy and bioavailability. Limonin has a wide spectrum of pharmacological effects, including anti-cancer, anti-inflammatory and analgesic, anti-bacterial and anti-virus, anti-oxidation, liver protection properties. However, limonin has also been shown to lead to hepatotoxicity, renal toxicity, and genetic damage. Moreover, limonin also has complex impacts on hepatic metabolic enzyme. Pharmacokinetic studies have demonstrated that limonin has poor bioavailability, and the reduction, hydrolysis, and methylation are the main metabolic pathways of limonin. We also found that the position and group of the substituents of limonin are key in affecting pharmacological activity and bioavailability. However, some issues still exist, such as the mechanism of antioxidant activity of limonin not being clear. In addition, there are few studies on the toxicity mechanism of limonin, and the effects of limonin concentration on pharmacological effects and toxicity are not clear, and no researchers have reported any ways in which to reduce the toxicity of limonin. Therefore, future research directions include the mechanism of antioxidant activity of limonin, how the concentration of limonin affects pharmacological effects and toxicity, finding ways to reduce the toxicity of limonin, and structural modification of limonin—one of the key methods necessary to enhance pharmacological activity and bioavailability.
Collapse
|
22
|
Tung YC, Chou YC, Hung WL, Cheng AC, Yu RC, Ho CT, Pan MH. Polymethoxyflavones: Chemistry and Molecular Mechanisms for Cancer Prevention and Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00170-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Singh YP, Girisa S, Banik K, Ghosh S, Swathi P, Deka M, Padmavathi G, Kotoky J, Sethi G, Fan L, Mao X, Halim CE, Arfuso F, Kunnumakkara AB. Potential application of zerumbone in the prevention and therapy of chronic human diseases. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
24
|
Aras A, Khalid S, Jabeen S, Farooqi AA, Xu B. Regulation of cancer cell signaling pathways by mushrooms and their bioactive molecules: Overview of the journey from benchtop to clinical trials. Food Chem Toxicol 2018; 119:206-214. [PMID: 29680270 DOI: 10.1016/j.fct.2018.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Abstract
Mushrooms represent a tremendous source of biologically useful and pharmacologically active molecules. Recent breakthroughs in cancer genetics, genomics, proteomics and translational research have helped us to develop a better understanding of the underlying mechanisms which are contributory in cancer development and progression. Different signaling pathways particularly, Wnt, SHH, TGF/SMAD and JAK/STAT have been shown to modulate cancer progression and development. Increasingly it is being realized that genetic/epigenetic mutations and loss of apoptosis also mandate a 'multi-molecular' perspective for the development of therapies to treat cancer. In this review we attempted to provide an overview of the regulation of different signaling pathways by mushrooms and their bioactive compounds. Regulation of Wnt and JAK-STAT pathways by mushrooms is deeply studied but we do not have comprehensive information about regulation of TGF/SMAD, Notch and TRAIL induced signaling pathways because of superficially available data. There are outstanding questions related to modulation of oncogenic and tumor suppressor microRNAs by mushrooms in different cancers. Therefore, detailed mechanistic insights related to targeting of multiple pathways by extracts or bioactive compounds from mushrooms will be helpful in bridging our current knowledge gaps and translation of medicinally precious bioactive molecules to clinically effective therapeutics.
Collapse
Affiliation(s)
- Aliye Aras
- Department of Botany, Faculty of Science, Istanbul University, Istanbul 34460, Turkey
| | - Sumbul Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Saima Jabeen
- Department of Zoology, University of Gujrat, Sub-Campus, Rawalpindi, Pakistan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
25
|
Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1-mediated metabolism to the product 4' hydroxy tangeretin. Toxicol In Vitro 2018; 50:274-284. [PMID: 29626627 DOI: 10.1016/j.tiv.2018.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 04/01/2018] [Indexed: 12/18/2022]
Abstract
Tangeretin is a polymethoxylated flavone with multifaceted anticancer activity. In the present study, the metabolism of tangeretin was evaluated in the CYP1 expressing human breast cancer cell lines MCF7 and MDA-MB-468 and in the normal breast cell line MCF10A. Tangeretin was converted to 4' OH tangeretin by recombinant CYP1 enzymes and by CYP1 enzymes expressed in MCF7 and MDA-MB-468 cells. This metabolite was absent in MCF10A cells that did not express CYP1 enzymes. Tangeretin exhibited submicromolar IC50 (0.25 ± 0.15 μM) in MDA-MB-468 cells, whereas it was less active in MCF7 cells (39.3 ± 1.5 μM) and completely inactive in MCF10A cells (>100 μM). In MDA-MB-468 cells that were coincubated with the CYP1 inhibitor acacetin, an approximately 70-fold increase was noted in the IC50 (18 ± 1.6 μM) of tangeretin. In the presence of the CYP1 inhibitor acacetin, the conversion of tangeretin to 4' OH tangeretin was significantly reduced in MDA-MB-468 cells (2.55 ± 0.19 μM vs. 6.33 ± 0.12 μM). The mechanism of antiproliferative action involved cell cycle arrest at the G1 phase for MCF7 and MDA-MB-468 cells. Tangeretin was further shown to induce CYP1 enzyme activity and CYP1A1/CYP1B1 protein expression in MCF7 and MDA-MB-468 cells. These results suggest that tangeretin inhibits the proliferation of breast cancer cells via CYP1A1/CYP1B1-mediated metabolism to the product 4' hydroxy tangeretin.
Collapse
|
26
|
Effects of miR-200a and FH535 combined with taxol on proliferation and invasion of gastric cancer. Pathol Res Pract 2018; 214:442-449. [DOI: 10.1016/j.prp.2017.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023]
|
27
|
Citrus aurantium Naringenin Prevents Osteosarcoma Progression and Recurrence in the Patients Who Underwent Osteosarcoma Surgery by Improving Antioxidant Capability. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8713263. [PMID: 29576857 PMCID: PMC5821951 DOI: 10.1155/2018/8713263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
Citrus aurantium is rich in flavonoids, which may prevent osteosarcoma progression, but its related molecular mechanism remains unclear. Flavonoids were extracted from C. aurantium and purified by reparative HPLC. Each fraction was identified by using electrospray ionisation mass spectrometry (ESI-MS). Three main components (naringin, naringenin, and hesperetin) were isolated from C. aurantium. Naringenin inhibited the growth of MG-63 cells, whereas naringin and hesperetin had no inhibitory function on cell growth. ROS production was increased in naringin- and hesperetin-treated groups after one day of culture while the level was always lowest in the naringenin-treated group after three days of culture. 95 osteosarcoma patients who underwent surgery were assigned into two groups: naringenin group (NG, received 20 mg naringenin daily, n = 47) and control group (CG, received 20 mg placebo daily, n = 48). After an average of two-year follow-up, osteosarcoma volumes were smaller in the NG group than in the CG group (P > 0.01). The rate of osteosarcoma recurrence was also lower in the NG group than in CG group. ROS levels were lower in the NG group than in the CG group. Thus, naringenin from Citrus aurantium inhibits osteosarcoma progression and local recurrence in the patients who underwent osteosarcoma surgery by improving antioxidant capability.
Collapse
|
28
|
Bryant JM, Bouchard M, Haque A. Anticancer Activity of Ganoderic Acid DM: Current Status and Future Perspective. ACTA ACUST UNITED AC 2017; 8. [PMID: 29399381 PMCID: PMC5795599 DOI: 10.4172/2155-9899.1000535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ganoderma lucidum is a mushroom that has a long history of medicinal use in the Far East countries as this mushroom is revered for its supposed miracle cures and life improving properties. Recently, this mushroom has come under scientific scrutiny to examine the possibility of finding biologically active compounds that may have an impact on human physiology. The main category of biologically active compounds produced in the G. lucidum, are the triterpenoids, which are known as Ganoderic Acids. In this review, we discuss one Ganoderic Acid in particular known as Ganoderic Acid-DM (GA-DM) that is extracted from the Ganoderma lucidum mushroom. We will discuss GA-DM as a potential therapeutic candidate for treating a number of diseases yet will focus on the potential to be used as an alternative or supplemental therapeutic agent in regards to various cancer types. The urge for this promising therapeutic agent is that GA-DM is capable of inducing cell death in cancer cells while exhibiting minimal toxicity to normal bystander cells. Furthermore, this review will look at GA-DM's ability to stimulate an immune response in the tumor environment to potentially provide long-term protection from the malignant tumors. We will also discuss the known routes of administration of GA-DM and pose the advantages and disadvantages of each route in a comparative manner. Finally, we will cover current status of the roles GA-DM may have as a therapeutic agent in respect to different cancer types as wells as discuss about its future perspective as a therapeutic candidate in other diseases as well.
Collapse
Affiliation(s)
- John Matthew Bryant
- Department of Microbiology and Immunology, and Hollings Cancer Center, Medical University of South Carolina, USA
| | - Mollie Bouchard
- Department of Microbiology and Immunology, and Hollings Cancer Center, Medical University of South Carolina, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, and Hollings Cancer Center, Medical University of South Carolina, USA
| |
Collapse
|
29
|
Joseph TP, Chanda W, Padhiar AA, Batool S, LiQun S, Zhong M, Huang M. A Preclinical Evaluation of the Antitumor Activities of Edible and Medicinal Mushrooms: A Molecular Insight. Integr Cancer Ther 2017; 17:200-209. [PMID: 29094602 PMCID: PMC6041903 DOI: 10.1177/1534735417736861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the leading cause of morbidity and mortality around the globe. For certain types of cancer, chemotherapy drugs have been extensively used for treatment. However, severe side effects and the development of resistance are the drawbacks of these agents. Therefore, development of new agents with no or minimal side effects is of utmost importance. In this regard, natural compounds are well recognized as drugs in several human ailments, including cancer. One class of fungi, “mushrooms,” contains numerous compounds that exhibit interesting biological activities, including antitumor activity. Many researchers, including our own group, are focusing on the anticancer potential of different mushrooms and the underlying molecular mechanism behind their action. The aim of this review is to discuss PI3K/AKT, Wnt-CTNNB1, and NF-κB signaling pathways, the occurrence of genetic alterations in them, the association of these aberrations with different human cancers and how different nodes of these pathways are targeted by various substances of mushroom origin. We have given evidence to propose the therapeutic attributes and possible mode of molecular actions of various mushroom-originated compounds. However, anticancer effects were typically demonstrated in in vitro and in vivo models and very limited number of studies have been conducted in the human population. It is our belief that this review will help the research community in designing concrete preclinical and clinical studies to test the anticancer potential of mushroom-originated compounds on different cancers harboring particular genetic alteration(s).
Collapse
Affiliation(s)
| | - Warren Chanda
- 1 Dalian Medical University, Dalian, Liaoning, China
| | | | - Samana Batool
- 1 Dalian Medical University, Dalian, Liaoning, China
| | - Shao LiQun
- 1 Dalian Medical University, Dalian, Liaoning, China
| | - MinTao Zhong
- 1 Dalian Medical University, Dalian, Liaoning, China
| | - Min Huang
- 1 Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
30
|
Kalantari K, Moniri M, Boroumand Moghaddam A, Abdul Rahim R, Bin Ariff A, Izadiyan Z, Mohamad R. A Review of the Biomedical Applications of Zerumbone and the Techniques for Its Extraction from Ginger Rhizomes. Molecules 2017; 22:E1645. [PMID: 28974019 PMCID: PMC6151537 DOI: 10.3390/molecules22101645] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
Zerumbone (ZER) is a phytochemical isolated from the subtropical Zingiberaceae family and as a natural compound it has different biomedical properties such as antioxidant, anti-inflammatory anti-proliferative activity. ZER also has effects on angiogenesis and acts as an antitumor drug in the treatment of cancer, showing selective toxicity toward various cancer cell lines. Several techniques also have been established for extraction of ZER from the rhizomes of ginger. This review paper is an overview of recent research about different extraction methods and their efficiencies, in vivo and vitro investigations of ZER and also its prominent chemopreventive properties and treatment mechanisms. Most of the studies mentioned in this review paper may be useful use as a knowledge summary to explain ZER extraction and anticancer activities, which will show a way for the development of strategies in the treatment of malignancies using ZER.
Collapse
Affiliation(s)
- Katayoon Kalantari
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Mona Moniri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Amin Boroumand Moghaddam
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Arbakariya Bin Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
- Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Zahra Izadiyan
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
- Institute of Tropical Forestry and Forest Products, Univerciti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
31
|
Li ZY, Huang GD, Chen L, Zhang C, Chen BD, Li QZ, Wang X, Zhang XJ, Li WP. Tanshinone IIA induces apoptosis via inhibition of Wnt/β‑catenin/MGMT signaling in AtT‑20 cells. Mol Med Rep 2017; 16:5908-5914. [PMID: 28849207 PMCID: PMC5865768 DOI: 10.3892/mmr.2017.7325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 03/24/2017] [Indexed: 12/25/2022] Open
Abstract
A strategy to suppress the expression of the DNA repair enzyme O6‑methylguanine‑DNA methyltransferase (MGMT) by inhibition of Wnt/β‑catenin signaling may be useful as a novel treatment for pituitary adenoma. Previous studies have reported that Tanshinone IIA (TSA), a major quinone compound isolated from Salvia miltiorrhiza, had antitumor effects. However, whether TSA has antitumor effects against pituitary adenoma and whether the mechanisms are associated with the Wnt/β‑catenin/MGMT pathway remains to be clarified. In the present study, TSA treatment caused apoptosis in AtT‑20 cells in a concentration‑dependent manner, as demonstrated by cell viability reduction, phophatidylserine externalization detected by Annexin V staining and mitochondrial membrane potential disruption detected by JC‑1 staining, which were associated with activation of caspase‑3 and DNA fragmentation detected by TUNEL in AtT‑20 cells. T‑cell factor (TCF)‑lymphoid‑enhancing factor (LEF) reporter activity was determined by dual luciferase reporter assay and the interaction between β‑catenin and TCF‑4 were detected using a co‑immunoprecipitation kit. The results indicated TSA treatment increased β‑catenin phosphorylation, inhibited β‑catenin nuclear translocation, reduced β‑catenin/TCF‑4 complex formation and TCF‑LEF luciferase reporter activity, and subsequently reduced the expression of cyclin D1 and MGMT. Notably, overexpression of MGMT in β‑catenin knock down AtT‑20 cells abrogated the TSA‑mediated effects in AtT‑20 cells. In conclusion, TSA induced apoptosis via inhibition of Wnt/β‑catenin‑dependent MGMT expression, which may provide novel insights into the understanding of the mechanism of the antitumor effects of Salvia miltiorrhiza.
Collapse
Affiliation(s)
- Zong-Yang Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Guo-Dong Huang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Lei Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Ce Zhang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Bao-Dong Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Qing-Zhong Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Xiang Wang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Xie-Jun Zhang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Wei-Ping Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
32
|
Cao FR, Xiao BX, Wang LS, Tao X, Yan MZ, Pan RL, Liao YH, Liu XM, Chang Q. Plasma and brain pharmacokinetics of ganoderic acid A in rats determined by a developed UFLC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1052:19-26. [PMID: 28346885 DOI: 10.1016/j.jchromb.2017.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 11/23/2022]
Abstract
Ganoderic acid A (GAA), an active triterpenoid of the traditional Chinese herbal medicine Lingzhi, has been reported to exhibit antinociceptive, antioxidative, and anti-cancer activities. The present study aims to establish a sensitive and rapid UPLC-MS/MS method for studying the plasma and brain pharmacokinetics of GAA in rats. The analytes were separated on a C18 column eluted with a gradient mobile phase consisting of acetonitrile and 0.1% aqueous formic acid at 0.3mL/min. The eluate was monitored by a mass detector using an MRM (m/z, 515.3-285.1) model in negative electrospray ionization. The calibration curve showed good linearity (r2>0.99), with limits of detection and quantification of 0.25 and 2.00 nmol/L, respectively. The intra- and inter-day precision and accuracy were less than 9.99% and ranged from 97.45% to 114.62%, respectively. The extraction recovery from plasma was between 92.89% and 98.87%. GAA was found to be stable in treated samples at room temperature (22°C) for 12h and in plasma at -20°C for 7d. The developed method was successfully applied to a pharmacokinetic study of GAA in rats. GAA could be rapidly absorbed into the circulation (Tmax, 0.15h) and eliminated relatively slowly (t1/2, 2.46h) after orally dosing, and could also be detected in the brain lateral ventricle (Tmax, 0.25h and t1/2, 1.40h) after intravenously dosing. The absolute oral bioavailability and brain permeability of GAA were estimated to be 8.68% and 2.96%, respectively.
Collapse
Affiliation(s)
- Fang-Rui Cao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Bing-Xin Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Li-Sha Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Xue Tao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Ming-Zhu Yan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Rui-Le Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Yong-Hong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Xin-Min Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Qi Chang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
33
|
Cao FR, Feng L, Ye LH, Wang LS, Xiao BX, Tao X, Chang Q. Ganoderic Acid A Metabolites and Their Metabolic Kinetics. Front Pharmacol 2017; 8:101. [PMID: 28326038 PMCID: PMC5339268 DOI: 10.3389/fphar.2017.00101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
Ganoderic acid A (GAA), a representative active triterpenoid from Ganoderma lucidum, has been reported to exhibit antinociceptive, antioxidative, cytotoxic, hepatoprotective and anticancer activities. The present study aims (1) to identify GAA metabolites, in vivo by analyzing the bile, plasma and urine after intravenous administration to rats (20 mg/kg), and in vitro by incubating with rat liver microsomes (RLMs) and human liver microsomes (HLMs); (2) to investigate the metabolic kinetics of main GAA metabolites. Using HPLC-DAD-MS/MS techniques, a total of 37 metabolites were tentatively characterized from in vivo samples based on their fragmentation behaviors. The metabolites detected in in vitro samples were similar to those found in vivo. GAA underwent extensive phase I and II metabolism. The main metabolic soft spots of GAA were 3, 7, 11, 15, 23-carbonyl groups (or hydroxyl groups) and 12, 20, 28 (29)-carbon atoms. Ganoderic acid C2 (GAC2) and 7β,15-dihydroxy-3,11,23-trioxo-lanost-26-oic acid were two main reduction metabolites of GAA, and their kinetics followed classical hyperbolic kinetics. The specific isoenzyme responsible for the biotransformation of the two metabolites in RLMs and HLMs was CYP3A. This is the first report on the comprehensive metabolism of GAA, as well as the metabolic kinetics of its main metabolites.
Collapse
Affiliation(s)
- Fang-Rui Cao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Li Feng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Lin-Hu Ye
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Li-Sha Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Bing-Xin Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Xue Tao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Qi Chang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| |
Collapse
|
34
|
Gualdani R, Cavalluzzi MM, Lentini G, Habtemariam S. The Chemistry and Pharmacology of Citrus Limonoids. Molecules 2016; 21:E1530. [PMID: 27845763 PMCID: PMC6273274 DOI: 10.3390/molecules21111530] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Citrus limonoids (CLs) are a group of highly oxygenated terpenoid secondary metabolites found mostly in the seeds, fruits and peel tissues of citrus fruits such as lemons, limes, oranges, pumellos, grapefruits, bergamots, and mandarins. Represented by limonin, the aglycones and glycosides of CLs have shown to display numerous pharmacological activities including anticancer, antimicrobial, antioxidant, antidiabetic and insecticidal among others. In this review, the chemistry and pharmacology of CLs are systematically scrutinised through the use of medicinal chemistry tools and structure-activity relationship approach. Synthetic derivatives and other structurally-related limonoids from other sources are include in the analysis. With the focus on literature in the past decade, the chemical classification of CLs, their physico-chemical properties as drugs, their biosynthesis and enzymatic modifications, possible ways of enhancing their biological activities through structural modifications, their ligand efficiency metrics and systematic graphical radar plot analysis to assess their developability as drugs are among those discussed in detail.
Collapse
Affiliation(s)
- Roberta Gualdani
- Department of Chemistry "U. Shiff", University of Florence, Via della Lastruccia 3, Florence 50019, Italy.
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy-Drug Sciences, University of Studies of Bari Aldo Moro, Via E. Orabona n. 4, Bari 70126, Italy.
| | - Giovanni Lentini
- Department of Pharmacy-Drug Sciences, University of Studies of Bari Aldo Moro, Via E. Orabona n. 4, Bari 70126, Italy.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Charham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
35
|
Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice. Toxicol Appl Pharmacol 2016; 303:21-29. [DOI: 10.1016/j.taap.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/14/2016] [Accepted: 05/08/2016] [Indexed: 12/25/2022]
|
36
|
Das A, McDonald DG, Dixon-Mah YN, Jacqmin DJ, Samant VN, Vandergrift WA, Lindhorst SM, Cachia D, Varma AK, Vanek KN, Banik NL, Jenrette JM, Raizer JJ, Giglio P, Patel SJ. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma. Tumour Biol 2016; 37:7525-34. [PMID: 26684801 DOI: 10.1007/s13277-015-4621-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/10/2015] [Indexed: 01/20/2023] Open
Abstract
Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Daniel G McDonald
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Yaenette N Dixon-Mah
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Dustin J Jacqmin
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Vikram N Samant
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - William A Vandergrift
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Scott M Lindhorst
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - David Cachia
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Abhay K Varma
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kenneth N Vanek
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L Banik
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Joseph M Jenrette
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffery J Raizer
- Department of Neurology and Northwestern Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pierre Giglio
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neurological Surgery, Ohio State University Wexner Medical College, Columbus, OH, 43210, USA
| | - Sunil J Patel
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
37
|
Das A, Cheng RR, Hilbert MLT, Dixon-Moh YN, Decandio M, Vandergrift WA, Banik NL, Lindhorst SM, Cachia D, Varma AK, Patel SJ, Giglio P. Synergistic Effects of Crizotinib and Temozolomide in Experimental FIG-ROS1 Fusion-Positive Glioblastoma. CANCER GROWTH AND METASTASIS 2015; 8:51-60. [PMID: 26648752 PMCID: PMC4667559 DOI: 10.4137/cgm.s32801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GB) is the most common malignant brain tumor. Drug resistance frequently develops in these tumors during chemotherapy. Therefore, predicting drug response in these patients remains a major challenge in the clinic. Thus, to improve the clinical outcome, more effective and tolerable combination treatment strategies are needed. Robust experimental evidence has shown that the main reason for failure of treatments is signal redundancy due to coactivation of several functionally linked receptor tyrosine kinases (RTKs), including anaplastic lymphoma kinase (ALK), c-Met (hepatocyte growth factor receptor), and oncogenic c-ros oncogene1 (ROS1: RTK class orphan) fusion kinase FIG (fused in GB)-ROS1. As such, these could be attractive targets for GB therapy. The study subjects consisted of 19 patients who underwent neurosurgical resection of GB tissues. Our in vitro and ex vivo models promisingly demonstrated that treatments with crizotinib (PF-02341066: dual ALK/c-Met inhibitor) and temozolomide in combination induced synergistic antitumor activity on FIG-ROS1-positive GB cells. Our results also showed that ex vivo FIG-ROS1+ slices (obtained from GB patients) when cultured were able to preserve tissue architecture, cell viability, and global gene-expression profiles for up to 14 days. Both in vitro and ex vivo studies indicated that combination blockade of FIG, p-ROS1, p-ALK, and p-Met augmented apoptosis, which mechanistically involves activation of Bim and inhibition of survivin, p-Akt, and Mcl-1 expression. However, it is important to note that we did not see any significant synergistic effect of crizotinib and temozolomide on FIG-ROS1-negative GB cells. Thus, these ex vivo culture results will have a significant impact on patient selection for clinical trials and in predicting response to crizotinib and temozolomide therapy. Further studies in different animal models of FIG-ROS1-positive GB cells are warranted to determine useful therapies for the management of human GBs.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Ron Ron Cheng
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Megan L T Hilbert
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Yaenette N Dixon-Moh
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Michele Decandio
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | | | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA. ; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Scott M Lindhorst
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - David Cachia
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Abhay K Varma
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Sunil J Patel
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Pierre Giglio
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA. ; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|