1
|
Chen C, Zhang Y, Lin Y, Shen C, Zhang Z, Wu Z, Qie Y, Zhao G, Hu H. The prognostic significance and immune characteristics of bone morphogenetic proteins (BMPs) family: A pan-cancer multi-omics analysis. Technol Health Care 2024:THC232004. [PMID: 39031404 DOI: 10.3233/thc-232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are a group of cancer-related proteins vital for development and progression of certain cancer types. Nevertheless, function of BMP family in pan-cancer was not detailedly researched. OBJECTIVE Investigating expression pattern and prognostic value of the BMPs family (BMP1-8A and BMP8B) expression across multiple cancer types. METHODS Our research integrated multi-omics data for exploring potential associations between BMPs expression and prognosis, clinicopathological characteristics, copy number or somatic mutations, immune characteristics, tumor microenvironment (TME), tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint genes and drug sensitivity in The Cancer Genome Atlas (TCGA) tumors. Furthermore, association of BMPs expression and immunotherapy effectiveness was investigated in some confirmatory cohorts (GSE111636, GSE78220, GSE67501, GSE176307, IMvigor210 and mRNA sequencing data from currently undergoing TRUCE01 clinical research included), and biological function and potential signaling pathways of BMPs in bladder cancer (BCa) was explored via Gene Set Enrichment Analysis (GSEA). Eventually, immune infiltration analysis was done via BMPs expression, copy number or somatic mutations in BCa, as well as validation of the expression levels by reverse transcription-quantitative PCR and western blot, and in vitro functional experiments of BMP8A. RESULTS Discoveries displayed BMPs expression was related to prognosis, clinicopathological characteristics, mutations, TME, TMB, MSI and immune checkpoint genes of TCGA tumors. Anticancer drug sensitivity analysis displayed BMPs were associated with various drug sensitivities. What's more, it was discovered that expression level of certain BMP family members related to objective response to immunotherapy. By GSEA, we discovered multiple immune-associated functions and pathways were enriched. Immune infiltration analysis on BCa also displayed significant associations among BMPs copy number variations, mutation status and infiltration level of diverse immune cells. Furthermore, differential expression validation and in vitro phenotypic experiment indicated that BMP8A significantly promoted BCa cell proliferation, migration and invasion. CONCLUSIONS Current results confirmed significance of both BMPs expression and genomic alteration in the prognosis and treatment of diverse cancer types, and suggested that BMPs may be vital for BCa and can possibly be utilized as biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Changsheng Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Tianjin Haihe Hospital, Tianjin, China
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Eco-City Hospital of Tianjin Fifth Central Hospital, Tianjin, China
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuda Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gangjian Zhao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Golán-Cancela I, Caja L. The TGF-β Family in Glioblastoma. Int J Mol Sci 2024; 25:1067. [PMID: 38256140 PMCID: PMC10816220 DOI: 10.3390/ijms25021067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the transforming growth factor β (TGF-β) family have been implicated in the biology of several cancers. In this review, we focus on the role of TGFβ and bone morphogenetic protein (BMP) signaling in glioblastoma. Glioblastoma (GBM) is the most common malignant brain tumor in adults; it presents at a median age of 64 years, but can occur at any age, including childhood. Unfortunately, there is no cure, and even patients undergoing current treatments (surgical resection, radiotherapy, and chemotherapy) have a median survival of 15 months. There is a great need to identify new therapeutic targets to improve the treatment of GBM patients. TGF-βs signaling promotes tumorigenesis in glioblastoma, while BMPs suppress tumorigenic potential by inducing tumor cell differentiation. In this review, we discuss the actions of TGF-βs and BMPs on cancer cells as well as in the tumor microenvironment, and their use in potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden;
| |
Collapse
|
3
|
Mahmoudi R, Afshar S, Amini R, Jalali A, Saidijam M, Najafi R. Evaluation of BMP-2 as a Differentiating and Radiosensitizing Agent for Colorectal Cancer Stem Cells. Curr Stem Cell Res Ther 2024; 19:83-93. [PMID: 36998132 DOI: 10.2174/1574888x18666230330085615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Despite effective clinical responses, a large proportion of patients undergo resistance to radiotherapy. The low response rate to current treatments in different stages of colorectal cancer depends on the prominent role of stem cells in cancer. OBJECTIVE In the present study, the role of BMP-2 as an ionizing radiation-sensitive factor in colorectal cancer cells was investigated. METHODS A sphere formation assay was used for the enrichment of HCT-116 cancer stem cells (CSCs). The effects of combination therapy (BMP-2+ radiation) on DNA damage response (DDR), proliferation, and apoptosis were evaluated in HCT-116 and CSCs. Gene expressions of CSCs and epithelialmesenchymal transition (EMT) markers were also evaluated. RESULTS We found that the sphere formation assay showed a significant increase in the percentage of CSCs. Moreover, expression of CSCs markers, EMT-related genes, and DNA repair proteins significantly decreased in HCT-116 cells compared to the CSCs group after radiation. In addition, BMP-2 promoted the radiosensitivity of HCT-116 cells by decreasing the survival rate of the treated cells at 2, 4, and 6 Gy compared to the control group in HCT-116 cells. CONCLUSION Our findings indicated that BMP-2 could affect numerous signaling pathways involved in radioresistance. Therefore, BMP-2 can be considered an appealing therapeutic target for the treatment of radioresistant human colorectal cancer.
Collapse
Affiliation(s)
- Roghayeh Mahmoudi
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Kretschmer V, Schneider S, Matthiessen PA, Reichert D, Hotaling N, Glasßer G, Lieberwirth I, Bharti K, De Cegli R, Conte I, Nandrot EF, May-Simera HL. Deletion of IFT20 exclusively in the RPE ablates primary cilia and leads to retinal degeneration. PLoS Biol 2023; 21:e3002402. [PMID: 38048369 PMCID: PMC10721183 DOI: 10.1371/journal.pbio.3002402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/14/2023] [Accepted: 10/26/2023] [Indexed: 12/06/2023] Open
Abstract
Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins.
Collapse
Affiliation(s)
- Viola Kretschmer
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Sandra Schneider
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Peter Andreas Matthiessen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Reichert
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathan Hotaling
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gunnar Glasßer
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- University of Naples “Federico II”, Naples, Italy
| | | | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
5
|
Wu Y, Liang H, Luo A, Li Y, Liu Z, Li X, Li W, Liang K, Li J, Liu Z, Du Y. Gelatin-based 3D biomimetic scaffolds platform potentiates culture of cancer stem cells in esophageal squamous cell carcinoma. Biomaterials 2023; 302:122323. [PMID: 37717405 DOI: 10.1016/j.biomaterials.2023.122323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Cancer stem cells (CSCs) are crucial for tumorigenesis, metastasis, and therapy resistance in esophageal squamous cell carcinoma (ESCC). To further elucidate the mechanism underlying characteristics of CSCs and develop CSCs-targeted therapy, an efficient culture system that could expand and maintain CSCs is needed. CSCs reside in a complex tumor microenvironment, and three-dimensional (3D) culture systems of biomimetic scaffolds are expected to better support the growth of CSCs by recapitulating the biophysical properties of the extracellular matrix (ECM). Here, we established gelatin-based 3D biomimetic scaffolds mimicking the stiffness and collagen content of ESCC, which could enrich ESCC CSCs efficiently. Biological changes of ESCC cells laden in scaffolds with three different viscoelasticity emulating physiological stiffness of esophageal tissues were thoroughly investigated in varied aspects such as cell morphology, viability, cell phenotype markers, and transcriptomic profiling. The results demonstrated the priming effects of viscoelasticity on the stemness of ESCC. The highly viscous scaffolds (G': 6-403 Pa; G'': 2-75 Pa) better supported the enrichment of ESCC CSCs, and the TGF-beta signaling pathway might be involved in regulating the stemness of ESCC cells. Compared to two-dimensional (2D) cultures, highly viscous scaffolds significantly promoted the clonal expansion of ESCC cells in vitro and tumor formation ability in vivo. Our findings highlight the crucial role of biomaterials' viscoelasticity for the 3D culture of ESCC CSCs in vitro, and this newly-established culture system represents a valuable platform to support their growth, which could facilitate the CSCs-targeted therapy in the future.
Collapse
Affiliation(s)
- Yenan Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haiwei Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiqiang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenxin Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junyang Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Jevšinek Skok D, Hauptman N. In Silico Gene Prioritization Highlights the Significance of Bone Morphogenetic Protein 4 ( BMP4) Promoter Methylation across All Methylation Clusters in Colorectal Cancer. Int J Mol Sci 2023; 24:12692. [PMID: 37628872 PMCID: PMC10454928 DOI: 10.3390/ijms241612692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The cytosine-phosphate-guanine (CpG) island methylator phenotype (CIMP) represents one of the pathways involved in the development of colorectal cancer, characterized by genome-wide hypermethylation. To identify samples exhibiting hypermethylation, we used unsupervised hierarchical clustering on genome-wide methylation data. This clustering analysis revealed the presence of four distinct subtypes within the tumor samples, namely, CIMP-H, CIMP-L, cluster 3, and cluster 4. These subtypes demonstrated varying levels of methylation, categorized as high, intermediate, and very low. To gain further insights, we mapped significant probes from all clusters to Ensembl Regulatory build 89, with a specific focus on those located within promoter regions or bound regions. By intersecting the methylated promoter and bound regions across all methylation subtypes, we identified a total of 253 genes exhibiting aberrant methylation patterns in the promoter regions across all four subtypes of colorectal cancer. Among these genes, our comprehensive genome-wide analysis highlights bone morphogenic protein 4 (BMP4) as the most prominent candidate. This significant finding was derived through the utilization of various bioinformatics tools, emphasizing the potential role of BMP4 in colorectal cancer development and progression.
Collapse
Affiliation(s)
- Daša Jevšinek Skok
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia;
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Kapoor A, Mandal CC. A Perspective on Bone Morphogenetic Proteins: Dilemma behind Cancer- related Responses. Curr Drug Targets 2023; 24:382-387. [PMID: 36725830 DOI: 10.2174/1389450124666230201144605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic proteins are a center of serious concern and are known to execute various cancer-related issues. The BMP signaling cascades have become more unpredictable as a result of their pleiotropic and risky characteristics, particularly when it comes to cancer responses. This perspective discusses the current therapeutic implications, emphasizes different cellular aspects that impact the failures of the current drug treatments, and speculates on future research avenues that include novel strategies like metabolomic studies and bio-mimetic peptide therapeutics to mitigate cancerous outcomes.
Collapse
Affiliation(s)
- Anmol Kapoor
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
8
|
BMP2 as a promising anticancer approach: functions and molecular mechanisms. Invest New Drugs 2022; 40:1322-1332. [PMID: 36040572 DOI: 10.1007/s10637-022-01298-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.
Collapse
|
9
|
Li S, Hoefnagel SJM, Read M, Meijer S, van Berge Henegouwen MI, Gisbertz SS, Bonora E, Liu DSH, Phillips WA, Calpe S, Correia ACP, Sancho-Serra MDC, Mattioli S, Krishnadath KK. Selective targeting BMP2 and 4 in SMAD4 negative esophageal adenocarcinoma inhibits tumor growth and aggressiveness in preclinical models. Cell Oncol (Dordr) 2022; 45:639-658. [PMID: 35902550 PMCID: PMC9333053 DOI: 10.1007/s13402-022-00689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Abnormalities within the Sonic Hedgehog (SHH), Bone Morphogenetic Protein (BMP) and SMAD4 signalling pathways have been associated with the malignant behavior of esophageal adenocarcinoma (EAC). We recently developed two specific llama-derived antibodies (VHHs), C4C4 and C8C8, which target BMP4 and BMP2/4, respectively. Here we aimed to demonstrate the feasibility of the VHHs for the treatment of EAC and to elucidate its underlying mechanism. METHODS Gene Set Enrichment Analysis (GSEA) was performed on a TCGA dataset, while expression of SHH, BMP2/4 and SMAD4 was validated in a cohort of EAC patients. The effects of the VHHs were tested on the recently established SMAD4(-) ISO76A primary EAC cell line and its counterpart SMAD4(+) ISO76A. In a patient-derived xenograft (PDX) model, the VHHs were evaluated for their ability to selectively target tumor cells and for their effects on tumor growth and survival. RESULTS High expression of BMP2/4 was detected in all SMAD4 negative EACs. SHH upregulated BMP2/4 expression and induced p38 MAPK signaling in the SMAD4(-) ISO76A cells. Inhibition of BMP2/4 by VHHs decreased the aggressive and chemo-resistant phenotype of the SMAD4(-) ISO76A but not of the SMAD4(+) ISO76A cells. In the PDX model, in vivo imaging indicated that VHHs effectively targeted tumor cells. Both VHHs significantly inhibited tumor growth and acted synergistically with cisplatin. Furthermore, we found that C8C8 significantly improved survival of the mice. CONCLUSIONS Our data indicate that increased BMP2/4 expression triggers aggressive non-canonical BMP signaling in SMAD4 negative EAC. Inhibiting BMP2/4 decreases malignant behavior and improves survival. Therefore, VHHs directed against BMP2/4 hold promise for the treatment of SMAD4 negative EAC.
Collapse
Affiliation(s)
- Shulin Li
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sanne J M Hoefnagel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthew Read
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sybren Meijer
- Department of Pathology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark I van Berge Henegouwen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Suzanne S Gisbertz
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - David S H Liu
- Upper Gatrointestinal Unit, Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Silvia Calpe
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ana C P Correia
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria D C Sancho-Serra
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sandro Mattioli
- Department of Medical and Surgical Sciences, University of Bologna, U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Division of Thoracic Surgery, Maria Cecilia Hospital, GVM Care & Research Group, Cotignola, 48022, Ravenna, Italy
| | - Kausilia K Krishnadath
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium.
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
10
|
Novoa Díaz MB, Martín MJ, Gentili C. Tumor microenvironment involvement in colorectal cancer progression via Wnt/β-catenin pathway: Providing understanding of the complex mechanisms of chemoresistance. World J Gastroenterol 2022; 28:3027-3046. [PMID: 36051330 PMCID: PMC9331520 DOI: 10.3748/wjg.v28.i26.3027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) continues to be one of the main causes of death from cancer because patients progress unfavorably due to resistance to current therapies. Dysregulation of the Wnt/β-catenin pathway plays a fundamental role in the genesis and progression of several types of cancer, including CRC. In many subtypes of CRC, hyperactivation of the β-catenin pathway is associated with mutations of the adenomatous polyposis coli gene. However, it can also be associated with other causes. In recent years, studies of the tumor microenvironment (TME) have demonstrated its importance in the development and progression of CRC. In this tumor nest, several cell types, structures, and biomolecules interact with neoplastic cells to pave the way for the spread of the disease. Cross-communications between tumor cells and the TME are then established primarily through paracrine factors, which trigger the activation of numerous signaling pathways. Crucial advances in the field of oncology have been made in the last decade. This Minireview aims to actualize what is known about the central role of the Wnt/β-catenin pathway in CRC chemoresistance and aggressiveness, focusing on cross-communication between CRC cells and the TME. Through this analysis, our main objective was to increase the understanding of this complex disease considering a more global context. Since many treatments for advanced CRC fail due to mechanisms involving chemoresistance, the data here exposed and analyzed are of great interest for the development of novel and effective therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - María Julia Martín
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS)-INQUISUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| |
Collapse
|
11
|
Sharma T, Kapoor A, Mandal CC. Duality of bone morphogenetic proteins in cancer: A comprehensive analysis. J Cell Physiol 2022; 237:3127-3163. [DOI: 10.1002/jcp.30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Anmol Kapoor
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
12
|
Wu Q, Zheng Z, Zhang J, Piao Z, Xin M, Xiang X, Wu A, Zhao T, Huang S, Qiao Y, Zhou J, Xu S, Cheng H, Wu L, Ouyang K. Chordin-Like 1 Regulates Epithelial-to-Mesenchymal Transition and Metastasis via the MAPK Signaling Pathway in Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:862751. [PMID: 35494000 PMCID: PMC9046701 DOI: 10.3389/fonc.2022.862751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAccumulating evidence suggests that dysregulation of Chordin-like 1 (CHRDL1) is associated with malignant biological behaviors in multiple cancers. However, the exact function and molecular mechanism of CHRDL1 in oral squamous cell carcinoma (OSCC) remain unclear.MethodsThe expression levels of CHRDL1 in OSCC tissues and CAL27 cells were determined by RT-qPCR. Immunohistochemical staining was applied to detect CHRDL1 protein expression in sample tissues from OSCC patients. Gain of function and knockdown by lentivirus were further used to examine the effects of CHRDL1 on cell proliferation, migration, invasion, and adhesion in OSCC. Tail vein injection of CAL27 cells with dysregulated CHRDL1 expression was further used to examine the effect of CHRDL1 on lung colonization. RNA sequencing was performed to explore the molecular mechanisms of CHRDL1 that underlie the progression of OSCC.ResultsCHRDL1 was significantly downregulated in OSCC tissues and CAL27 cells compared to controls. CHRDL1 knockdown enhanced migration, invasion, adhesion, and EMT, but not proliferation, in CAL27 cells. Overexpression of CHRDL1 had the opposite effects. Moreover, CHRDL1 was proven to inhibit tumor metastasis in vivo. Mechanistically, MAPK signaling pathway components, including ERK1/2, p38, and JNK, were found to regulate the malignant biological behaviors of CAL27 cells.ConclusionsOur results suggest that CHRDL1 has an inhibitory effect on OSCC metastasis via the MAPK signaling pathway, which provides a new possible potential therapeutic target against OSCC.
Collapse
Affiliation(s)
- Qiuyu Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junwei Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Zhengguo Piao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xi Xiang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Antong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Tianyu Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Songkai Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yu Qiao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jiayu Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Kexiong Ouyang, ; Lihong Wu,
| | - Kexiong Ouyang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Kexiong Ouyang, ; Lihong Wu,
| |
Collapse
|
13
|
Pashirzad M, Sathyapalan T, Sheikh A, Kesharwani P, Sahebkar A. Cancer stem cells: An overview of the pathophysiological and prognostic roles in colorectal cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Guyot B, Lefort S, Voeltzel T, Pécheur EI, Maguer-Satta V. Altered BMP2/4 Signaling in Stem Cells and Their Niche: Different Cancers but Similar Mechanisms, the Example of Myeloid Leukemia and Breast Cancer. Front Cell Dev Biol 2022; 9:787989. [PMID: 35047500 PMCID: PMC8762220 DOI: 10.3389/fcell.2021.787989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding mechanisms of cancer development is mandatory for disease prevention and management. In healthy tissue, the microenvironment or niche governs stem cell fate by regulating the availability of soluble molecules, cell-cell contacts, cell-matrix interactions, and physical constraints. Gaining insight into the biology of the stem cell microenvironment is of utmost importance, since it plays a role at all stages of tumorigenesis, from (stem) cell transformation to tumor escape. In this context, BMPs (Bone Morphogenetic Proteins), are key mediators of stem cell regulation in both embryonic and adult organs such as hematopoietic, neural and epithelial tissues. BMPs directly regulate the niche and stem cells residing within. Among them, BMP2 and BMP4 emerged as master regulators of normal and tumorigenic processes. Recently, a number of studies unraveled important mechanisms that sustain cell transformation related to dysregulations of the BMP pathway in stem cells and their niche (including exposure to pollutants such as bisphenols). Furthermore, a direct link between BMP2/BMP4 binding to BMP type 1 receptors and the emergence and expansion of cancer stem cells was unveiled. In addition, a chronic exposure of normal stem cells to abnormal BMP signals contributes to the emergence of cancer stem cells, or to disease progression independently of the initial transforming event. In this review, we will illustrate how the regulation of stem cells and their microenvironment becomes dysfunctional in cancer via the hijacking of BMP signaling with main examples in myeloid leukemia and breast cancers.
Collapse
Affiliation(s)
- Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Thibault Voeltzel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Eve-Isabelle Pécheur
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
| |
Collapse
|
15
|
Yeoh Y, Low TY, Abu N, Lee PY. Regulation of signal transduction pathways in colorectal cancer: implications for therapeutic resistance. PeerJ 2021; 9:e12338. [PMID: 34733591 PMCID: PMC8544255 DOI: 10.7717/peerj.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer treatments is a critical and widespread health issue that has brought serious impacts on lives, the economy and public policies. Mounting research has suggested that a selected spectrum of patients with advanced colorectal cancer (CRC) tend to respond poorly to both chemotherapeutic and targeted therapeutic regimens. Drug resistance in tumours can occur in an intrinsic or acquired manner, rendering cancer cells insensitive to the treatment of anti-cancer therapies. Multiple factors have been associated with drug resistance. The most well-established factors are the emergence of cancer stem cell-like properties and overexpression of ABC transporters that mediate drug efflux. Besides, there is emerging evidence that signalling pathways that modulate cell survival and drug metabolism play major roles in the maintenance of multidrug resistance in CRC. This article reviews drug resistance in CRC as a result of alterations in the MAPK, PI3K/PKB, Wnt/β-catenin and Notch pathways.
Collapse
Affiliation(s)
- Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Nørgaard K, Müller C, Christensen N, Chiloeches ML, Madsen CL, Nielsen SS, Thingholm TE, Belcheva A. Loss of mismatch repair signaling impairs the WNT-bone morphogenetic protein crosstalk and the colonic homeostasis. J Mol Cell Biol 2021; 12:410-423. [PMID: 31065691 PMCID: PMC7333479 DOI: 10.1093/jmcb/mjz031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/14/2018] [Accepted: 03/17/2019] [Indexed: 01/05/2023] Open
Abstract
The fine balance between proliferation, differentiation, and apoptosis in the colonic epithelium is tightly controlled by the interplay between WNT, Notch, and bone morphogenetic protein (BMP) signaling. How these complex networks coordinate the colonic homeostasis, especially if cancer predisposing mutations such as mutations in the DNA mismatch repair (MMR) are present, is unclear. Inactivation of the MMR system has long been linked to colorectal cancer; however, little is known about its role in the regulation of the colonic homeostasis. It has been shown that loss of MMR promotes the proliferation of colon epithelial cells that renders them highly susceptible to transformation. The mechanism through which MMR mediates this effect, yet, remains to be determined. Using an MMR-deficient mouse model, we show that increased methylation of Dickkopf1 impacts its expression, and consequently, the ability to negatively regulate WNT signaling. As a result, excessive levels of active β-catenin promote strong crypt progenitor-like phenotype and abnormal proliferation. Under these settings, the development and function of the goblet cells are affected. MMR-deficient mice have fewer goblet cells with enlarged mucin-loaded vesicles. We further show that MMR inactivation impacts the WNT–BMP signaling crosstalk.
Collapse
Affiliation(s)
- Katrine Nørgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Carolin Müller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nadja Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - María L Chiloeches
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Cesilie L Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Sabine S Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Tine E Thingholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5230 Odense M, Denmark
| | - Antoaneta Belcheva
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
17
|
Zhang A, Aslam H, Sharma N, Warmflash A, Fakhouri WD. Conservation of Epithelial-to-Mesenchymal Transition Process in Neural Crest Cells and Metastatic Cancer. Cells Tissues Organs 2021; 210:151-172. [PMID: 34218225 DOI: 10.1159/000516466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a highly conserved cellular process in several species, from worms to humans. EMT plays a fundamental role in early embryogenesis, wound healing, and cancer metastasis. For neural crest cell (NCC) development, EMT typically results in forming a migratory and potent cell population that generates a wide variety of cell and tissue, including cartilage, bone, connective tissue, endocrine cells, neurons, and glia amongst many others. The degree of conservation between the signaling pathways that regulate EMT during development and metastatic cancer (MC) has not been fully established, despite ample studies. This systematic review and meta-analysis dissects the major signaling pathways involved in EMT of NCC development and MC to unravel the similarities and differences. While the FGF, TGFβ/BMP, SHH, and NOTCH pathways have been rigorously investigated in both systems, the EGF, IGF, HIPPO, Factor Receptor Superfamily, and their intracellular signaling cascades need to be the focus of future NCC studies. In general, meta-analyses of the associated signaling pathways show a significant number of overlapping genes (particularly ligands, transcription regulators, and targeted cadherins) involved in each signaling pathway of both systems without stratification by body segments and cancer type. Lack of stratification makes it difficult to meaningfully evaluate the intracellular downstream effectors of each signaling pathway. Finally, pediatric neuroblastoma and melanoma are NCC-derived malignancies, which emphasize the importance of uncovering the EMT events that convert NCC into treatment-resistant malignant cells.
Collapse
Affiliation(s)
- April Zhang
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hira Aslam
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Neha Sharma
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
18
|
Maryam A, Chin YR. ANLN Enhances Triple-Negative Breast Cancer Stemness Through TWIST1 and BMP2 and Promotes its Spheroid Growth. Front Mol Biosci 2021; 8:700973. [PMID: 34277708 PMCID: PMC8280772 DOI: 10.3389/fmolb.2021.700973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
ANLN is frequently upregulated in triple-negative breast cancer (TNBC) and its high expression in tumors are significantly associated with poor survival and recurrence, thereby it has been proposed to function as a prognostic marker for breast cancer. However, the specific function and molecular mechanisms by which ANLN promotes TNBC tumorigenesis remain elusive. Using multiomic profiling, we recently uncovered ANLN as a TNBC-specific gene driven by super-enhancer. Here, by Crispr/Cas9 editing, we showed that knockout of ANLN inhibits spheroid growth of TNBC. Interestingly, its effect on cell proliferation in 2D cultures is minimal. ANLN depletion inhibits mammosphere formation and clonogenicity potently, suggesting its important function in regulating cancer stem cells (CSCs). We screened a panel of stem cell-related genes and uncovered several CSC genes regulated by ANLN. We further identify TWIST1 and BMP2 as essential genes that mediate ANLN’s function in stemness but not spheroid growth. These findings may contribute to search for effective targeted therapies to treat TNBC.
Collapse
Affiliation(s)
- Alishba Maryam
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Y Rebecca Chin
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
19
|
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021; 11:biom11070956. [PMID: 34209658 PMCID: PMC8301972 DOI: 10.3390/biom11070956] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM’s role in EMT may reveal additional therapeutic opportunities.
Collapse
|
20
|
You J, Wang W, Chang HM, Yi Y, Zhao H, Zhu H, Sun Y, Tang M, Wang C, Sang Y, Feng G, Cheng S, Leung PCK, Zhu YM. The BMP2 Signaling Axis Promotes Invasive Differentiation of Human Trophoblasts. Front Cell Dev Biol 2021; 9:607332. [PMID: 33614644 PMCID: PMC7889606 DOI: 10.3389/fcell.2021.607332] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 01/17/2023] Open
Abstract
Embryo implantation and trophoblast invasion are principal limiting factors of pregnancy establishment. Aberrant embryo development or improper trophoblast differentiation and invasion may lead to various unfavorable pregnancy-related outcomes, including early pregnancy loss (EPL). Our clinical data show that the serum BMP2 levels were significantly increased during the first trimester of pregnancy and that the serum and BMP2 expression levels were lower in women with EPL than in women with normal early pregnancies. Moreover, we observed that BMP2 was expressed in oocytes and trophoblast cells of cleaved embryos and blastocysts prior to implantation in both humans and mice. Exogenous BMP2 promoted embryonic development by enhancing blastocyst formation and hatching in mice. LncRNA NR026833.1 was upregulated by BMP2 and promoted SNAIL expression by competitively binding to miR-502-5p. SNAIL induced MMP2 expression and promoted cell invasion in primary extravillous trophoblast cells. BMP2 promotes the invasive differentiation of mouse trophoblast stem cells by downregulating the expression of TS cell marker and upregulating the expression of trophoblast giant cell marker and labyrinthine/spongiotrophoblast marker. Our findings provide significant insights into the regulatory roles of BMP2 in the development of the placenta, which may give us a framework to explore new therapeutic strategies to pregnancy-related complications.
Collapse
Affiliation(s)
- Jiali You
- Department of Reproductive Endocrinology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Wei Wang
- Department of Reproductive Endocrinology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hongjin Zhao
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yu Sun
- Department of Reproductive Endocrinology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Minyue Tang
- Department of Reproductive Endocrinology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Chunyan Wang
- Department of Reproductive Endocrinology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Yimiao Sang
- Department of Reproductive Endocrinology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Guofang Feng
- Department of Reproductive Endocrinology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Shaobing Cheng
- Department of Colorectal Surgery, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Guo J, Guo M, Zheng J. Inhibition of Bone Morphogenetic Protein 2 Suppresses the Stemness Maintenance of Cancer Stem Cells in Hepatocellular Carcinoma via the MAPK/ERK Pathway. Cancer Manag Res 2021; 13:773-785. [PMID: 33536785 PMCID: PMC7850411 DOI: 10.2147/cmar.s281969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains a life-threatening malignant tumor. Cancer stem cells (CSCs) harbor tumor-initiating capacity and can be used as a therapeutic target for human malignancies. Bone morphogenetic proteins (BMPs) play a regulatory role in CSCs. This study investigated the role and mechanism of BMP2 in CSCs in HCC. Methods BMP2 expression in HCC tissues and cells, and CSCs from HepG2 cells and SMMC7721 cells (HepG2-CSCs and SMMC7721-CSCs) was measured. The association between BMP2 expression and prognosis of HCC patients was analyzed. CSCs were interfered with BMP2 to evaluate the abilities of colony and tumor sphere formation, levels of stemness-related markers, epithelial-mesenchymal transition (EMT), and invasion and migration. Levels of MAPK/ERK pathway-related proteins in HepG2-CSCs were detected after BMP2 knockdown. The effect of the activated MAPK/ERK pathway on HepG2-CSCs was assessed. Finally, the effect of BMP2 inhibition on CSCs in HCC was verified in vivo. Results BMP2 showed obvious upregulation in HCC tissues and cells and was further upregulated in CSCs in HCC, with its higher expression indicative of worse prognosis. Silencing BMP2 inhibited colony and tumor sphere formation, levels of stemness-related markers, as well as EMT, invasion and migration of HepG2-CSCs and SMMC7721-CSCs. The MAPK/ERK pathway was suppressed after BMP2 knockdown, and its activation reversed the inhibitory effect of shBMP2 on hepatic CSCs. BMP2 accelerated tumor growth and EMT of CSCs in HCC in vivo. Conclusion We concluded that BMP2 knockdown inhibited the EMT, proliferation and invasion of CSCs in HCC, thereby hindering the stemness maintenance via suppressing the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Juncheng Guo
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou, 570311 Hainan, People's Republic of China
| | - Min Guo
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou, 570311 Hainan, People's Republic of China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou, 570311 Hainan, People's Republic of China
| |
Collapse
|
22
|
Anti‑proliferative effect of honokiol on SW620 cells through upregulating BMP7 expression via the TGF‑β1/p53 signaling pathway. Oncol Rep 2020; 44:2093-2107. [PMID: 32901874 PMCID: PMC7551181 DOI: 10.3892/or.2020.7745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Honokiol (HNK), a natural pharmaceutically active component extracted from magnolia bark, has been used for clinical treatments and has anti‑inflammatory, antiviral and antioxidative effects. In recent years, anticancer research has become a major hotspot. However, the underlying molecular mechanisms of how HNK inhibits colorectal cancer have remained elusive. The present study focused on elucidating the effects of HNK on the expression of bone morphogenetic protein (BMP)7 and its downstream interaction with transforming growth factor (TGF)‑β1 and p53 in colon cancer. In in vitro assays, cell viability, cell cycle distribution and apoptosis were examined using Cell Counting Kit‑8, flow cytometry and reverse transcription‑quantitative PCR, respectively. In addition, the expression of BMP7, TGF‑β1 and relevant signaling proteins was determined by western blot analysis. In vivo, the anticancer effect of HNK was assessed in xenografts in nude mice. Furthermore, immunohistochemistry was performed to evaluate the association between BMP7 and TGF‑β1 expression in colon cancer. The results indicated that HNK inhibited the proliferation of colon cancer cell lines, with SW620 cells being more sensitive than other colon cancer cell lines. Furthermore, HNK markedly promoted the expression of BMP7 at the mRNA and protein level. Exogenous BMP7 potentiated the effect of HNK on SW620 cells, while knocking down BMP7 inhibited it. As a downstream mechanism, HNK increased the expression of TGF‑β1 and p53, which was enhanced by exogenous BMP7 in SW620 cells. In addition, immunohistochemical analysis indicated a positive association between BMP7 and TGF‑β1 expression. Hence, the present results suggested that HNK is a promising agent for the treatment of colon cancer and enhanced the expression TGF‑β1 and p53 through stimulating BMP7 activity via the non‑canonical TGF‑β signaling pathway.
Collapse
|
23
|
Palmieri A, Scapoli L, Iapichino A, Mercolini L, Mandrone M, Poli F, Giannì AB, Baserga C, Martinelli M. Berberine and Tinospora cordifolia exert a potential anticancer effect on colon cancer cells by acting on specific pathways. Int J Immunopathol Pharmacol 2020; 33:2058738419855567. [PMID: 31663444 PMCID: PMC6822188 DOI: 10.1177/2058738419855567] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Berberine (BBR) is a natural active principle with potential antitumor activity. The compound targets multiple cell signaling pathways, including proliferation, differentiation, and epithelial–mesenchymal transition. The aim of this study was to elucidate the mechanisms behind the anticancer activity of BBR by comparing the effects of purified BBR with those of the extract of Tinospora cordifolia, a medicinal plant that produces this metabolite. The expression levels of a panel of 44 selected genes in human colon adenocarcinoma (HCA-7) cell line were quantified by real-time polymerase chain reaction (PCR). BBR treatment resulted in a time- and dose-dependent down regulation of 33 genes differently involved in cell cycle, differentiation, and epithelial–mesenchymal transition. The trend was confirmed across the two types of treatment, the two time points, and the different absolute dosage of BBR. These findings suggest that the presence of BBR in T. cordifolia extract significantly contributes to its antiproliferative activity.
Collapse
Affiliation(s)
- Annalisa Palmieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Luca Scapoli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Anastasia Iapichino
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Aldo Bruno Giannì
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,Maxillofacial and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Camilla Baserga
- Maxillofacial and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcella Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Wu G, Huang F, Chen Y, Zhuang Y, Huang Y, Xie Y. High Levels of BMP2 Promote Liver Cancer Growth via the Activation of Myeloid-Derived Suppressor Cells. Front Oncol 2020; 10:194. [PMID: 32195173 PMCID: PMC7064622 DOI: 10.3389/fonc.2020.00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) signaling had significant roles in diverse pathological processes, such as cancer. Nevertheless, the interaction between BMP2 and carcinoma development remained largely unknown. In particular, the roles that BMP2 play in the development of liver cancer remained controversial, and mechanisms were unclear. BMP2 with strong osteogenic potential had been manufactured into various bone materials. However, cancer risk concerns were raised in recent years. Thus, we focused on analyzing the effects of exogenous BMP2 on the growth of liver cancer and the detailed mechanisms. We found that both intravenous injection of rhBMP2 and in vivo implantation of rhBMP2 materials could lead to the expansion of myeloid-derived suppressor cells (MDSCs) in peripheral blood and subsequently enhanced the infiltration of MDSCs into tumor in vivo. Furthermore, BMP2 signaling-activated MDSCs could secrete IL6 to enhance cell proliferation of liver cancer cells in vitro and facilitate liver cancer growth in vivo. Our study indicated that increased concentration of BMP2 within the peripheral blood could enhance liver cancer growth via the activation of MDSCs. In this study, the roles that BMP2 played in liver cancer growth were further confirmed and the detailed mechanisms about how BMP2 enhanced liver cancer growth were also elucidated.
Collapse
Affiliation(s)
- Gui Wu
- Department of Orthopedics, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Fei Huang
- Central Lab, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yaoqing Chen
- Department of Orthopedics, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuehong Zhuang
- Department of Human Anatomy and Embryology, Institute of Neuroscientific Study, Fujian Medical University, Fuzhou, China
| | - Yunpeng Huang
- Department of Orthopedics, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yun Xie
- Department of Orthopedics, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
25
|
Kluiver TA, Alieva M, van Vuurden DG, Wehrens EJ, Rios AC. Invaders Exposed: Understanding and Targeting Tumor Cell Invasion in Diffuse Intrinsic Pontine Glioma. Front Oncol 2020; 10:92. [PMID: 32117746 PMCID: PMC7020612 DOI: 10.3389/fonc.2020.00092] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG) is a rare, highly aggressive pediatric brain tumor that originates in the pons. DIPG is untreatable and universally fatal, with a median life expectancy of less than a year. Resection is not an option, due to the anatomical location of the tumor, radiotherapy has limited effect and no chemotherapeutic or targeted treatment approach has proven to be successful. This poor prognosis is partly attributed to the tumor's highly infiltrative diffuse and invasive spread. Thus, targeting the invasive behavior of DIPG has the potential to be of therapeutic value. In order to target DIPG invasion successfully, detailed mechanistic knowledge on the underlying drivers is required. Here, we review both DIPG tumor cell's intrinsic molecular processes and extrinsic environmental factors contributing to DIPG invasion. Importantly, DIPG represents a heterogenous disease and through advances in whole-genome sequencing, different subtypes of disease based on underlying driver mutations are now being recognized. Recent evidence also demonstrates intra-tumor heterogeneity in terms of invasiveness and implies that highly infiltrative tumor subclones can enhance the migratory behavior of neighboring cells. This might partially be mediated by “tumor microtubes,” long membranous extensions through which tumor cells connect and communicate, as well as through the secretion of extracellular vesicles. Some of the described processes involved in invasion are already being targeted in clinical trials. However, more research into the mechanisms of DIPG invasion is urgently needed and might result in the development of an effective therapy for children suffering from this devastating disease. We discuss the implications of newly discovered invasive mechanisms for therapeutic targeting and the challenges therapy development face in light of disease in the developing brain.
Collapse
Affiliation(s)
- T A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - M Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - D G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| |
Collapse
|
26
|
Dituri F, Cossu C, Mancarella S, Giannelli G. The Interactivity between TGFβ and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells 2019; 8:E1130. [PMID: 31547567 PMCID: PMC6829314 DOI: 10.3390/cells8101130] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Transforming Growth Factor beta (TGFβ) and Bone Morphogenic Protein (BMP) pathways intersect at multiple signaling hubs and cooperatively or counteractively participate to bring about cellular processes which are critical not only for tissue morphogenesis and organogenesis during development, but also for adult tissue homeostasis. The proper functioning of the TGFβ/BMP pathway depends on its communication with other signaling pathways and any deregulation leads to developmental defects or diseases, including fibrosis and cancer. In this review we explore the cellular and physio-pathological contexts in which the synergism or antagonism between the TGFβ and BMP pathways are crucial determinants for the normal developmental processes, as well as the progression of fibrosis and malignancies.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Carla Cossu
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
27
|
Tolerability and Safety of a Nutritional Supplement with Potential as Adjuvant in Colorectal Cancer Therapy: A Randomized Trial in Healthy Volunteers. Nutrients 2019; 11:nu11092001. [PMID: 31450563 PMCID: PMC6769991 DOI: 10.3390/nu11092001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Bioactive supplements display relevant therapeutic properties when properly applied according to validated molecular effects. Our previous research efforts established the basis to develop a dietary supplement based on a Rosmarinus officinalis supercritical extract. This was enriched in phenolic diterpenes (RE) with proven properties against signaling pathways involved in colon tumorigenesis, and shark liver oil rich in alkylglycerols (AKG) as a bioactive lipid vehicle to improve RE bioavailability and synergize with the potential therapeutic action of the extract. Herein, we have investigated the tolerability and safety of the supplement and the biological and molecular effects from an immuno-nutritional perspective. Sixty healthy volunteers participated in a six week, double-blind, randomized parallel pilot study with two study arms: RE-AKG capsules (CR) and control capsules (CC). Mean age (±SD) of volunteers was 28.32 (±11.39) and 27.5 (±9.04) for the control and the study groups, respectively. Safety of the CR product consumption was confirmed by analyzing liver profile, vital constants, and oxidation markers (LDLox in blood and isoprostanes and thromboxanes in urine). The following were monitored: (1) the phenotyping of plasmatic leukocytes and the ex vivo response of lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs); (2) expression of genes associated with immune-modulation, inflammation, oxidative stress, lipid metabolism, and tumorigenesis; and (3) the correlation of selected genetic variants (SNPs) with the differential responses among individuals. The lack of adverse effects on liver profile and oxidation markers, together with adequate tolerability and safe immunological adaptations, provide high-quality information for the potential use of CR as co-adjuvant of therapeutic strategies against colorectal cancer.
Collapse
|
28
|
BMP10 suppresses hepatocellular carcinoma progression via PTPRS-STAT3 axis. Oncogene 2019; 38:7281-7293. [PMID: 31417183 DOI: 10.1038/s41388-019-0943-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/03/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic protein 10 (BMP10), one member of the BMP family, is involved in various development events. Dysregulation of BMP10 has been observed in several diseases, including hypertensive cardiac hypertrophy, Hirschsprung disease and blood vessel formation. However, its role in liver cancer remains largely unknown. In this study, we reported that BMP10 was significantly downregulated in HCC at both mRNA and protein level. Decreased BMP10 was associated with bigger tumor size, worse TNM stage, earlier recurrence and poorer survival. BMP10 negatively regulated HCC cell proliferation in vitro and in vivo. Mechanism study revealed that BMP10 suppressed tumor cell growth by inhibiting STAT3 signaling. Interestingly, we found that cytoplasmic BMP10 interacted with both receptor protein tyrosine phosphatase sigma (PTPRS) and STAT3, which facilitated dephosphorylation of STAT3 by PTPRS. Altogether, our study has revealed the clinical significance of BMP10 in HCC, and suppression of HCC cell growth by BMP10 via PTPRS-STAT3 axis, providing a potential therapeutic strategy for targeting STAT3 signaling in HCC.
Collapse
|
29
|
Voutsadakis IA. The pluripotency network in colorectal cancer pathogenesis and prognosis: an update. Biomark Med 2019; 12:653-665. [PMID: 29944017 DOI: 10.2217/bmm-2017-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stemness characteristics are defining properties of cancer initiating cells and are associated with the ability to metastasize and survive in hostile environments. Establishment of the stem cell network depends on the action of a set of core transcription factors that work in concert with other ancillary proteins that are also important during embryonic development. New data consolidate the role of core pluripotency transcription factors OCT4, SOX2 and NANOG as adverse prognostic factors in colorectal cancer. mRNA-binding proteins LIN28 and Musashi, that are associated with stemness, and epigenetic modifiers such as de-acetylase SIRT1 may also have prognostic value in colorectal cancer. This paper provides an update of the stem cell factors in the pathogenesis and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada.,Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
30
|
Abstract
Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding- and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and expectedly powerful therapeutic interference with tumor progression.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany.
| |
Collapse
|
31
|
Zhang L, Wang X, Lai C, Zhang H, Lai M. PMEPA1 induces EMT via a non-canonical TGF-β signalling in colorectal cancer. J Cell Mol Med 2019; 23:3603-3615. [PMID: 30887697 PMCID: PMC6484414 DOI: 10.1111/jcmm.14261] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/27/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
Prostate transmembrane protein androgen induced 1 (PMEPA1) has been reported to promote cancer progression. Metastasis is the main factor leading to cancer progression and poor prognosis, and at the beginning of metastasis, epithelial‐to‐mesenchymal transition (EMT) is a crucial activation. However, the relationship between PMEPA1 and EMT in colorectal cancer metastasis is still poorly understood. In this study, we first testified that PMEPA1 expresses higher in tumour than normal tissue in Gene Expression Omnibus database, in the Cancer Genome Atlas (TCGA) as well as in the clinical data we collected. Moreover, the higher expression was associated with poor prognosis. We furthermore demonstrated PMEPA1 promotes colorectal cancer metastasis and EMT in vivo and in vitro. We found that PMEPA1 activates the bone morphogenetic proteins (BMP) signalling of TGF‐β signalling resulting in promoting EMT and accelerating the proliferation and metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Lei Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xue Wang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chong Lai
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Maode Lai
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Ning J, Zhao Y, Ye Y, Yu J. Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBioMedicine 2019; 41:702-710. [PMID: 30808576 PMCID: PMC6442991 DOI: 10.1016/j.ebiom.2019.02.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023] Open
Abstract
The transforming growth factor β (TGF-β) superfamily participates in tumour proliferation, apoptosis, differentiation, migration, invasion, immune evasion and extracellular matrix remodelling. Genetic deficiency in distinct components of TGF-β and BMP-induced signalling pathways or their excessive activation has been reported to regulate the development and progression of some cancers. As more in-depth studies about this superfamily have been conducted, more evidence suggests that the TGF-β and BMP pathways play an opposing role. The cross-talk of these 2 pathways has been widely studied in kidney disease and bone formation, and the opposing effects have also been observed in some cancers. However, the antagonistic mechanisms are still insufficiently investigated in cancer. In this review, we aim to display more evidences and possible mechanisms accounting for the antagonism between these 2 pathways, which might provide some clues for further study in cancer. Describe the basics of TGF-β and BMP signalling Summarize the potential mechanisms accounting for the antagonism between TGF-β and BMP pathways Provide some evidence about the antagonistic effects between pathways observed in some cancers
Collapse
Affiliation(s)
- Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|
33
|
Cage Subsidence and Fusion Rate in Extreme Lateral Interbody Fusion with and without Fixation. World Neurosurg 2019; 122:e969-e977. [DOI: 10.1016/j.wneu.2018.10.182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 11/19/2022]
|
34
|
Yang L, Shang Z, Long S, Wang N, Shan G, Zhang R. Roles of genetic and microenvironmental factors in cancer epithelial-to-mesenchymal transition and therapeutic implication. Exp Cell Res 2018; 370:190-197. [PMID: 30075173 DOI: 10.1016/j.yexcr.2018.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 01/11/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell-cell contacts resulting in the formation of mesenchymal cells with migratory properties. Increasing evidence indicate EMT plays a key role in the invasion, metastasis and therapeutic resistance of cancer and maintenance of the phenotype of cancer stem cells (CSCs), which makes the prognosis of patients worse. The progression of cancer from epithelial tissue towards a malignant phenotype is driven by multiple factors that remodel the tissue architecture. This review summarizes and analyzes current studies of genetic and microenvironmental factors in inducing and maintaining cancer EMT and therapeutic implications. This will enable a better understanding of the contribution of EMT-associated factors to cancer progression and highlights that genetic factors and tumor microenvironment responsible for EMT could be used as attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Liuqi Yang
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China.
| | - Zhengling Shang
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China
| | - Shiqi Long
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China
| | - Nianxue Wang
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China
| | - Ge Shan
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China
| | - Ruya Zhang
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
35
|
Zhuo C, Hu D, Li J, Yu H, Lin X, Chen Y, Zhuang Y, Li Q, Zheng X, Yang C. Downregulation of Activin A Receptor Type 2A Is Associated with Metastatic Potential and Poor Prognosis of Colon Cancer. J Cancer 2018; 9:3626-3633. [PMID: 30310521 PMCID: PMC6171025 DOI: 10.7150/jca.26790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Aims: Activin A receptor type 2A (ACVR2A) is a membrane receptor in the transforming growth factor- beta (TGF-β signaling pathway, which is involved in the regulation of cell proliferation, migration, and apoptosis. The aim of this study was to examine the expression profiles and biological functions of ACVR2A in colon cancer. Methods: ACVR2A expression was investigated using the GSE39582 database and two validation cohorts. An in vitro study of cell proliferation and migration of human colon cell lines was also performed. Results: In the GSE39582 database (n= 497), expression of ACVR2A mRNA was identified as a prognostic factor by linear regression analysis. In one validation cohort of 15 patients with stage IV cancer, the mRNA expression of ACVR2A was significantly reduced in metastatic lesions and primary tumors compared with adjacent normal controls (P = 0.001). In another validation cohort of tissue microarray (TMA) consisting of 193 cases, reduced ACVR2A protein expression correlated with advanced N stage (P = 0.001) and positive lymphovascular invasion (P = 0.005). Strong correlations between low ACVR2A mRNA or protein expression and worse survival were also observed in the GSE39582 database and the TMA validation cohort (all P < 0.05). Moreover, our in vitro studies showed a remarkable increase in cell migration in ACVR2A knockdown cells. Conclusions: Our findings indicate that loss of ACVR2A has an important role in cancer progression and distant metastasis and may serve as a prognostic marker in patients with colon cancer.
Collapse
Affiliation(s)
- Changhua Zhuo
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China.,Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou 350014, China
| | - Dan Hu
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Jing Li
- Departments of CyberKnife, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Yu
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Xiandong Lin
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Ying Chen
- Department of Clinical Laboratory, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Yong Zhuang
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiongwei Zheng
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Chunkang Yang
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China.,Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou 350014, China
| |
Collapse
|
36
|
Tamura S, Isobe T, Ariyama H, Nakano M, Kikushige Y, Takaishi S, Kusaba H, Takenaka K, Ueki T, Nakamura M, Akashi K, Baba E. E‑cadherin regulates proliferation of colorectal cancer stem cells through NANOG. Oncol Rep 2018; 40:693-703. [PMID: 29845283 PMCID: PMC6072297 DOI: 10.3892/or.2018.6464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer stem cells (CSCs) possess a self-renewal ability and display tumorigenic potential in immunodeficient mice. Colorectal CSCs are thought to be a uniform population and no functionally distinct subpopulations have been identified. Because E-cadherin is an essential molecule for self-renewal of embryonic stem cells, we examined E-cadherin expression, which may play a role in maintaining the properties of CSCs, in EpCAMhigh/CD44+ colorectal CSCs from human primary colorectal cancers. We obtained 18 surgical specimens of human primary colorectal cancer. CD44, EpCAM, and E-cadherin expression were analyzed by fluorescence-activated cell sorting. Sorted EpCAMhigh/CD44+ colorectal CSCs were injected into immunodeficient mice to estimate the tumorigenic potential. Genetic profiles were analyzed by cDNA microarray. Notably, colorectal CSCs could be divided into two populations based on the E-cadherin expression status, and they exhibited different pathological characteristics. Compared to E-cadherin-negative colorectal CSCs, E-cadherin-positive (EC+) colorectal CSCs demonstrated higher tumor growth potential in vivo. EC+ colorectal CSCs revealed a higher expression of the pluripotency factor NANOG, which contributed to the higher tumor growth potential of EC+ colorectal CSCs through control of cyclin D1 expression. These findings are the first demonstration of functionally distinct subpopulations of colorectal CSCs in human clinical samples.
Collapse
Affiliation(s)
- Shingo Tamura
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Taichi Isobe
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Hiroshi Ariyama
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Michitaka Nakano
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | | | - Shigeo Takaishi
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Hitoshi Kusaba
- Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Katsuto Takenaka
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Takashi Ueki
- Department of Surgery and Oncology, Kyushu University, Fukuoka 812‑8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Kyushu University, Fukuoka 812‑8582, Japan
| | - Koichi Akashi
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Eishi Baba
- Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
37
|
Lee HF, Wu CE, Lin YS, Hwang JS, Wu CH, Chu PH. Low bone mineral density may be associated with long-term risk of cancer in the middle-aged population: A retrospective observational study from a single center. J Formos Med Assoc 2018; 117:339-345. [DOI: 10.1016/j.jfma.2017.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/23/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
|
38
|
Zhang L, Ye Y, Long X, Xiao P, Ren X, Yu J. BMP signaling and its paradoxical effects in tumorigenesis and dissemination. Oncotarget 2018; 7:78206-78218. [PMID: 27661009 PMCID: PMC5363655 DOI: 10.18632/oncotarget.12151] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/14/2016] [Indexed: 01/04/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) play important roles in embryonic and postnatal development by regulating cell differentiation, proliferation, motility, and survival, thus maintaining homeostasis during organ and tissue development. BMPs can lead to tumorigenesis and regulate cancer progression in different stages. Therefore, we summarized studies on BMP expression, the clinical significance of BMP dysfunction in various cancer types, and the molecular regulation of various BMP-related signaling pathways. We emphasized on the paradoxical effects of BMPs on various aspects of carcinogenesis, including epithelial–mesenchymal transition (EMT), cancer stem cells (CSCs), and angiogenesis. We also reviewed the molecular mechanisms by which BMPs regulate tumor generation and progression as well as potential therapeutic targets against BMPs that might be valuable in preventing tumor growth and invasion.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Yingnan Ye
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Xinxin Long
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Pei Xiao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jinpu Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China.,Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin, P. R. China
| |
Collapse
|
39
|
Wang MH, Zhou XM, Zhang MY, Shi L, Xiao RW, Zeng LS, Yang XZ, Zheng XFS, Wang HY, Mai SJ. BMP2 promotes proliferation and invasion of nasopharyngeal carcinoma cells via mTORC1 pathway. Aging (Albany NY) 2018; 9:1326-1340. [PMID: 28455969 PMCID: PMC5425130 DOI: 10.18632/aging.101230] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic protein-2 (BMP2) is a secreted protein that highly expressed in a variety of cancers and contributes to cell proliferation, migration, invasiveness, mobility, metastasis and EMT. However, its clinical significance and biological function in nasopharyngeal carcinoma (NPC) remain unknown up to now. Up-regulation of BMP2 was first observed in NPC cell lines by a genome-wide transcriptome analysis in our previous study. In this study, BMP2 mRNA was detected by qRT-PCR and data showed that it was upregulated in NPC compared with non-cancerous nasopharynx samples. Immunohistochemistry (IHC) analysis in NPC specimens revealed that high BMP2 expression was significantly associated with clinical stage, distant metastasis and shorter survival of NPC patients. Moreover, overexpression of BMP2 in NPC cells promoted cell proliferation, migration, invasiveness and epithelial-mesenchymal transition (EMT). Mechanistically, BMP2 overexpression increase phosphorylated protein level of mTOR, S6K and 4EBP1. Correspondingly, mTORC1 inhibitor rapamycin blocked the effect of BMP2 on NPC cell proliferation and invasion. In conclusion, our results suggest that BMP2 overexpression in NPC enhances proliferation, invasion and EMT of tumor cells through the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Meng-He Wang
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiao-Min Zhou
- Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lu Shi
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Si Zeng
- Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Xian-Zi Yang
- Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - X F Steven Zheng
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
40
|
Zhao HJ, Klausen C, Li Y, Zhu H, Wang YL, Leung PCK. Bone morphogenetic protein 2 promotes human trophoblast cell invasion by upregulating N-cadherin via non-canonical SMAD2/3 signaling. Cell Death Dis 2018; 9:174. [PMID: 29416020 PMCID: PMC5833391 DOI: 10.1038/s41419-017-0230-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
BMP2 expression is spatiotemporally correlated with embryo implantation and is crucial for endometrial decidualization and fertility in mice. BMP2 has been reported to increase the mesenchymal adhesion molecule N-cadherin and enhance cell invasion in cancer cells; moreover, studies suggest that N-cadherin promotes placental trophoblast invasion. However, whether BMP2 can promote trophoblast cell invasion during placentation remains unknown. The objective of our study was to investigate the effects of BMP2 on human trophoblast cell invasion and the involvement of N-cadherin and SMAD signaling. Primary and immortalized (HTR8/SVneo) cultures of human extravillous trophoblast (EVT) cells were used as study models. Treatment with recombinant human BMP2 increased HTR8/SVneo cell transwell Matrigel invasion as well as N-cadherin mRNA and protein levels, but had no significant effect on cell proliferation. Likewise, BMP2 treatment enhanced primary human EVT cell invasion and N-cadherin production. Basal and BMP2-induced invasion were attenuated by small interfering RNA-mediated downregulation of N-cadherin in both HTR8/SVneo and primary EVT cells. Intriguingly, BMP2 induced the phosphorylation/activation of both canonical SMAD1/5/8 and non-canonical SMAD2/3 signaling in HTR8/SVneo and primary EVT cells. Knockdown of SMAD2/3 or common SMAD4 totally abolished the effects of BMP2 on N-cadherin upregulation in HTR8/SVneo cells. Upregulation of SMAD2/3 phosphorylation and N-cadherin were totally abolished by type I receptor activin receptor-like kinases 2/3 (ALK2/3) inhibitor DMH1; moreover, knockdown of ALK2 or ALK3 inhibited N-cadherin upregulation. Interestingly, activation of SMAD2/3 and upregulation of N-cadherin were partially attenuated by ALK4/5/7 inhibitor SB431542 or knockdown of ALK4, but not ALK5. Our results show that BMP2 promotes trophoblast cell invasion by upregulating N-cadherin via non-canonical ALK2/3/4-SMAD2/3-SMAD4 signaling.
Collapse
Affiliation(s)
- Hong-Jin Zhao
- Shandong Provincial Hospital affiliated to Shandong University, Ji'nan, PR China, 250021.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Yan Li
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 100101
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4.
| |
Collapse
|
41
|
Mericli F, Becer E, Kabadayı H, Hanoglu A, Yigit Hanoglu D, Ozkum Yavuz D, Ozek T, Vatansever S. Fatty acid composition and anticancer activity in colon carcinoma cell lines of Prunus dulcis seed oil. PHARMACEUTICAL BIOLOGY 2017; 55:1239-1248. [PMID: 28262033 PMCID: PMC6130748 DOI: 10.1080/13880209.2017.1296003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/13/2017] [Indexed: 05/13/2023]
Abstract
CONTEXT Almond oil is used in traditional and complementary therapies for its numerous health benefits due to high unsaturated fatty acids content. OBJECTIVES This study investigated the composition and in vitro anticancer activity of almond oil from Northern Cyprus and compared with almond oil from Turkey. MATERIALS AND METHODS Almond oil from Northern Cyprus was obtained by supercritical CO2 extraction and analyzed by GC-MS. Almond oil of Turkey was provided from Turkish pharmacies. Different concentrations of almond oils were incubated for 24 and 48 h with Colo-320 and Colo-741 cells. Cell growth and cytotoxicity were measured by MTT assays. Anticancer and antiprolifetarive activities of almond oils were investigated by immunocytochemistry using antibodies directed against to BMP-2, β-catenin, Ki-67, LGR-5 and Jagged 1. RESULTS Oleic acid (77.8%; 75.3%), linoleic acid (13.5%; 15.8%), palmitic acid (7.4%; 6.3%), were determined as the major compounds of almond oil from Northern Cyprus and Turkey, respectively. In the MTT assay, both almond oils were found to be active against Colo-320 and Colo-741 cells with 1:1 dilution for both 24 h and 48 h. As a result of immunohistochemical staining, while both almond oils exhibited significant antiproliferative and anticancer activity, these activities were more similar in Colo-320 cells which were treated with Northern Cyprus almond oil. DISCUSSION AND CONCLUSION Almond oil from Northern Cyprus and Turkey may have anticancer and antiproliferative effects on colon cancer cells through molecular signalling pathways and, thus, they could be potential novel therapeutic agents.
Collapse
Affiliation(s)
- Filiz Mericli
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, Near East University, Mersin, Turkey
| | - Eda Becer
- Department of Biochemistry, Faculty of Pharmacy, Near East University, Mersin, Turkey
| | - Hilal Kabadayı
- Department of Histology and Embryology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Azmi Hanoglu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Near East University, Mersin, Turkey
| | - Duygu Yigit Hanoglu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Near East University, Mersin, Turkey
| | - Dudu Ozkum Yavuz
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Near East University, Mersin, Turkey
| | - Temel Ozek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Seda Vatansever
- Department of Histology and Embryology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
- Experimental Health Research Center of Health Sciences, Near East University, Mersin, Turkey
| |
Collapse
|
42
|
Amani H, Ajami M, Nasseri Maleki S, Pazoki-Toroudi H, Daglia M, Tsetegho Sokeng AJ, Di Lorenzo A, Nabavi SF, Devi KP, Nabavi SM. Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants. Biochimie 2017; 142:63-79. [DOI: 10.1016/j.biochi.2017.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
|
43
|
Choi Y, Park J, Ko YS, Kim Y, Pyo JS, Jang BG, Kim MA, Lee JS, Chang MS, Lee BL. FOXO1 reduces tumorsphere formation capacity and has crosstalk with LGR5 signaling in gastric cancer cells. Biochem Biophys Res Commun 2017; 493:1349-1355. [PMID: 28970066 DOI: 10.1016/j.bbrc.2017.09.163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) is a major of cause of cancer-related death and is characterized by its heterogeneity and molecular complexity. FOXO1 is a transcription factor that plays a key role in GC growth and metastasis. However, the implication of FOXO1 in GC cell stemness has been elusive. This study, for the first time, demonstrates that FOXO1 regulates GC cell stemness in association with LGR5. FOXO1 expression was significantly lower in GC tumorsphere cells than in adherent GC cells. FOXO1 silencing and overexpression promoted and inhibited the tumorsphere formation capacity of GC cells, respectively. Additionally, there was an inverse correlation between FOXO1 and GC stem cell marker LGR5 in human GC specimens. Further in vitro and in vivo experiments showed that negative crosstalk between these two molecules exists and that LGR5 silencing reversed the FOXO1 shRNA-induced tumorsphere formation even without FOXO1 restoration. Taken together, our results suggest that FOXO1 inhibits the self-renewal capacity of GC cells through interaction with LGR5. Thus, FOXO1/LGR5 signaling pathway may provide a novel targeted therapy for GC.
Collapse
Affiliation(s)
- Yiseul Choi
- Department of Tumor Biology (Cancer Research Institute), Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jinju Park
- Department of Tumor Biology (Cancer Research Institute), Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Young San Ko
- Department of Forensic Medicine, National Forensic Service Busan Institute, Yangsan 50612, South Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, South Korea
| | - Bo Gun Jang
- Department of Pathology, Jeju National University Hospital, Jeju 63241, South Korea
| | - Min A Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jae-Seon Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, South Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Byung Lan Lee
- Department of Tumor Biology (Cancer Research Institute), Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul 03080, South Korea; Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
44
|
Ampuja M, Kallioniemi A. Transcription factors-Intricate players of the bone morphogenetic protein signaling pathway. Genes Chromosomes Cancer 2017; 57:3-11. [DOI: 10.1002/gcc.22502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- M. Ampuja
- BioMediTech Institute and Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
- Fimlab Laboratories; Tampere Finland
| |
Collapse
|
45
|
Martínez VG, Rubio C, Martínez-Fernández M, Segovia C, López-Calderón F, Garín MI, Teijeira A, Munera-Maravilla E, Varas A, Sacedón R, Guerrero F, Villacampa F, de la Rosa F, Castellano D, López-Collazo E, Paramio JM, Vicente Á, Dueñas M. BMP4 Induces M2 Macrophage Polarization and Favors Tumor Progression in Bladder Cancer. Clin Cancer Res 2017; 23:7388-7399. [DOI: 10.1158/1078-0432.ccr-17-1004] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/21/2017] [Accepted: 09/12/2017] [Indexed: 11/16/2022]
|
46
|
Huang P, Chen A, He W, Li Z, Zhang G, Liu Z, Liu G, Liu X, He S, Xiao G, Huang F, Stenvang J, Brünner N, Hong A, Wang J. BMP-2 induces EMT and breast cancer stemness through Rb and CD44. Cell Death Discov 2017; 3:17039. [PMID: 28725489 PMCID: PMC5511860 DOI: 10.1038/cddiscovery.2017.39] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) has been reported to facilitate epithelial-to-mesenchymal transition (EMT) and bone metastasis in breast cancer xenograft models. To investigate the role of BMP-2 in the development of breast cancer stem cells (BCSCs), and to further elucidate the mechanisms underlying its influence on breast cancer metastasis, we conducted a comprehensive molecular study using breast cancer cell lines and clinical samples. Our results showed that downregulation of Rb by BMP-2 was associated with ubiquitin-mediated degradation activated by phosphorylation of Rb via the PI3K/AKT signal pathway. In addition, the Smad signaling pathways are implicated in upregulation of CD44 protein expression by BMP-2. It was suggested that cross-talk exists between Rb and CD44 signaling pathways, as recombinant human BMP-2 (rhBMP-2) was found to regulate CD44 expression partly through Rb signals. In clinical tissues, BMP-2 was positively and negatively correlated with CD44 and Rb expression, respectively. Based on the in vitro and in vivo results, we have established an integrated mechanism by which rhBMP-2 induces EMT and stemness of breast cancer cells via the Rb and CD44 signaling pathways, which then contribute to breast cancer metastasis. These findings may be helpful for developing new strategies for the treatment and prognosis of advanced breast cancer.
Collapse
Affiliation(s)
- Peide Huang
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.,Section for Molecular Disease Biology, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anan Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park Luogang, Guangzhou 510530, China
| | - Weiyi He
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhen Li
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guanglin Zhang
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhong Liu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ge Liu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xueting Liu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuilian He
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gang Xiao
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Feicheng Huang
- Department of Chemistry and Institute for Nano-Chemistry, Jinan University, Guangzhou 510632, China
| | - Jan Stenvang
- Section for Molecular Disease Biology, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nils Brünner
- Section for Molecular Disease Biology, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - An Hong
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ju Wang
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
47
|
Qureshi-Baig K, Ullmann P, Haan S, Letellier E. Tumor-Initiating Cells: a criTICal review of isolation approaches and new challenges in targeting strategies. Mol Cancer 2017; 16:40. [PMID: 28209178 PMCID: PMC5314476 DOI: 10.1186/s12943-017-0602-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Most cancers contain a subpopulation of highly tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Targeting TICs may be essential to achieve cure, because of their self-renewal and tumorigenic properties as well as their resistance to conventional therapies. Despite significant advances in TIC biology, their isolation and identification remain largely disputed and incompletely established. In this review, we discuss the latest developments in isolation and culturing approaches of TICs, with focus on colorectal cancer (CRC). We feature recent findings on TIC-relevant signaling pathways and the metabolic identity of TICs, as well as their current clinical implications. Lastly, we highlight the influence of inter- and intra-tumoral heterogeneity on TIC function and targeting approaches.
Collapse
Affiliation(s)
- Komal Qureshi-Baig
- Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, 6, Avenue du Swing, L-4367, Campus Belval, Belvaux, Luxembourg
| | - Pit Ullmann
- Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, 6, Avenue du Swing, L-4367, Campus Belval, Belvaux, Luxembourg
| | - Serge Haan
- Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, 6, Avenue du Swing, L-4367, Campus Belval, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, 6, Avenue du Swing, L-4367, Campus Belval, Belvaux, Luxembourg.
| |
Collapse
|
48
|
Zuo WH, Zeng P, Chen X, Lu YJ, Li A, Wu JB. Promotive effects of bone morphogenetic protein 2 on angiogenesis in hepatocarcinoma via multiple signal pathways. Sci Rep 2016; 6:37499. [PMID: 27886213 PMCID: PMC5122863 DOI: 10.1038/srep37499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/27/2016] [Indexed: 01/30/2023] Open
Abstract
The effects of Bone morphogenetic protein 2 (BMP-2) on the angiogenesis of hepatocellular carcinoma have not yet been observed and its molecular mechanisms is not clear. We first constructed the recombinant lentivirus vectors expressing small hairpin RNA against BMP-2 gene (LV-SH-BMP2) and the recombinant lentivirus vectors over-expressing BMP-2 (overexpression-LV-BMP2), and then the two recombinant lentivirus vectors were respectively transfected into Hep G2 cells. The Hep G2 cells transfected with LV-SH-BMP2 or overexpression-LV-BMP2 were respectively co-cultured with human umbilical vein endothelial cells (HUVECs) to observe the effects of BMP-2 on HUVECs. The effect of BMP-2 on tumor microvessel density (MVD) was examined. The abilities of proliferation, migration and angiogenesis were significantly inhibited in the HUVECs co-cultured with BMP-2 knockdown Hep G2 (all P < 0.05), but significantly enhanced in the HUVECs co-cultured with BMP-2 overexpression Hep G2 (all P < 0.05). MVD was significantly increased in overexpression-LV-BMP2-transfected Hep G2 tumor, but decreased in LV-SH-BMP2-transfected Hep G2 tumors. The protein expressions of VEGF, p-P38, p-ERK, p-AKT, p-m-TOR were significantly increased after BMP-2 over-expression, or significantly decreased after BMP-2 knockdown (all P < 0.05). These results reveal that BMP-2 can enhance HUVEC proliferation, migration and angiogenesis through P38, ERK and Akt/m-TOR pathway.
Collapse
Affiliation(s)
- Wei-Han Zuo
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Peng Zeng
- Department of emergency, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xi Chen
- Department of burns, the first Affiliated Hospital, Nanchang University, Nanchang 330006, China
| | - Yan-Jun Lu
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - An Li
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jian-Bin Wu
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
49
|
Du L, Yamamoto S, Burnette BL, Huang D, Gao K, Jamshidi N, Kuo MD. Transcriptome profiling reveals novel gene expression signatures and regulating transcription factors of TGFβ-induced epithelial-to-mesenchymal transition. Cancer Med 2016; 5:1962-72. [PMID: 27318801 PMCID: PMC4971924 DOI: 10.1002/cam4.719] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/04/2016] [Accepted: 02/20/2016] [Indexed: 12/13/2022] Open
Abstract
Dysregulated epithelial to mesenchymal transition (EMT) in cancer cells endows invasive and metastatic properties upon cancer cells that favor successful colonization of distal target organs and therefore play a critical role in transforming early-stage carcinomas into invasive malignancies. EMT has also been associated with tumor recurrence and drug resistance and cancer stem cell initiation. Therefore, better understanding of the mechanisms behind EMT could ultimately contribute to the development of novel prognostic approaches and individualized therapies that specifically target EMT processes. As an effort to characterize the central transcriptome changes during EMT, we have developed a Transforming growth factor (TGF)-beta-based in vitro EMT model and used it to profile EMT-related gene transcriptional changes in two different cell lines, a non-small cell lung cancer cell line H358, and a breast cell line MCF10a. After 7 days of TGF-beta/Oncostatin M (OSM) treatment, changes in cell morphology to a mesenchymal phenotype were observed as well as concordant EMT-associated changes in mRNA and protein expression. Further, increased motility was noted and flow cytometry confirmed enrichment in cancer stem cell-like populations. Microarray-based differential expression analysis identified an EMT-associated gene expression signature which was confirmed by RT-qPCR and which significantly overlapped with a previously published EMT core signature. Finally, two novel EMT-regulating transcription factors, IRF5 and LMCD1, were identified and independently validated.
Collapse
Affiliation(s)
- Liutao Du
- Department of Radiology, The David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Shota Yamamoto
- Department of Radiology, The David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Barry L Burnette
- Department of Radiology, The David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Danshang Huang
- Department of Radiology, The David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Kun Gao
- Department of Neurology, UCLA, Los Angeles, California, 90095
| | - Neema Jamshidi
- Department of Radiology, The David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Michael D Kuo
- Department of Radiology, The David Geffen School of Medicine at UCLA, Los Angeles, California, 90095.,Department of Bioengineering, University of California-Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
50
|
Kanda M, Shimizu D, Fujii T, Tanaka H, Shibata M, Iwata N, Hayashi M, Kobayashi D, Tanaka C, Yamada S, Nakayama G, Sugimoto H, Koike M, Fujiwara M, Kodera Y. Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer. Int J Oncol 2016; 49:1195-202. [PMID: 27315569 DOI: 10.3892/ijo.2016.3584] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/31/2016] [Indexed: 11/06/2022] Open
Abstract
Identification of novel gastric cancer (GC)-related molecules is necessary to improve management of patients with GC in both diagnostic and therapeutic aspects. The aim of the present study was to determine whether protein arginine methyltransferase 5 (PRMT5) acts as an oncogene in the progression of GC and whether it serves as a novel diagnostic marker and therapeutic target. We conducted global expression profiling of GC cell lines and RNA interference experiments to evaluate the effect of PRMT5 expression on the phenotype of GC cells. We analysed tissues of 179 patients with GC to assess the association of PRMT5 mRNA levels with clinicopathological factors. Differential expression of PRMT5 mRNA by GC cell lines correlated positively with the levels of GEMIN2, STAT3 and TGFB3. PRMT5 knockdown reduced the proliferation, invasion and migration of a GC cell line. PRMT5 mRNA levels were significantly higher in GC tissues than the corresponding adjacent normal tissues and were independent of tumour depth, differentiation and lymph node metastasis. High PRMT5 expression was an independent risk factor of positive peritoneal lavage cytology (odds ratio 3.90, P=0.003) and decreased survival. PRMT5 enhances the malignant phenotype of GC cell lines and its expression in gastric tissues may serve as a biomarker for patient stratification and a potential target of therapy.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiro Shibata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Naoki Iwata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|