1
|
Zehra K, Banu A, Can E, Hülya C. Fisetin and/or capecitabine causes changes in apoptosis pathways in capecitabine-resistant colorectal cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7913-7926. [PMID: 38748229 PMCID: PMC11449987 DOI: 10.1007/s00210-024-03145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 10/04/2024]
Abstract
Capecitabine is recommended as one of the first-line chemotherapy treatments for advanced or metastatic colorectal cancer. Researches have been conducted on capecitabine's impact on the viability of human colon cancer cells and its potential to induce apoptosis. However, even in cases initially responsive to treatment, the development of acquired resistance significantly limits its efficacy. Challenges still exist in effectively treating patients with chemotherapy, and developing new cytotoxic drugs is hindered by drug resistance. Fisetin alters the cell cycle, inducing apoptosis, inhibiting cancer cell proliferation, and enhancing the therapeutic effectiveness of chemotherapy drugs. This work aims to create a plan for reversing capecitabine resistance. For this purpose, the role of capecitabine and/or fisetin combinations in cell proliferation and apoptosis has been determined in both wild-type and capecitabine-resistant HT29 cells (CR/HT29). We developed capecitabine-resistant cell line from wild-type HT29 cells. This study demonstrated the effects of capecitabine, fisetin, and their combinations on both resistant and wild-type cells through experiments including cell survival skills, cell proliferation, wound healing, colony formation, hoechst staining, and western blot analysis. We established capecitabine-resistant cell lines. P-gp expression increased in CR/HT29 cells. Capecitabine effects on a CR/HT29 cells less than wild-type HT29 cells. The combination of fisetin and capecitabine in cell proliferation caused greater reductions in wild-type HT29 cells than in capecitabine-resistant cells. Fisetin has also additive effects on the apoptotic pathway in CR/HT29 cells. This study provides new perspectives on the combination of capecitabine and/or flavonoid treatment in resistant cells.
Collapse
Affiliation(s)
- Kanli Zehra
- Institute of Health Sciences, Marmara University, Basibuyuk-Maltepe, Istanbul, 34854, Turkey
| | - Aydin Banu
- School of Medicine, Department of Biophysics, Marmara University, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey
| | - Erzik Can
- School of Medicine, Department of Medical Biology, Marmara University, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey
| | - Cabadak Hülya
- School of Medicine, Department of Biophysics, Marmara University, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey.
| |
Collapse
|
2
|
Klekowski J, Chabowski M. Nutritional Strategy for Cancer-From Prevention to Aftercare. Nutrients 2024; 16:1437. [PMID: 38794675 PMCID: PMC11123879 DOI: 10.3390/nu16101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, there has been a noteworthy increase in the efficacy of oncological treatments for a variety of neoplasms, which has improved the overall results and survival rates in cancer therapy [...].
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wroclaw University of Science and Technology, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
El-Masry TA, El-Nagar MMF, El Mahdy NA, Alherz FA, Taher R, Osman EY. Potential Antitumor Activity of Combined Lycopene and Sorafenib against Solid Ehrlich Carcinoma via Targeting Autophagy and Apoptosis and Suppressing Proliferation. Pharmaceuticals (Basel) 2024; 17:527. [PMID: 38675487 PMCID: PMC11055160 DOI: 10.3390/ph17040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
An FDA-approved kinase inhibitor called sorafenib (SOR) is used to treat primary kidney and liver cancer as well as to stop the spread of advanced breast cancer. Side effects from SOR, such as palmar-plantar erythrodysesthesia syndrome, can negatively impact an individual's quality of life. There are a lot of data supporting the importance of lycopene (LYC) in preventing cancer. The antitumor properties of the combination of sorafenib and lycopene were examined in this study. A viability test against MDA-MB-231 was used to assess the anticancer efficacy of sorafenib, lycopene, and their combination in vitro. Moreover, a cell cycle analysis and Annexin-V/PI double staining were performed by using flow cytometry. In addition, the protein level of JNK-1, ERK-1, Beclin-1, P38, and P53 of the MDA-MB-231 cell line was estimated using ELISA kits. In addition, mice with SEC were divided into four equal groups at random (n = 10) to investigate the possible processes underlying the in vivo antitumor effect. Group IV (SEC-SOR-LYC) received SOR (30 mg/kg/day, p.o.) and LYC (20 mg/kg/day, p.o.); Group I received the SEC control; Group II received SEC-SOR (30 mg/kg/day, p.o.); and Group III received SEC-LYC (20 mg/kg/day, p.o.). The findings demonstrated that the combination of sorafenib and lycopene was superior to sorafenib and lycopene alone in causing early cell cycle arrest, suppressing the viability of cancer cells, and increasing cell apoptosis and autophagy. Likewise, the combination of sorafenib and lycopene demonstrated inhibition of the levels of Bcl-2, Ki-67, VEGF, IL-1β, and TNF-α protein. Otherwise, the quantities of the proteins BAX, P53, and caspase 3 were amplified. Furthermore, the combined treatment led to a substantial increase in TNF-α, caspase 3, and VEGF gene expression compared to the equivalent dosages of monotherapy. The combination of sorafenib and lycopene enhanced apoptosis and reduced inflammation, as seen by the tumor's decreased weight and volume, hence demonstrating its potential anticancer effect.
Collapse
Affiliation(s)
- Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Nageh A. El Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Fatemah A. Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Reham Taher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Enass Y. Osman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| |
Collapse
|
4
|
Kumar M, Gupta S, Kalia K, Kumar D. Role of Phytoconstituents in Cancer Treatment: A Review. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:115-137. [PMID: 38369892 DOI: 10.2174/012772574x274566231220051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024]
Abstract
Over the years, natural compounds have become a significant advancement in cancer treatment, primarily due to their effectiveness, safety, bio-functionality, and wide range of molecular structures. They are now increasingly preferred in drug discovery due to these attributes. These compounds, whether occurring naturally or with synthetic modifications, find applications in various fields like biology, medicine, and engineering. While chemotherapy has been a successful method for treating cancer, it comes with systemic toxicity. To address this issue, researchers and medical practitioners are exploring the concept of combinational chemotherapy. This approach aims to reduce toxicity by using a mix of natural substances and their derivatives in clinical trials and prescription medications. Among the most extensively studied natural anticancer compounds are quercetin, curcumin, vincristine, and vinblastine. These compounds play crucial roles as immunotherapeutics and chemosensitizers, both as standalone treatments and in combination therapies with specific mechanisms. This review article provides a concise overview of the functions, potentials, and combinations of natural anticancer compounds in cancer treatment, along with their mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| | | | | | - Dharmendra Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| |
Collapse
|
5
|
Markowska A, Antoszczak M, Kacprzak K, Markowska J, Huczyński A. Role of Fisetin in Selected Malignant Neoplasms in Women. Nutrients 2023; 15:4686. [PMID: 37960338 PMCID: PMC10648688 DOI: 10.3390/nu15214686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
A promising therapeutic window and cost-effectiveness are just two of the potential advantages of using naturally derived drugs. Fisetin (3,3',4',7-tetrahydroxyflavone) is a natural flavonoid of the flavonol group, commonly found in fruit and vegetables. In recent years, fisetin has gained wide attention across the scientific community because of its broad spectrum of pharmacological properties, including cytotoxic activity against most abundant cancers. By stimulating or inhibiting selected molecular targets or biochemical processes, fisetin could affect the reduction of metastasis or cancer progression, which indicates its chemotherapeutic or chemopreventive role. In this review, we have summarized the results of studies on the anticancer effects of fisetin on selected female malignancies, both in in vitro and in vivo tests, i.e., breast, cervical, and ovarian cancer, published over the past two decades. Until now, no article dedicated exclusively to the action of fisetin on female malignancies has appeared. This review also describes a growing number of nanodelivery systems designed to improve the bioavailability and solubility of this natural compound. The reported low toxicity and activity of fisetin on cancer cells indicate its valuable potential, but large-scale clinical trials are urgently needed to assess real chemotherapeutic efficacy of this flavonoid.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland;
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.A.); (K.K.)
| | - Karol Kacprzak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.A.); (K.K.)
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.A.); (K.K.)
| |
Collapse
|
6
|
Qaed E, Al-Hamyari B, Al-Maamari A, Qaid A, Alademy H, Almoiliqy M, Munyemana JC, Al-Nusaif M, Alafifi J, Alyafeai E, Safi M, Geng Z, Tang Z, Ma X. Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies. Glob Med Genet 2023; 10:205-220. [PMID: 37565061 PMCID: PMC10412067 DOI: 10.1055/s-0043-1772219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Background Cancer remains a critical global health challenge and a leading cause of mortality. Flavonoids found in fruits and vegetables have gained attention for their potential anti-cancer properties. Fisetin, abundantly present in strawberries, apples, onions, and other plant sources, has emerged as a promising candidate for cancer prevention. Epidemiological studies linking a diet rich in these foods to lower cancer risk have sparked extensive research on fisetin's efficacy. Objective This review aims to comprehensively explore the molecular mechanisms of fisetin's anticancer properties and investigate its potential synergistic effects with other anticancer drugs. Furthermore, the review examines the therapeutic and preventive effects of fisetin against various cancers. Methods A systematic analysis of the available scientific literature was conducted, including research articles, clinical trials, and review papers related to fisetin's anticancer properties. Reputable databases were searched, and selected studies were critically evaluated to extract essential information on fisetin's mechanisms of action and its interactions with other anticancer drugs. Results Preclinical trials have demonstrated that fisetin inhibits cancer cell growth through mechanisms such as cell cycle alteration, induction of apoptosis, and activation of the autophagy signaling pathway. Additionally, fisetin reduces reactive oxygen species levels, contributing to its overall anticancer potential. Investigation of its synergistic effects with other anticancer drugs suggests potential for combination therapies. Conclusion Fisetin, a bioactive flavonoid abundant in fruits and vegetables, exhibits promising anticancer properties through multiple mechanisms of action. Preclinical trials provide a foundation for further exploration in human clinical trials. Understanding fisetin's molecular mechanisms is vital for developing novel, safe, and effective cancer prevention and treatment strategies. The potential synergy with other anticancer drugs opens new avenues for combination therapies, enhancing cancer management approaches and global health outcomes.
Collapse
Affiliation(s)
- Eskandar Qaed
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Bandar Al-Hamyari
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, People's Republic of China
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Russia
| | - Haneen Alademy
- Taiz University Faculty of Medicine and Health Science, Yemen
| | - Marwan Almoiliqy
- Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jean Claude Munyemana
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Murad Al-Nusaif
- Department of Neurology and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| | - Jameel Alafifi
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, People's Republic of China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Mohammed Safi
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| | - Zhaohong Geng
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Zeyao Tang
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaodong Ma
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
7
|
Hosseinzadeh A, Poursoleiman F, Biregani AN, Esmailzadeh A. Flavonoids target different molecules of autophagic and metastatic pathways in cancer cells. Cancer Cell Int 2023; 23:114. [PMID: 37308913 DOI: 10.1186/s12935-023-02960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Despite the success of cancer therapy, it has encountered a major obstacle due to the complicated nature of cancer, namely resistance. The recurrence and metastasis of cancer occur when anti-cancer therapeutic agents fail to eradicate all cancer cells. Cancer therapy aims to find the best agent that targets all cancer cells, including those sensitive or resistant to treatment. Flavonoids, natural products from our diet, show anti-cancer effects in different studies. They can inhibit metastasis and the recurrence of cancers. This review discusses metastasis, autophagy, anoikis in cancer cells, and their dynamic relationship. We present evidence that flavonoids can block metastasis and induce cell death in cancer cells. Our research suggests that flavonoids can serve as potential therapeutic agents in cancer therapy.
Collapse
Affiliation(s)
- Aysooda Hosseinzadeh
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Faezeh Poursoleiman
- Department of Cellular and Molecular Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Naghdipour Biregani
- Department of Nutrition, School of Health, Shahid Sadoughi University of Medical Scinences, Yazd, Iran
| | - Ahmad Esmailzadeh
- Students' Scientific Center, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Basu A, Namporn T, Ruenraroengsak P. Critical Review in Designing Plant-Based Anticancer Nanoparticles against Hepatocellular Carcinoma. Pharmaceutics 2023; 15:1611. [PMID: 37376061 DOI: 10.3390/pharmaceutics15061611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for 85% of liver cancer cases, continues to be the third leading cause of cancer-related deaths worldwide. Although various forms of chemotherapy and immunotherapy have been investigated in clinics, patients continue to suffer from high toxicity and undesirable side effects. Medicinal plants contain novel critical bioactives that can target multimodal oncogenic pathways; however, their clinical translation is often challenged due to poor aqueous solubility, low cellular uptake, and poor bioavailability. Nanoparticle-based drug delivery presents great opportunities in HCC therapy by increasing selectivity and transferring sufficient doses of bioactives to tumor areas with minimal damage to adjacent healthy cells. In fact, many phytochemicals encapsulated in FDA-approved nanocarriers have demonstrated the ability to modulate the tumor microenvironment. In this review, information about the mechanisms of promising plant bioactives against HCC is discussed and compared. Their benefits and risks as future nanotherapeutics are underscored. Nanocarriers that have been employed to encapsulate both pure bioactives and crude extracts for application in various HCC models are examined and compared. Finally, the current limitations in nanocarrier design, challenges related to the HCC microenvironment, and future opportunities are also discussed for the clinical translation of plant-based nanomedicines from bench to bedside.
Collapse
Affiliation(s)
- Aalok Basu
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Thanaphon Namporn
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Pakatip Ruenraroengsak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Cyanidin-3-O-Glucoside Induces the Apoptosis of Human Gastric Cancer MKN-45 Cells through ROS-Mediated Signaling Pathways. Molecules 2023; 28:molecules28020652. [PMID: 36677726 PMCID: PMC9860697 DOI: 10.3390/molecules28020652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/25/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G), an active ingredient in anthocyanins, mainly exists in dark cereals. C3G was investigated for its effect on human gastric cancer (GC) cells, together with its molecular mechanism. The CCK-8 assay results showed that C3G had significant antiproliferative effects on GC cells, but it had little effect on normal cells. Western blot and flow cytometry results showed that C3G regulated the reduction of mitochondrial membrane potential and arrested the cell cycle in the G2/M phase through the AKT signaling pathway, causing the cells to undergo apoptosis. Additionally, in MKN-45 cells, C3G markedly raised intracellular reactive oxygen species (ROS) levels. The wound healing assay and Transwell assay results showed that MKN-45 cell migration was significantly inhibited. Western blot results showed that the expression of E-cadherin protein was upregulated and the expressions of β-catenin, N-cadherin, and Vimentin were downregulated. Additionally, following N-acetylcysteine treatment, the expression levels of these proteins were reduced. In conclusion, C3G caused MKN-45 cells to undergo apoptosis; arrested the cell cycle in the G2/M phase; hindered cell migration; and activated the MAPK, STAT3, and NF-κB signaling pathways, by inducing an increase in ROS levels. Thus, C3G may be a promising new medication for the treatment of GC.
Collapse
|
10
|
Rahmani AH, Almatroudi A, Allemailem KS, Khan AA, Almatroodi SA. The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249009. [PMID: 36558146 PMCID: PMC9782831 DOI: 10.3390/molecules27249009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a main culprit and the second-leading cause of death worldwide. The current mode of treatment strategies including surgery with chemotherapy and radiation therapy may be effective, but cancer is still considered a major cause of death. Plant-derived products or their purified bioactive compounds have confirmed health-promoting effects as well as cancer-preventive effects. Among these products, flavonoids belong to polyphenols, chiefly found in fruits, vegetables and in various seeds/flowers. It has been considered to be an effective antioxidant, anti-inflammatory and to play a vital role in diseases management. Besides these activities, flavonoids have been revealed to possess anticancer potential through the modulation of various cell signaling molecules. In this regard, fisetin, a naturally occurring flavonoid, has a confirmed role in disease management through antioxidant, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential. As well, its cancer-preventive effects have been confirmed via modulating various cell signaling pathways including inflammation, apoptosis, angiogenesis, growth factor, transcription factor and other cell signaling pathways. This review presents an overview of the anti-cancer potential of fisetin in different types of cancer through the modulation of cell signaling pathways based on in vivo and in vitro studies. A synergistic effect with anticancer drugs and strategies to improve the bioavailability are described. More clinical trials need to be performed to explore the anti-cancer potential and mechanism-of-action of fisetin and its optimum therapeutic dose.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
- Correspondence:
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
11
|
Sabarwal A, van Rooyen JC, Caburet J, Avgenikos M, Dheeraj A, Ali M, Mishra D, de Meester JSB, Stander S, van Otterlo WAL, Kaschula CH, Singh RP. A novel 4'-brominated derivative of fisetin induces cell cycle arrest and apoptosis and inhibits EGFR/ERK1/2/STAT3 pathways in non-small-cell lung cancer without any adverse effects in mice. FASEB J 2022; 36:e22654. [PMID: 36421014 DOI: 10.1096/fj.202200669rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022]
Abstract
The therapeutic toxicity and resistance to currently available treatment options are major clinical challenges for the management of lung cancer. As a novel strategy, we synthesized analogues of a known flavonol, fisetin, which has shown anti-tumorigenic potential against cancer in cell culture with no adverse effects in animal models. We studied the synthetic analogues of fisetin for their anti-cancer potential against lung cancer cells, toxicity in mice and efficacy in a xenograft model. Brominated fisetin analogues were screened for their effects on the viability of A549 and H1299 lung cancer cells, and three analogues (3a, 3b, 3c), showed improved activity compared to fisetin. These analogues were more effective in restricting lung cancer cell proliferation, inducing G2 M phase cell cycle arrest and apoptosis. The fisetin analogues also downregulated EGFR/ERK1/2/STAT3 pathways. Fisetin analogue-induced apoptosis was accompanied by a higher Bax to Bcl-2 expression ratio. Based on the in vitro studies, the most effective fisetin analogue 3b was evaluated for in vivo toxicity, wherein it did not show any hepatotoxicity or adverse health effects in mice. Furthermore, analogue 3b showed greater antitumor efficacy (p < .001) as compared to its parent compound fisetin in a human lung cancer cell xenograft study in athymic mice. Together, our data suggest that the novel fisetin analogue 3b is more effective in restricting lung cancer cell growth, both in vitro as well as in vivo, without any apparent toxicity, supporting its further development as a novel anti-lung cancer agent.
Collapse
Affiliation(s)
- Akash Sabarwal
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jaco C van Rooyen
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa
| | - Jeremy Caburet
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa.,Sigma Clermont, Université Clermont Auvergne, Aubière, France
| | - Moscos Avgenikos
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa
| | - Arpit Dheeraj
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deepali Mishra
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Joséphine S B de Meester
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa.,Faculté des Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Saskia Stander
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
13
|
Qi X, Jiang L, Cao J. Senotherapies: A novel strategy for synergistic anti-tumor therapy. Drug Discov Today 2022; 27:103365. [PMID: 36115631 DOI: 10.1016/j.drudis.2022.103365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
Cellular senescence was initially considered an effective antitumor mechanism, and senescence-induced therapy has previously been regarded as an efficient treatment. However, increasing studies have discovered that persistent senescent cells (SNCs) might have unanticipated negative repercussions for antitumor treatment. The long-term build-up of SNCs exacerbates toxic side effects, treatment resistance, and poor prognosis, and tumor cells that undergo senescence escape can acquire stemness to repopulate the tumor, leading to cancer recurrence. Thus, senotherapies that eliminate SNCs could be used as a new strategy for synergistic antitumor therapy. In this review, we summarize the adverse effects of SNCs in tumor development and the mechanisms by which senescent tumor cells escape senescence, discuss the relationship between senescence and polyploidy, and highlight the potential of senotherapies as an emerging adjuvant antitumor treatment strategy. Such a strategy is expected to provide new approaches for antitumor drug development from the perspective of cellular senescence.
Collapse
Affiliation(s)
- Xuxin Qi
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Li Jiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China.
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China; Cancer Center of Zhejiang University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
15
|
Kubina R, Krzykawski K, Kabała-Dzik A, Wojtyczka RD, Chodurek E, Dziedzic A. Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review. Nutrients 2022; 14:2604. [PMID: 35807785 PMCID: PMC9268460 DOI: 10.3390/nu14132604] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Diet plays a crucial role in homeostasis maintenance. Plants and spices containing flavonoids have been widely used in traditional medicine for thousands of years. Flavonols present in our diet may prevent cancer initiation, promotion and progression by modulating important enzymes and receptors in signal transduction pathways related to proliferation, differentiation, apoptosis, inflammation, angiogenesis, metastasis and reversal of multidrug resistance. The anticancer activity of fisetin has been widely documented in numerous in vitro and in vivo studies. This review summarizes the worldwide, evidence-based research on the activity of fisetin toward various types of cancerous conditions, while describing the chemopreventive and therapeutic effects, molecular targets and mechanisms that contribute to the observed anticancer activity of fisetin. In addition, this review synthesized the results from preclinical studies on the use of fisetin as an anticancer agent. Based on the available literature, it might be suggested that fisetin has a bioactive potential to become a complementary drug in the prevention and treatment of cancerous conditions. However, more in-depth research is required to validate current data, so that this compound or its derivatives can enter the clinical trial phase.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
| | - Robert D. Wojtyczka
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland;
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 17 Akademicki Sq., 41-902 Bytom, Poland;
| |
Collapse
|
16
|
Chan YP, Chuang CH, Lee I, Yang NC. Lycopene in Combination With Sorafenib Additively Inhibits Tumor Metastasis in Mice Xenografted With Lewis Lung Carcinoma Cells. Front Nutr 2022; 9:886988. [PMID: 35711540 PMCID: PMC9197118 DOI: 10.3389/fnut.2022.886988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer metastasis is the leading cause of death in cancer patients. However, it is unclear whether lycopene can act as an adjuvant to increase the anti-metastatic activity of anticancer drugs. Here, we examined the anti-lung-metastatic effects and the mechanism of lycopene in combination with sorafenib in C57BL/6 mice xenografted with Lewis lung carcinoma (LLC) cells. The mice were divided into five groups: (1) tumor control; (2) lycopene (5 mg/kg); (3) sorafenib (30 mg/kg); (4) lycopene (2 mg/kg) + sorafenib (30 mg/kg); (5) lycopene (5 mg/kg) + sorafenib (30 mg/kg). The results showed that lycopene reduced the number of metastatic tumors in the lungs, which was further suppressed by the combined treatment with sorafenib. The activities of matrix metalloproteinase (MMP)-2 and−9 were further inhibited and TIMP-1 and−2, and NM23-H1, the MMPs negative modulators, were further activated in the combined treatment. Mechanistically, we found that lycopene and sorafenib could additively inhibit the mitogen-activated protein kinase (MAPK) pathways, as shown by the protein phosphorylation of ERK1/2, JNK1/2 and p38 were reduced additively. Overall, the present study demonstrates that lycopene in combination with sorafenib additively inhibits the lung metastasis of tumor, indicating lycopene has potential as an adjuvant for sorafenib in cancer treatment.
Collapse
Affiliation(s)
- Ya-Ping Chan
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | - Inn Lee
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Nae-Cherng Yang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
17
|
Li YQ, Chen CM, Liu N, Wang L. Cadmium-induced ultrastructural changes and apoptosis in the gill of freshwater mussel Anodonta woodiana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23338-23351. [PMID: 34811609 DOI: 10.1007/s11356-021-16877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the acute toxicity of cadmium (Cd) to the freshwater mussel Anodonta woodiana. The freshwater mussels were exposed to five concentrations of Cd (0 mg/L, 8.43 mg/L, 16.86 mg/L, 33.72 mg/L, and 67.45 mg/L) for up to 96 h. The 24-h, 48-h, 72-h, and 96-h LC50 values for Cd were estimated as 562.3 mg/L, 331.1 mg/L, 182.0 mg/L, and 134.9 mg/L, respectively. Caspase-3, caspase-8, caspase-9, and Ca-ATPase activities; protein and H2O2 levels; DNA fragmentation; and ultrastructure of the gill were also investigated. The activities of caspase-3 and caspase-9 in mussels were increased by Cd in a dose-dependent manner, where higher doses of Cd (33.72 mg/L and 67.45 mg/L) significantly increased the enzyme activities compared to the controls (P < 0.05). The caspase-8 activity was significantly depressed by a low dose of Cd (8.43 mg/L) but was clearly induced by higher doses of Cd (16.86 mg/L, 33.72 mg/L, and 67.45 mg/L) (P < 0.05). The Ca-ATPase activity and H2O2 levels were elevated and reached maximum values under the medium dose of Cd (16.86 mg/L). However, protein levels were decreased by Cd in an inverse dose-dependent manner. In the gills of the mussels, Cd treatment induced DNA fragmentation as demonstrated by DNA ladders observed via agarose gel electrophoresis. Moreover, ultrastructural alterations in gill cells of mussels treated with Cd (16.86 mg/L and 67.45 mg/L) for 96 h were observed by electronic microscopy. The ultrastructure abnormalities were characterized by the following features: (1) a disordered arrangement and breaking off of microvilli of epithelial cells; (2) chromatin condensed near the nuclear membrane and the appearances of extremely irregular nuclei, some with a fingerlike shape and an unclear, swollen, invaginated, or ruptured nuclear membrane and apoptotic bodies; (3) swollen and vacuolating mitochondria, some with disintegrated or missing cristae; (4) a disintegrated rough endoplasmic reticulum containing different sizes of vesicles; and (5) shrinking and deformation of Golgi bodies with decreased vesicle numbers. Our results demonstrated that Cd could activate caspase-3, caspase-8, caspase-9, and Ca-ATPase; cause ultrastructural changes; and produce DNA fragmentation in the mussels investigated. Based on the information obtained through this study, it is reasonable to conclude that Cd can induce apoptosis in the gills of the mussels, eventually leading to tissue damage.
Collapse
Affiliation(s)
- Yong Quan Li
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Chien M Chen
- Department of Environmental Resources Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Na Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China.
| |
Collapse
|
18
|
Shoaib S, Islam N, Yusuf N. Phytocompounds from the medicinal and dietary plants: Multi-target agents for cancer prevention and therapy. Curr Med Chem 2022; 29:4481-4506. [PMID: 35232338 DOI: 10.2174/0929867329666220301114251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
Cervical cancer is the fourth leading cause of cancer death among women worldwide. Due to cervical cancer's high incidence and mortality, there is an unmet demand for effective diagnostic, therapeutic, and preventive agents. At present, the preferred treatment strategies for advanced metastatic cervical cancer include surgery, radiotherapy, and chemotherapy. However, cervical cancer is gradually developing resistance to chemotherapy, thereby reducing its efficacy. Over the last several decades, phytochemicals, a general term for compounds produced from plants, have gained attention for their role in preventing cervical cancer. This role in cervical cancer prevention has garnered attention on the medicinal properties of fruits and vegetables. Phytochemicals are currently being evaluated for their ability to block proteins involved in carcinogenesis and chemoresistance against cervical cancer. Chemoresistance to cancer drugs like cisplatin, doxorubicin, and 5-fluorouracil has become a significant limitation of drug-based chemotherapy. However, the combination of cisplatin with other phytochemicals has been identified as a promising alternative to subjugate cisplatin resistance. Phytochemicals are promising chemo-preventive and chemotherapeutic agents as they possess antioxidant, anti-inflammatory, and anti-proliferative potential against many cancers, including cervical cancer. Furthermore, the ability of the phytochemicals to modulate cellular signaling pathways through up and down regulation of various proteins has been claimed for their therapeutic potential. Phytochemicals also display a wide range of biological functions, including cell cycle arrest, apoptosis induction, inhibition of invasion, and migration in cervical cancer cells. Numerous studies have revealed the critical role of different signaling proteins and their signaling pathways in the pathogenesis of cervical cancer. Here, we review the ability of several dietary phytochemicals to alter carcinogenesis by modulating various molecular targets.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Najmul Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham AL 35294, United States
| |
Collapse
|
19
|
Tsai JP, Lee CC, Huang PY, Hsieh YH, Chen YS. Melatonin combined with sorafenib synergistically inhibit the invasive ability through targeting metastasis-associated protein 2 expression in human renal cancer cells. Tzu Chi Med J 2022; 34:192-199. [PMID: 35465276 PMCID: PMC9020234 DOI: 10.4103/tcmj.tcmj_204_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022] Open
Abstract
Objectives: Materials and Methods: Results: Conclusion:
Collapse
|
20
|
Potential Mechanisms of Plant-Derived Natural Products in the Treatment of Cervical Cancer. Biomolecules 2021; 11:biom11101539. [PMID: 34680171 PMCID: PMC8533981 DOI: 10.3390/biom11101539] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the second most common gynecological malignancy globally; it seriously endangers women’s health because of its high morbidity and mortality. Conventional treatments are prone to drug resistance, recurrence and metastasis. Therefore, there is an urgent need to develop new drugs with high efficacy and low side effects to prevent and treat cervical cancer. In recent years, plant-derived natural products have been evaluated as potential anticancer drugs that preferentially kill tumor cells without severe adverse effects. A growing number of studies have shown that natural products can achieve practical anti-cervical-cancer effects through multiple mechanisms, including inhibition of tumor-cell proliferation, induction of apoptosis, suppression of angiogenesis and telomerase activity, enhancement of immunity and reversal of multidrug resistance. This paper reviews the therapeutic effects and mechanisms of plant-derived natural products on cervical cancer and provides references for developing anti-cervical-cancer drugs with high efficacy and low side effects.
Collapse
|
21
|
Pawlak A, Henklewska M, Hernández-Suárez B, Siepka M, Gładkowski W, Wawrzeńczyk C, Motykiewicz-Pers K, Obmińska-Mrukowicz B. Methoxy-Substituted γ-Oxa-ε-Lactones Derived from Flavanones-Comparison of Their Anti-Tumor Activity In Vitro. Molecules 2021; 26:molecules26206295. [PMID: 34684875 PMCID: PMC8538229 DOI: 10.3390/molecules26206295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/09/2022] Open
Abstract
Background: The study investigated four flavanone-derived γ-oxa-ε-lactones: a parent unsubstituted compound and its three derivatives with the methoxy group in positions 2′, 4′ and 8. Our objective was to find out if the introduction of the methoxy group into the aromatic ring affects in vitro anti-tumor potency of the investigated lactones. Methods: Cytotoxic and pro-apoptotic effects were assessed with cytometric tests with propidium iodide, annexin V, and Western blot techniques. We also investigated potential synergistic potency of the tested lactones and glucocorticoids in canine lymphoma/leukemia cell lines. Results: The tested flavanone-derived lactones showed anti-cancer activity in vitro. Depending on its location, the methoxy group either increased or decreased cytotoxicity of the derivatives as compared with the parent compound. The most potent lactone was the one with the methoxy group at position 4′ of the B ring (compound 3), and the weakest activity was observed when the group was located at C-8 in the A ring. A combination of the lactones with glucocorticoids confirmed their synergy in anti-tumor activity in vitro. Conclusions: Methoxy-substituted flavanone-derived lactones effectively kill canine lymphoma/leukemia cells in vitro and, thanks to their synergistic action with glucocorticoids, may potentially be applied in the treatment of hematopoietic cancers.
Collapse
Affiliation(s)
- Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
- Correspondence:
| | - Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Monika Siepka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Czesław Wawrzeńczyk
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Karolina Motykiewicz-Pers
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| |
Collapse
|
22
|
Shoaib S, Tufail S, Sherwani MA, Yusuf N, Islam N. Phenethyl Isothiocyanate Induces Apoptosis Through ROS Generation and Caspase-3 Activation in Cervical Cancer Cells. Front Pharmacol 2021; 12:673103. [PMID: 34393773 PMCID: PMC8358204 DOI: 10.3389/fphar.2021.673103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 01/19/2023] Open
Abstract
The latest research shows that current chemotherapeutics are ineffective because of the development of resistance in cervical cancer cells, and hence, their scope of use is limited. The main concern of researchers at the moment is the discovery of safe and effective antiproliferative plant chemicals that can aid in the battle against cervical cancer. Previous studies have shown the possible anticancer potential of phenethyl isothiocyanate obtained from cruciferous plants for many cancers, which targets various signaling pathways to exercise chemopreventive and therapeutic effects. This provides the basis for studying phenethyl isothiocyanate's therapeutic potential against cervical cancer. In the present study, cervical cancer cells were treated with various doses of phenethyl isothiocyanate, alone and in combination with cisplatin. Phenethyl isothiocyanate alone was sufficient to cause nucleus condensation and fragmentation and induce apoptosis in cervical cancer cells, but evident synergistic effects were observed in combination with cisplatin. In addition, phenethyl isothiocyanate treatment increased the production of intracellular ROS in a dose-dependent manner in cervical cancer cells. Furthermore, investigation of phenethyl isothiocyanate induced mitochondrial reactive oxygen species production, and activation of caspases showed that phenethyl isothiocyanate significantly activated caspase-3.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, J.N.M.C, Aligarh Muslim University, Aligarh, India
| | - Saba Tufail
- Department of Biochemistry, J.N.M.C, Aligarh Muslim University, Aligarh, India
| | - Mohammad Asif Sherwani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Najmul Islam
- Department of Biochemistry, J.N.M.C, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
23
|
Cancer chemopreventive role of fisetin: Regulation of cell signaling pathways in different cancers. Pharmacol Res 2021; 172:105784. [PMID: 34302980 DOI: 10.1016/j.phrs.2021.105784] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
It is becoming progressively more understandable that pharmaceutical targeting of drug-resistant cancers is challenging because of intra- and inter-tumor heterogeneity. Interestingly, naturally derived bioactive compounds have unique ability to modulate wide-ranging deregulated oncogenic cell signaling pathways. In this review, we have focused on the available evidence related to regulation of PI3K/AKT/mTOR, Wnt/β-catenin, NF-κB and TRAIL/TRAIL-R by fisetin in different cancers. Fisetin has also been shown to inhibit the metastatic spread of cancer cells in tumor-bearing mice. We have also summarized how fisetin regulated autophagy in different cancers. In addition, this review also covers fisetin-mediated regulation of VEGF/VEGFR, EGFR, necroptosis and Hippo pathway. Fisetin has entered into clinical trials particularly in context of COVID19-associated inflammations. Furthermore, fisetin mediated effects are also being tested in clinical trials with reference to osteoarthritis and senescence. These developments will surely pave the way for full-fledge and well-designed clinical trials of fisetin in different cancers. However, we still have to comprehensively analyze and fully unlock pharmacological potential of fisetin against different oncogenic signaling cascades and non-coding RNAs. Fisetin has remarkable potential as chemopreventive agent and future studies must converge on the identification of additional regulatory roles of fisetin for inhibition and prevention of cancers.
Collapse
|
24
|
Sun Y, Wang Y, Lu W, Liu C, Ge S, Zhou X, Bi C, Cao X. A novel surface-enhanced Raman scattering probe based on Au nanoboxes for dynamic monitoring of caspase-3 during cervical cancer cell apoptosis. J Mater Chem B 2021; 9:381-391. [DOI: 10.1039/d0tb01815e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The highly sensitive and reliable detection, imaging, and monitoring of changes of intracellular caspase-3 are critical for understanding the cell apoptosis and studying the progression of caspase-3-related cervical cancer.
Collapse
Affiliation(s)
- Yue Sun
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou
- P. R. China
| | - Youwei Wang
- Department of Neurosurgery
- Affiliated Hospital of Yangzhou University
- Yangzhou
- P. R. China
| | - Wenbo Lu
- Shanxi Normal University
- College of Chemistry and Material Science
- Linfen
- P. R. China
| | - Chang Liu
- School of Grain Science and Technology
- Jiangsu University of Science and Technology
- Zhenjiang
- P. R. China
| | - Shengjie Ge
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou
- P. R. China
| | - Xinyu Zhou
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou
- P. R. China
| | - Caili Bi
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research
- Medical College
- Yangzhou University
- Yangzhou
- P. R. China
| | - Xiaowei Cao
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
25
|
Imran M, Saeed F, Gilani SA, Shariati MA, Imran A, Afzaal M, Atif M, Tufail T, Anjum FM. Fisetin: An anticancer perspective. Food Sci Nutr 2021; 9:3-16. [PMID: 33473265 PMCID: PMC7802565 DOI: 10.1002/fsn3.1872] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the provision of safe and cost-effective chemopreventive cancer approaches, still there are requirements to enhance their efficiency. The use of dietary agents as phytochemicals plays an imperative role against different human cancer cell lines. Among these novel dietary agents, fisetin (3,3',4',7-tetrahydroxyflavone) is present in different fruits and vegetables such as apple, persimmon, grape, strawberry, cucumber, and onion. Being a potent anticancer agent, fisetin has been used to inhibit stages in the cancer cells (proliferation, invasion), prevent cell cycle progression, inhibit cell growth, induce apoptosis, cause polymerase (PARP) cleavage, and modulate the expressions of Bcl-2 family proteins in different cancer cell lines (HT-29, U266, MDA-MB-231, BT549, and PC-3M-luc-6), respectively. Further, fisetin also suppresses the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways, reduces the NF-κB activation, and down-regulates the level of the oncoprotein securin. Fisetin also inhibited cell division and proliferation and invasion as well as lowered the TET1 expression levels. The current review article highlights and discusses the anticancer role of fisetin in cell cultures and animal and human studies. Conclusively, fisetin as a polyphenol with pleiotropic pharmacological properties showed promising anticancer activity in a wide range of cancers. Fisetin suppresses the cancer cell stages, prevents progression in cell cycle and cell growth, and induces apoptosis.
Collapse
Affiliation(s)
- Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Farhan Saeed
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial ResistanceOrel StateUniversity Named After I.S. TurgenevOrelRussia
| | - Ali Imran
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Atif
- Department of Clinical Laboratory SciencesCollege of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | | |
Collapse
|
26
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|
27
|
Wyld L, Bellantuono I, Tchkonia T, Morgan J, Turner O, Foss F, George J, Danson S, Kirkland JL. Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. Cancers (Basel) 2020; 12:cancers12082134. [PMID: 32752135 PMCID: PMC7464619 DOI: 10.3390/cancers12082134] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence is a key component of human aging that can be induced by a range of stimuli, including DNA damage, cellular stress, telomere shortening, and the activation of oncogenes. Senescence is generally regarded as a tumour suppressive process, both by preventing cancer cell proliferation and suppressing malignant progression from pre-malignant to malignant disease. It may also be a key effector mechanism of many types of anticancer therapies, such as chemotherapy, radiotherapy, and endocrine therapies, both directly and via bioactive molecules released by senescent cells that may stimulate an immune response. However, senescence may contribute to reduced patient resilience to cancer therapies and may provide a pathway for disease recurrence after cancer therapy. A new group of drugs, senotherapies, (drugs which interact with senescent cells to interfere with their pro-aging impacts by either selectively destroying senescent cells (senolytic drugs) or inhibiting their function (senostatic drugs)) are under active investigation to determine whether they can enhance the efficacy of cancer therapies and improve resilience to cancer treatments. Senolytic drugs include quercetin, navitoclax, and fisetin and preclinical and early phase clinical data are emerging of their potential role in cancer treatments, although none are yet in routine use clinically. This article provides a review of these issues.
Collapse
Affiliation(s)
- Lynda Wyld
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
- Correspondence:
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jenna Morgan
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Olivia Turner
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Fiona Foss
- Department of Pathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Jayan George
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Sarah Danson
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - James L. Kirkland
- Departments of Internal Medicine, Geriatric Medicine and Gerontology, The Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
28
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
29
|
Wang JR, Li TZ, Wang C, Li SM, Luo YH, Piao XJ, Feng YC, Zhang Y, Xu WT, Zhang Y, Zhang T, Wang SN, Xue H, Wang HX, Cao LK, Jin CH. Liquiritin inhibits proliferation and induces apoptosis in HepG2 hepatocellular carcinoma cells via the ROS-mediated MAPK/AKT/NF-κB signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1987-1999. [PMID: 31956937 DOI: 10.1007/s00210-019-01763-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
Abstract
Liquiritin (LIQ), a major constituent of Glycyrrhiza Radix, exhibits various pharmacological activities. In this study, to explore the potential anti-cancer effects and its underlying molecular mechanisms of LIQ in hepatocellular carcinoma (HCC) cells. LIQ significantly decreased viability and induced apoptosis in HepG2 cells by decreasing mitochondrial membrane potential and regulating Bcl-2 family proteins, cytochrome c, cle-caspase-3, and cle-PARP. The cell cycle analysis and western blot analysis revealed that LIQ induced G2/M phase arrest through increased expression of p21 and decreased levels of p27, cyclin B, and CDK1/2. The flow cytometry and western blot analysis also suggested that LIQ promoted the accumulation of ROS in HepG2 cells and up-regulated the phosphorylation expression levels of p38 kinase, c-Jun N-terminal kinase (JNK), and inhibitor of NF-κB (IκB-α); the phosphorylation levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), signal transducer activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) were down-regulated. However, these effects were reversed by N-acetyl-L-cysteine (NAC), MAPK, and AKT inhibitors. The findings demonstrated that LIQ induced cell cycle arrest and apoptosis via the ROS-mediated MAPK/AKT/NF-κB signaling pathway in HepG2 cells, and the LIQ may serve as a potential therapeutic agent for the treatment of human HCC.
Collapse
Affiliation(s)
- Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Tian-Zhu Li
- Molecular Medicine Research Center, School of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Cheng Wang
- Pharmacy Department, Daqing Oilfield General Hospital, Daqing, 163001, China
| | - Shu-Mei Li
- Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, 163001, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, China
| | - Yu-Chao Feng
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Shi-Nong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hong-Xing Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Long-Kui Cao
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China. .,National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang, China.
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China. .,Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China. .,National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
30
|
Shriwas P, Chen X, Kinghorn AD, Ren Y. Plant-derived glucose transport inhibitors with potential antitumor activity. Phytother Res 2019; 34:1027-1040. [PMID: 31823431 DOI: 10.1002/ptr.6587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
Abstract
Glucose, a key nutrient utilized by human cells to provide cellular energy and a carbon source for biomass synthesis, is internalized in cells via glucose transporters that regulate glucose homeostasis throughout the human body. Glucose transporters have been used as important targets for the discovery of new drugs to treat cancer, diabetes, and heart disease, owing to their abnormal expression during these disease conditions. Thus far, several glucose transport inhibitors have been used in clinical trials, and increasing numbers of natural products have been characterized as potential anticancer agents targeting glucose transport. The present review focuses on natural product glucose transport inhibitors of plant origin, including alkaloids, flavonoids and other phenolic compounds, and isoprenoids, with their potential antitumor properties also discussed.
Collapse
Affiliation(s)
- Pratik Shriwas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Department of Biological Sciences, Ohio University, Athens, Ohio.,Edison Biotechnology Institute, Ohio University, Athens, Ohio.,Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, Ohio.,Edison Biotechnology Institute, Ohio University, Athens, Ohio.,Molecular and Cellular Biology Program, Ohio University, Athens, Ohio.,Department of Biomedical Sciences, Ohio University, Athens, Ohio
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
31
|
Zhao M, Li J, Chen D, Hu H. A Valid Bisphosphonate Modified Calcium Phosphate-Based Gene Delivery System: Increased Stability and Enhanced Transfection Efficiency In Vitro and In Vivo. Pharmaceutics 2019; 11:pharmaceutics11090468. [PMID: 31514452 PMCID: PMC6781291 DOI: 10.3390/pharmaceutics11090468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
Calcium phosphate (CaP) nanoparticles, as a promising vehicle for gene delivery, have been widely used owing to their biocompatibility, biodegradability and adsorptive capacity for nucleic acids. Unfortunately, their utility in vivo has been profoundly restricted due to numerous technical barriers such as the lack of tissue specificity and limited transfection efficiency, as well as uncontrollable aggregation over time. To address these issues, an effective conjugate folate-polyethylene glycol-pamidronate (shortened as FA-PEG-Pam) was designed and coated on the surface of CaP/NLS/pDNA (CaP/NDs), forming a versatile gene carrier FA-PEG-Pam/CaP/NDs. Inclusion of FA-PEG-Pam significantly reduced the size of CaP nanoparticles, thus inhibiting the aggregation of CaP nanoparticles. FA-PEG-Pam/CaP/NDs showed better cellular uptake than mPEG-Pam/CaP/NDs, which could be attributed to the high-affinity interactions between FA and highly expressed FR. Meanwhile, FA-PEG-Pam/CaP/NDs had low cytotoxicity and desired effect on inducing apoptosis (71.1%). Furthermore, FA-PEG-Pam/CaP/NDs showed admirable transfection efficiency (63.5%) due to the presence of NLS peptides. What’s more, in vivo studies revealed that the hybrid nanoparticles had supreme antitumor activity (IR% = 58.7%) among the whole preparations. Altogether, FA-PEG-Pam/CaP/NDs was expected to be a hopeful strategy for gene delivery.
Collapse
Affiliation(s)
- Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Ji Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
32
|
Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Kumar M, Aggarwal V, Sandhu SS. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential. Biomolecules 2019; 9:E174. [PMID: 31064104 PMCID: PMC6572624 DOI: 10.3390/biom9050174] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Despite advancements in healthcare facilities for diagnosis and treatment, cancer remains the leading cause of death worldwide. As prevention is always better than cure, efficient strategies are needed in order to deal with the menace of cancer. The use of phytochemicals as adjuvant chemotherapeutic agents in heterogeneous human carcinomas like breast, colon, lung, ovary, and prostate cancers has shown an upward trend during the last decade or so. Flavonoids are well-known products of plant derivatives that are reportedly documented to be therapeutically active phytochemicals against many diseases encompassing malignancies, inflammatory disorders (cardiovascular disease, neurodegenerative disorder), and oxidative stress. The current review focuses on two key flavonols, fisetin and quercetin, known for their potential pharmacological relevance. Also, efforts have been made to bring together most of the concrete studies pertaining to the bioactive potential of fisetin and quercetin, especially in the modulation of a range of cancer signaling pathways. Further emphasis has also been made to highlight the molecular action of quercetin and fisetin so that one could explore cancer initiation pathways and progression, which could be helpful in designing effective treatment strategies.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, Punjab, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital (GMCH), Chandigarh 160031, Punjab, India.
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey.
| | | | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India.
| | - Vaishali Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, Punjab, India.
| | | |
Collapse
|
33
|
Buss JH, Begnini KR, Bruinsmann FA, Ceolin T, Sonego MS, Pohlmann AR, Guterres SS, Collares T, Seixas FK. Lapatinib-Loaded Nanocapsules Enhances Antitumoral Effect in Human Bladder Cancer Cell. Front Oncol 2019; 9:203. [PMID: 31024833 PMCID: PMC6465636 DOI: 10.3389/fonc.2019.00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Transitional cell carcinoma (TCC) represents the most frequent type of bladder cancer. Recently, studies have focused on molecular tumor classifications in order to diagnose tumor subtypes and predict future clinical behavior. Increased expression of HER1 and HER2 receptors in TTC is related to advanced stage tumors. Lapatinib is an important alternative to treat tumors that presents this phenotype due to its ability to inhibit tyrosine kinase residues associated with HER1 and HER2 receptors. This study evaluated the cytotoxicity induced by LAP-loaded nanocapsules (NC-LAP) compared to LAP in HER-positive bladder cancer cell. The cytotoxicity induced by NC-LAP was evaluated through flow cytometry, clonogenic assay and RT-PCR. NC-LAP at 5 μM reduced the cell viability and was able to induce G0/G1 cell cycle arrest with up-regulation of p21. Moreover, NC-LAP treatment presented significantly higher apoptotic rates than untreated cells and cells incubated with drug-unloaded nanocapsules (NC) and an increase in Bax/Bcl-2 ratio was observed in T24 cell line. Furthermore, clonogenic assay demonstrated that NC-LAP treatment eliminated almost all cells with clonogenic capacity. In conclusion, NC-LAP demonstrate antitumoral effect in HER-positive bladder cells by inducing cell cycle arrest and apoptosis exhibiting better effects compared to the non-encapsulated lapatinib. Our work suggests that the LAP loaded in nanoformulations could be a promising approach to treat tumors that presents EGFR overexpression phenotype.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Karine Rech Begnini
- Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | | | - Taíse Ceolin
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Souza Sonego
- Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil.,Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana Raffin Pohlmann
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Tiago Collares
- Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil.,Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kömmling Seixas
- Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil.,Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
34
|
Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D. Flavonoids in Cancer and Apoptosis. Cancers (Basel) 2018; 11:cancers11010028. [PMID: 30597838 PMCID: PMC6357032 DOI: 10.3390/cancers11010028] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer is the second leading cause of death globally. Although, there are many different approaches to cancer treatment, they are often painful due to adverse side effects and are sometimes ineffective due to increasing resistance to classical anti-cancer drugs or radiation therapy. Targeting delayed/inhibited apoptosis is a major approach in cancer treatment and a highly active area of research. Plant derived natural compounds are of major interest due to their high bioavailability, safety, minimal side effects and, most importantly, cost effectiveness. Flavonoids have gained importance as anti-cancer agents and have shown great potential as cytotoxic anti-cancer agents promoting apoptosis in cancer cells. In this review, a summary of flavonoids and their effectiveness in cancer treatment targeting apoptosis has been discussed.
Collapse
Affiliation(s)
- Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Sharon Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| |
Collapse
|
35
|
Abdel-Maksoud MS, El-Gamal MI, Benhalilou DR, Ashraf S, Mohammed SA, Oh CH. Mechanistic/mammalian target of rapamycin: Recent pathological aspects and inhibitors. Med Res Rev 2018; 39:631-664. [PMID: 30251347 DOI: 10.1002/med.21535] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR), also known as the mechanistic target of rapamycin, regulates many normal cell processes such as transcription, cell growth, and autophagy. Overstimulation of mTOR by its ligands, amino acids, sugars, and/or growth factors leads to physiological disorders, including cancer and neurodegenerative diseases. In this study, we reviewed the recent advances regarding the mechanism that involves mTOR in cancer, aging, and neurodegenerative diseases. The chemical and biological properties of recently reported small molecules that function as mTOR kinase inhibitors, including adenosine triphosphate-competitive inhibitors and dual mTOR/PI3K inhibitors, have also been reviewed. We focused on the reports published in the literature from 2012 to 2017.
Collapse
Affiliation(s)
- Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Dalia Reyane Benhalilou
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sandy Ashraf
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea.,Department of Biomolecular Science, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
36
|
Jeng LB, Kumar Velmurugan B, Chen MC, Hsu HH, Ho TJ, Day CH, Lin YM, Padma VV, Tu CC, Huang CY. Fisetin mediated apoptotic cell death in parental and Oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J Cell Physiol 2018; 233:7134-7142. [PMID: 29574877 DOI: 10.1002/jcp.26532] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 02/02/2018] [Indexed: 11/06/2022]
Abstract
Irinotecan (CPT11) and Oxaliplatin have been used in combination with fluorouracil and leucovorin for treating colorectal cancer. However, the efficacy of these drugs is reduced due to various side effects and drug resistance. Fisetin, a hydroxyflavone possess anti-proliferative, anti-cancer, anti-inflammatory, and antioxidant activity against various types of cancers. Apart from that, fisetin has been shown to induce cytotoxic effects when combined with other known chemotherapeutic drugs. In this study, we aimed to investigate whether Fisetin was capable of sensitizing both Irinotecan and Oxaliplatin resistance colon cancer cells and explored the possible signaling pathways involved using In vitro and In vivo models. The results showed that Fisetin treatment effectively inhibited cell viability and apoptosis of CPT11-LoVo cells than Oxaliplatin (OR) and parental LoVo cancer cells. Western blot assays suggested that apoptosis was induced by fisetin administration, promoting Caspase-8, and Cytochrome-C expressions possibly by inhibiting aberrant activation of IGF1R and AKT proteins. Furthermore, fisetin inhibited tumor growth in athymic nude mouse xenograft model. Overall, our results provided a basis for Fisetin as a promising agent to treat parental as well as chemoresistance colon cancer.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Department of Surgery and Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan
| | | | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong, China.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
37
|
Oxymatrine synergistically enhances antitumor activity of oxaliplatin in colon carcinoma through PI3K/AKT/mTOR pathway. Apoptosis 2018; 21:1398-1407. [PMID: 27671687 DOI: 10.1007/s10495-016-1297-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxymatrine (OMT), one of the main active components of extracts from the dry roots of Sophora flavescens, has been reported to possess many pharmacological properties including cancer-preventive and anti-cancer effects. The aim of the present study is to explore the efficiency of combination therapy with OMT and oxaliplatin (OXA) and identify the in vitro and in vivo cytotoxicity on colon cancer lines (HT29 and SW480) and mice model. Cells were treated with OMT and/or OXA and subjected to cell viability, colony formation, apoptosis, cell cycle, western blotting, xenograft tumorigenicity assay and immunohistochemistry. The results demonstrated that OMT and OXA inhibited the proliferation of colon cancer cells, and combination therapy of OMT and OXA resulted in a combination index < 1, indicating a synergistic effect. Co-treatment with OMT and OXA caused G0/G1 phase arrest by upregulating P21, P27 and downregulating cyclin D, and induced apoptosis through decreasing the expression of p-PI3K, p-AKT, p-mTOR, p-p70S6K. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of OXA + OMT, demonstrating the important role of PI3K/AKT in this process. Moreover, in nude mice model, co-treatment displayed more efficient inhibition of tumor weight and volume on SW480 xenograft mouse model than single-agent treatment with OXA or OMT. Immunohistochemistry analysis suggests the combinations greatly suppressed tumor proliferation, which consistent with our in vitro results. In conclusion, our findings highlight that the combination therapy with OMT and OXA exerted synergistic antitumor effects in colon cancer cells through PI3K/AKT/mTOR pathway and combination treatment with OMT and OXA would be a promising therapeutic strategy for colon carcinoma treatment.
Collapse
|
38
|
Kashyap D, Sharma A, Sak K, Tuli HS, Buttar HS, Bishayee A. Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci 2017; 194:75-87. [PMID: 29225112 DOI: 10.1016/j.lfs.2017.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023]
Abstract
A wide variety of chronic diseases, such as neurodegenerative and cardiovascular disorders, diabetes mellitus, osteoarthtitis, obesity and various cancers, are now being treated with cost effective phytomedicines. Since synthetic medicines are very expensive, concerted efforts are being made in developing and poor countries to discover cost effective medicines for the treatment of non-communicable diseases (NCDs). Understanding the underlying mechanisms of bioactive medicines from natural sources would not only open incipient avenues for the scientific community and pharmaceutical industry to discover new drug molecules for the therapy of NCDs, but also help to garner knowledge for alternative therapeutic approaches for the management of chronic diseases. Fisetin is a polyphenolic molecule of flavonoids class, and belongs to the bioactive phytochemicals that have potential to block multiple signaling pathways associated with NCDs such as cell division, angiogenesis, metastasis, oxidative stress, and inflammation. The emerging evidence suggests that fisetin may be useful for the prevention and management of several types of human malignancies. Efforts are being made to enhance the bioavailability of fisetin after oral administration to prevent and/or treat cancer of the liver, breast, ovary and other organs. The intent of this review is to highlight the in vitro and in vivo activities of fisetin and to provide up-to-date information about the molecular interactions of fisetin with its cellular targets involved in cancer initiation, promotion and progression as well as to focus on strategies underway to increase the bioavailability and reduce the risk of deleterious effects, if any, associated with fisetin administration.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker-Kharwarian, Hamirpur 176 041, Himachal Pradesh, India
| | | | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala 133 207, Haryana, India.
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
39
|
Min KJ, Um HJ, Kim JI, Kwon TK. The coffee diterpene kahweol enhances sensitivity to sorafenib in human renal carcinoma Caki cells through down-regulation of Mcl-1 and c-FLIP expression. Oncotarget 2017; 8:83195-83206. [PMID: 29137334 PMCID: PMC5669960 DOI: 10.18632/oncotarget.20541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/30/2017] [Indexed: 01/07/2023] Open
Abstract
Sorafenib is approved for the treatment of hepatocellular carcinoma (HCC) and advanced renal cell carcinoma (RCC). However, low tumor response and side effects have been widely reported. Therefore, to improve the efficacy of sorafenib, we investigated whether combined treatment with sorafenib and kahweol, the coffee-specific diterpene, has a synergistic effect on apoptotic cell death. Combined treatment with sorafenib and kahweol markedly induced caspase-mediated apoptosis in renal carcinoma Caki cells. Combined treatment with sorafenib and kahweol induced down-regulation of Mcl-1 and c-FLIP expression. We found down-regulation of Mcl-1 and c-FLIP expression was modulated by the ubiquitin-proteasome pathway. Ectopic expression of Mcl-1 inhibited sorafenib plus kahweol-induced apoptosis. Interestingly, combined treatment with sorafenib and kahweol induced apoptotic cell death in c-FLIP overexpressed cells. In addition, combined treatment with sorafenib and kahweol markedly induced apoptosis in human lung carcinoma (A549) and breast carcinoma (MDA-MB-361) cells, but not in human normal mesangial cells and human skin fibroblast cells (HSF). Collectively, our study demonstrates that combined treatment with sorafenib and kahweol induces apoptotic cell death through down-regulation of Mcl-1 expression.
Collapse
Affiliation(s)
- Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| | - Hee Jung Um
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| | - Jee In Kim
- Department of Molecular Medicine, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| |
Collapse
|
40
|
Zhang XJ, Jia SS. Fisetin inhibits laryngeal carcinoma through regulation of AKT/NF-κB/mTOR and ERK1/2 signaling pathways. Biomed Pharmacother 2016; 83:1164-1174. [PMID: 27551764 DOI: 10.1016/j.biopha.2016.08.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 08/11/2016] [Indexed: 02/09/2023] Open
Abstract
Targeting cancer cells is crucial for improving the efficiency of laryngeal cancer treatment. However, the signaling pathway and therapeutic strategy, related to the tumor, still need further research. Dietary flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) found in many fruits and vegetables has been shown in preclinical studies to inhibit cancer growth through regulating cell cycle, apoptosis, angiogenesis, invasion and metastasis without causing any toxicity to normal cells. PI3K/AKT and ERK1/2 have been known as essential signaling pathways to modulate cell proliferation, apoptosis as well as autophagy via mTOR, Caspase-3 and NF-κB signals. In our study, flow cytometry and western blot assays suggested that apoptosis was induced by fisetin administration, promoting Caspase-3 expressions by regulating PI3K/AKT/NF-κB. Additionally, fisetin suppressed TU212 cells proliferation, which was linked with ERK1/2 inactivation. Further, the activation of PI3K/AKT-regulated mTOR was inhibited by fisetin, leading to transcription suppression and proliferation inhibition of TU212 cells. In vivo studies also showed that the tumor volume and weight of nude mice were reduced for fisetin use with KI-67 decrease and LC3II increase in tumor tissue samples. Together, our data indicated that fisetin had a potential role in controlling human laryngeal cancer through inhibiting tumor cell proliferation, inducing apoptosis and autophagy regulated by ERK1/2 and AKT/NF-κB/mTOR signaling pathways, which might provide a therapeutic strategy for laryngeal cancer inhibition in future.
Collapse
Affiliation(s)
- Xi-Jun Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin 150001, China
| | - Shen-Shan Jia
- Department of Otolaryngology-Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin 150001, China.
| |
Collapse
|
41
|
Lall RK, Adhami VM, Mukhtar H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol Nutr Food Res 2016; 60:1396-405. [PMID: 27059089 DOI: 10.1002/mnfr.201600025] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/14/2022]
Abstract
Cancer remains a major public health concern and a significant cause of death worldwide. Identification of bioactive molecules that have the potential to inhibit carcinogenesis continues to garner interest among the scientific community. In particular, flavonoids from dietary sources are the most sought after because of their safety, cost-effectiveness, and feasibility of oral administration. Emerging data have provided newer insights into understanding the molecular mechanisms that are essential to identify novel mechanism-based strategies for cancer prevention and treatment. Dietary flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) found in many fruits and vegetables has been shown in preclinical studies to inhibit cancer growth through alteration of cell cycle, inducing apoptosis, angiogenesis, invasion, and metastasis without causing any toxicity to normal cells. Although data from in-vitro and in-vivo studies look convincing, well-designed clinical trials in humans are needed to conclusively determine the efficacy across various cancers. This review highlights the chemopreventive and therapeutic effects, molecular targets, and mechanisms that contribute to the observed anticancer activity of fisetin against various cancers.
Collapse
Affiliation(s)
- Rahul K Lall
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA.,Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
42
|
Exploring the molecular targets of dietary flavonoid fisetin in cancer. Semin Cancer Biol 2016; 40-41:130-140. [PMID: 27163728 DOI: 10.1016/j.semcancer.2016.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/05/2016] [Accepted: 04/17/2016] [Indexed: 01/08/2023]
Abstract
The last few decades have seen a resurgence of interest among the scientific community in exploring the efficacy of natural compounds against various human cancers. Compounds of plant origin belonging to different groups such as alkaloids, flavonoids and polyphenols evaluated for their cancer preventive effects have yielded promising data, thereby offering a potential therapeutic alternative against this deadly disease. The flavonol fisetin (3,3',4',7-tetrahydroxyflavone), present in fruits and vegetables such as strawberries, apple, cucumber, persimmon, grape and onion, was shown to possess anti-microbial, anti-inflammatory, anti-oxidant and more significantly anti-carcinogenic activity when assessed in diverse cell culture and animal model systems. The purpose of this review is to update and discuss key findings obtained till date from in vitro and in vivo studies on fisetin, with special focus on its anti-cancer role. The molecular mechanism(s) described in the observed growth inhibitory effects of fisetin in different cancer cell types is also summarized. Moreover, an attempt is made to delineate the direction of future studies that could lead to the development of fisetin as a potent chemopreventive/chemotherapeutic agent against cancer.
Collapse
|