1
|
Baroncini A, Maffulli N, Pilone M, Pipino G, Memminger MK, Pappalardo G, Migliorini F. Prognostic Factors in Patients Undergoing Physiotherapy for Chronic Low Back Pain: A Level I Systematic Review. J Clin Med 2024; 13:6864. [PMID: 39598010 PMCID: PMC11594606 DOI: 10.3390/jcm13226864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Low back pain is common. For patients with mechanic or non-specific chronic LBP (cLBP), the current guidelines suggest conservative, nonpharmacologic treatment as a first-line treatment. Among the available strategies, physiotherapy represents a common option offered to patients presenting with cLBP. The present systematic review investigates the prognostic factors of patients with mechanic or non-specific cLBP undergoing physiotherapy. Methods: In September 2024, the following databases were accessed: PubMed, Web of Science, Google Scholar, and Embase. All the randomised controlled trials (RCTs) which evaluated the efficacy of a physiotherapy programme in patients with LBP were accessed. All studies evaluating non-specific or mechanical LBP were included. Data concerning the following PROMs were collected: the pain scale, Roland Morris Disability Questionnaire (RMQ), and Oswestry Disability Index (ODI). A multiple linear model regression analysis was conducted using the Pearson Product-Moment Correlation Coefficient. Results: Data from 2773 patients were retrieved. The mean length of symptoms before the treatment was 61.2 months. Conclusions: Age and BMI might exert a limited influence on the outcomes of the physiotherapeutic management of cLBP. Pain and disability at baseline might represent important predictors of health-related quality of life at the six-month follow-up. Further studies on a larger population with a longer follow-up are required to validate these results.
Collapse
Affiliation(s)
- Alice Baroncini
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100 Bolzano, Italy (F.M.)
| | - Nicola Maffulli
- Department of Medicine and Psychology, University of Rome “La Sapienza”, 00185 Rome, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent ST4 7QB, UK
| | - Marco Pilone
- Residency Program in Orthopedics and Traumatology, University of Milan, 20122 Milan, Italy
| | - Gennaro Pipino
- Department of Orthopedics and Trauma Surgery, Villa Erbosa Hospital, San Raffaele University of Milan, 20132 Milan, Italy
| | - Michael Kurt Memminger
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100 Bolzano, Italy (F.M.)
| | | | - Filippo Migliorini
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100 Bolzano, Italy (F.M.)
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
2
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
3
|
SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract 2022; 240:154176. [PMID: 36327817 DOI: 10.1016/j.prp.2022.154176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.
Collapse
|
4
|
Yang CC, Meng GX, Dong ZR, Li T. Role of Rab GTPases in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1389-1397. [PMID: 34824998 PMCID: PMC8610749 DOI: 10.2147/jhc.s336251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
The Rab GTPase family contains almost 70 genes in the human genome and acts as the key regulator of intracellular membrane trafficking in human cells. The dysregulation of Rab GTPase has been shown to be associated with multiple human diseases, ranging from neurodegeneration, and infection to cancer. Rab GTPases not only play important roles in genome replication, morphogenesis and the release of hepatitis B virus (HBV) or hepatitis C virus (HCV), but also contribute to hepatitis-related hepatocarcinogenesis and hepatocellular carcinoma (HCC) progression. The alteration of Rab GTPase expression in HCC plays an important role in tumour cell proliferation, invasion and migration. Notably, the expression of Rab genes can be regulated by some noncoding RNAs, such as miRNAs and circRNAs. Thus, Rab GTPases can serve as promising rational and therapeutic targets for HCC treatments. In this review, we summarized recent advancements in this field focusing on Rab GTPases in HCC.
Collapse
Affiliation(s)
- Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
5
|
Brunel A, Bégaud G, Auger C, Durand S, Battu S, Bessette B, Verdier M. Autophagy and Extracellular Vesicles, Connected to rabGTPase Family, Support Aggressiveness in Cancer Stem Cells. Cells 2021; 10:1330. [PMID: 34072080 PMCID: PMC8227744 DOI: 10.3390/cells10061330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Even though cancers have been widely studied and real advances in therapeutic care have been made in the last few decades, relapses are still frequently observed, often due to therapeutic resistance. Cancer Stem Cells (CSCs) are, in part, responsible for this resistance. They are able to survive harsh conditions such as hypoxia or nutrient deprivation. Autophagy and Extracellular Vesicles (EVs) secretion are cellular processes that help CSC survival. Autophagy is a recycling process and EVs secretion is essential for cell-to-cell communication. Their roles in stemness maintenance have been well described. A common pathway involved in these processes is vesicular trafficking, and subsequently, regulation by Rab GTPases. In this review, we analyze the role played by Rab GTPases in stemness status, either directly or through their regulation of autophagy and EVs secretion.
Collapse
|
6
|
Stypulkowski E, Feng Q, Joseph I, Farrell V, Flores J, Yu S, Sakamori R, Sun J, Bandyopadhyay S, Das S, Dobrowolski R, Bonder EM, Chen MH, Gao N. Rab8 attenuates Wnt signaling and is required for mesenchymal differentiation into adipocytes. J Biol Chem 2021; 296:100488. [PMID: 33662399 PMCID: PMC8042397 DOI: 10.1016/j.jbc.2021.100488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Differentiation of mesenchymal stem cells into adipocyte requires coordination of external stimuli and depends upon the functionality of the primary cilium. The Rab8 small GTPases are regulators of intracellular transport of membrane-bound structural and signaling cargo. However, the physiological contribution of the intrinsic trafficking network controlled by Rab8 to mesenchymal tissue differentiation has not been fully defined in vivo and in primary tissue cultures. Here, we show that mouse embryonic fibroblasts (MEFs) lacking Rab8 have severely impaired adipocyte differentiation in vivo and ex vivo. Immunofluorescent localization and biochemical analyses of Rab8a-deficient, Rab8b-deficient, and Rab8a and Rab8b double-deficient MEFs revealed that Rab8 controls the Lrp6 vesicular compartment, clearance of basal signalosome, traffic of frizzled two receptor, and thereby a proper attenuation of Wnt signaling in differentiating MEFs. Upon induction of adipogenesis program, Rab8a- and Rab8b-deficient MEFs exhibited severely defective lipid-droplet formation and abnormal cilia morphology, despite overall intact cilia growth and ciliary cargo transport. Our results suggest that intracellular Rab8 traffic regulates induction of adipogenesis via proper positioning of Wnt receptors for signaling control in mesenchymal cells.
Collapse
Affiliation(s)
- Ewa Stypulkowski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ivor Joseph
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Victoria Farrell
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ryotaro Sakamori
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Jiaxin Sun
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Soumyashree Das
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Miao-Hsueh Chen
- Department of Pediatrics, Baylor College of Medicine, Children's Nutrition Research Center, Houston, Texas, USA.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
7
|
Ferro E, Bosia C, Campa CC. RAB11-Mediated Trafficking and Human Cancers: An Updated Review. BIOLOGY 2021; 10:biology10010026. [PMID: 33406725 PMCID: PMC7823896 DOI: 10.3390/biology10010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary The small GTPase RAB11 is a master regulator of both vesicular trafficking and membrane dynamic defining the surface proteome of cellular membranes. As a consequence, the alteration of RAB11 activity induces changes in both the sensory and the transduction apparatuses of cancer cells leading to tumor progression and invasion. Here, we show that this strictly depends on RAB11′s ability to control the sorting of signaling receptors from endosomes. Therefore, RAB11 is a potential therapeutic target over which to develop future therapies aimed at dampening the acquisition of aggressive traits by cancer cells. Abstract Many disorders block and subvert basic cellular processes in order to boost their progression. One protein family that is prone to be altered in human cancers is the small GTPase RAB11 family, the master regulator of vesicular trafficking. RAB11 isoforms function as membrane organizers connecting the transport of cargoes towards the plasma membrane with the assembly of autophagic precursors and the generation of cellular protrusions. These processes dramatically impact normal cell physiology and their alteration significantly affects the survival, progression and metastatization as well as the accumulation of toxic materials of cancer cells. In this review, we discuss biological mechanisms ensuring cargo recognition and sorting through a RAB11-dependent pathway, a prerequisite to understand the effect of RAB11 alterations in human cancers.
Collapse
Affiliation(s)
- Elsi Ferro
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
| | - Carla Bosia
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
| | - Carlo C. Campa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
- Correspondence:
| |
Collapse
|
8
|
Koblan LW, Erdos MR, Wilson C, Cabral WA, Levy JM, Xiong ZM, Tavarez UL, Davison LM, Gete YG, Mao X, Newby GA, Doherty SP, Narisu N, Sheng Q, Krilow C, Lin CY, Gordon LB, Cao K, Collins FS, Brown JD, Liu DR. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature 2021; 589:608-614. [PMID: 33408413 PMCID: PMC7872200 DOI: 10.1038/s41586-020-03086-7] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS or progeria) is typically caused by a dominant-negative C•G-to-T•A mutation (c.1824 C>T; p.G608G) in LMNA, the gene that encodes nuclear lamin A. This mutation causes RNA mis-splicing that produces progerin, a toxic protein that induces rapid ageing and shortens the lifespan of children with progeria to approximately 14 years1-4. Adenine base editors (ABEs) convert targeted A•T base pairs to G•C base pairs with minimal by-products and without requiring double-strand DNA breaks or donor DNA templates5,6. Here we describe the use of an ABE to directly correct the pathogenic HGPS mutation in cultured fibroblasts derived from children with progeria and in a mouse model of HGPS. Lentiviral delivery of the ABE to fibroblasts from children with HGPS resulted in 87-91% correction of the pathogenic allele, mitigation of RNA mis-splicing, reduced levels of progerin and correction of nuclear abnormalities. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. In transgenic mice that are homozygous for the human LMNA c.1824 C>T allele, a single retro-orbital injection of adeno-associated virus 9 (AAV9) encoding the ABE resulted in substantial, durable correction of the pathogenic mutation (around 20-60% across various organs six months after injection), restoration of normal RNA splicing and reduction of progerin protein levels. In vivo base editing rescued the vascular pathology of the mice, preserving vascular smooth muscle cell counts and preventing adventitial fibrosis. A single injection of ABE-expressing AAV9 at postnatal day 14 improved vitality and greatly extended the median lifespan of the mice from 215 to 510 days. These findings demonstrate the potential of in vivo base editing as a possible treatment for HGPS and other genetic diseases by directly correcting their root cause.
Collapse
Affiliation(s)
- Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Michael R Erdos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Wilson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Wayne A Cabral
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zheng-Mei Xiong
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Urraca L Tavarez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay M Davison
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yantenew G Gete
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Xiaojing Mao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Sean P Doherty
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Narisu Narisu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chad Krilow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Kronos, Bio Inc., Cambridge, MA, USA
| | - Leslie B Gordon
- Hasbro Children's Hospital, Alpert Medical School of Brown University, Providence, RI, USA
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jonathan D Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Shi LW, Zhao ZB, Zhong L, Gao J, Gong JP, Chen H, Min Y, Zhang YY, Li Z. Overexpression of Rab40b Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis via PI3K/AKT Signaling Pathway. Cancer Manag Res 2020; 12:10139-10150. [PMID: 33116869 PMCID: PMC7569249 DOI: 10.2147/cmar.s255870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background Rab40b is an evolutionarily conserved Rab GTPase that plays an important role in intracellular trafficking and is closely related to cancer progression. However, the role and potential molecular mechanism of Rab40b in hepatocellular carcinoma (HCC) have not yet been elucidated. Materials and Methods The expression of Rab40b in HCC tissues and peritumour tissues was tested by qRT-PCR, Western blotting and histological analysis. A Kaplan-Meier survival curve was generated based on the expression of Rab40b in the HCC samples. Cell proliferation assays, wound healing assays, and transwell assays are used to examine the effect of Rab40b on HCC cell growth in vitro. The effect of Rab40b on cell cycle was examined by flow cytometry. A xenograft implantation model was used to assess the effect of Rab40b on the development of HCC cells in vivo. Results Rab40b protein expression is upregulated in HCC tissues, and this upregulation is associated with high pathological stage and poor prognosis in HCC patients. Rab40b overexpression promotes the proliferation and metastasis of HCC cells by upregulating cyclin D1, cyclin E1 and matrix metalloproteinase 2 (MMP2) through the PI3K/AKT signalling pathway. Conversely, Rab40b inhibitors can significantly inhibit the proliferation and metastasis of HCC cell lines and induce G0/G1 cell cycle arrest and apoptosis. Studies of a nude mouse xenograft model demonstrated that Rab40b knockdown can significantly inhibit the proliferation and progression of HCC tumours in vivo. Conclusion Overall, this study demonstrates that Rab40b is an important oncoprotein that promotes HCC progression by regulating the expression of cyclin D1, cyclin E1, p21 and MMP2 through the PI3K/AKT signalling pathway.
Collapse
Affiliation(s)
- Li-Wei Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.,Department of Gastroenterology, Chongqing People's Hospital, Chongqing 400010, People's Republic of China
| | - Zhi-Bo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Li Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Jian Gao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Hang Chen
- Department of Breast & Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yu Min
- Department of Breast & Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yi-Yin Zhang
- Department of Anesthesiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 401120, People's Republic of China
| | - Zhi Li
- Department of Breast & Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
10
|
RAB25 confers resistance to chemotherapy by altering mitochondrial apoptosis signaling in ovarian cancer cells. Apoptosis 2020; 25:799-816. [PMID: 32901335 DOI: 10.1007/s10495-020-01635-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 01/28/2023]
Abstract
Ovarian cancer remains one of the most frequent causes of cancer-related death in women. Many patients with ovarian cancer suffer from de novo or acquired resistance to chemotherapy. Here, we report that RAB25 suppresses chemotherapy-induced mitochondrial apoptosis signaling in ovarian cancer cell lines and primary ovarian cancer cells. RAB25 blocks chemotherapy-induced apoptosis upstream of mitochondrial outer membrane permeabilization by either increasing antiapoptotic BCL-2 proteins or decreasing proapoptotic BCL-2 proteins. In particular, BAX expression negatively correlates with RAB25 expression in ovarian cancer cells. BH3 profiling assays corroborated that RAB25 decreases mitochondrial cell death priming. Suppressing RAB25 by means of RNAi or RFP14 inhibitory hydrocarbon-stapled peptide sensitizes ovarian cancer cells to chemotherapy as well as RAB25-mediated proliferation, invasion and migration. Our data suggest that RAB25 is a potential therapeutic target for ovarian cancer.
Collapse
|
11
|
CHML promotes liver cancer metastasis by facilitating Rab14 recycle. Nat Commun 2019; 10:2510. [PMID: 31175290 PMCID: PMC6555802 DOI: 10.1038/s41467-019-10364-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
Metastasis-associated recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC), however, the underlying mechanisms remain largely elusive. In this study, we report that expression of choroideremia-like (CHML) is increased in HCC, associated with poor survival, early recurrence and more satellite nodules in HCC patients. CHML promotes migration, invasion and metastasis of HCC cells, in a Rab14-dependent manner. Mechanism study reveals that CHML facilitates constant recycling of Rab14 by escorting Rab14 to the membrane. Furthermore, we identify several metastasis regulators as cargoes carried by Rab14-positive vesicles, including Mucin13 and CD44, which may contribute to metastasis-promoting effects of CHML. Altogether, our data establish CHML as a potential promoter of HCC metastasis, and the CHML-Rab14 axis may be a promising therapeutic target for HCC.
Collapse
|
12
|
Rab25 and RCP in cancer progression. Arch Pharm Res 2019; 42:101-112. [DOI: 10.1007/s12272-019-01129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
|
13
|
RAB38 promotes bladder cancer growth by promoting cell proliferation and motility. World J Urol 2018; 37:1889-1897. [PMID: 30535713 DOI: 10.1007/s00345-018-2596-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Bladder cancer is the most common malignancy of urinary system with high morbidity and mortality. In general, the development and progression of bladder cancer are complicated pathological processes, and the treatment methods mainly include surgical resection, radiotherapy, chemotherapy, and combined therapy. In recent years, targeted therapy has made progress in the treatment of bladder cancer. Therefore, to improve survival rates of patients with advanced bladder cancer, novel therapeutic targets are still urgently needed. METHODS AND RESULTS In this study, we found that RAB38 expressed in tumor tissues of patients with bladder cancer was linked to clinical features including pTNM stage and tumor recurrence, and positively correlated with the poor prognosis of bladder cancer. Notably, further results indicated that depletion of RAB38 could significantly inhibit the proliferation and motility of two types of human bladder cancer cells, T24 and 5637 cells. In addition, RAB38 ablation obviously blocked tumor growth and development in mice compared with control. CONCLUSION In conclusion, this study provides significant evidence that RAB38 promotes the development of bladder cancer and provides a novel therapeutic target of bladder cancer.
Collapse
|
14
|
Wang S, Hu C, Wu F, He S. Rab25 GTPase: Functional roles in cancer. Oncotarget 2017; 8:64591-64599. [PMID: 28969096 PMCID: PMC5610028 DOI: 10.18632/oncotarget.19571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Rab25, a small GTPase belongs to the Rab protein family, has a pivotal role in cancer pathophysiology. Rab25 governs cell-surface receptors recycling and cellular signaling pathways activation, allowing it to control a diverse range of cellular functions, including cell proliferation, cell motility and cell death. Aberrant expression of Rab25 was linked to cancer development. Majority of research findings revealed that Rab25 is an oncogene. Elevated expression of Rab25 was correlated with poor prognosis and aggressiveness of renal, lung, breast, ovarian and other cancers. However, tumor suppressor function of Rab25 was reported in several cancers, such as colorectal cancer, indicating the tumor type-specific function of Rab25. In this review, we recapitulate the current knowledge of Rab25 in cancer development and therapy.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Hu C, Chen B, Zhou Y, Shan Y. High expression of Rab25 contributes to malignant phenotypes and biochemical recurrence in patients with prostate cancer after radical prostatectomy. Cancer Cell Int 2017; 17:45. [PMID: 28400705 PMCID: PMC5387234 DOI: 10.1186/s12935-017-0411-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background Ras-related protein 25 (Rab25) functions either as an oncogene or a tumor suppressor with a cancer type-dependent manner. We aimed to investigate clinical significance of Rab25 in prostate cancer (PCa). Methods Quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry were respectively performed to detect Rab25 mRNA and protein expression in PCa and adjacent non-cancerous prostate tissues. Receiver-operating characteristic curve analysis was used to evaluate predictive diagnostic value of Rab25. Associations of Rab25 expression with various clinicopathological characteristics and biochemical recurrence-free survival of PCa patients were statistically evaluated. In vitro, PCa cell proliferation was assessed by CCK-8 assay, and the cell migration and invasion activities were evaluated by Transwell assay, following the transfection of Rab25 small interfering RNA. Results Ras-related protein 25 mRNA and protein expression in PCa tissues were both significantly higher than adjacent non-cancerous prostate tissues (both P < 0.001). The area under the curve of Rab25 immunoreactive score (IRS) was 0.896 (P < 0.001) with 74.0% sensitivity and 95.0% specificity. High Rab25 IRS was significantly associated with high Gleason score (P = 0.02) and distant metastasis (P = 0.01). PCa patients with high Rab25 IRS had shorter overall and biochemical recurrence-free survivals than those with low Rab25 IRS (both P < 0.001). Cox regression analysis identified Rab25 as an independent biomarker for both overall and biochemical recurrence-free survivals of PCa patients. By exploring its activities in vitro, Rab25 downregulation was found to inhibit PCa cell proliferation, migration and invasion. Conclusions High expression of Rab25 may contribute to malignant progression and biochemical recurrence of PCa patients after radical prostatectomy. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0411-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunhui Hu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Beibei Chen
- Department of Intensive Care Unit, Huai'an First People's Hospital, Huai'an, 223300 Jiangsu China
| | - Yibin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Yuxi Shan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| |
Collapse
|