1
|
Khezri MR, Hsueh H, Mohammadipanah S, Khalili Fard J, Ghasemnejad‐Berenji M. The interplay between the PI3K/AKT pathway and circadian clock in physiologic and cancer-related pathologic conditions. Cell Prolif 2024; 57:e13608. [PMID: 38336976 PMCID: PMC11216939 DOI: 10.1111/cpr.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The circadian clock is responsible for the regulation of different cellular processes, and its disturbance has been linked to the development of different diseases, such as cancer. The main molecular mechanism for this issue has been linked to the crosstalk between core clock regulators and intracellular pathways responsible for cell survival. The PI3K/AKT signalling pathway is one of the most known intracellular pathways in the case of cancer initiation and progression. This pathway regulates different aspects of cell survival including proliferation, apoptosis, metabolism, and response to environmental stimuli. Accumulating evidence indicates that there is a link between the PI3K/AKT pathway activity and circadian rhythm in physiologic and cancer-related pathogenesis. Different classes of PI3Ks and AKT isoforms are involved in regulating circadian clock components in a transcriptional and functional manner. Reversely, core clock components induce a rhythmic fashion in PI3K and AKT activity in physiologic and pathogenic conditions. The aim of this review is to re-examine the interplay between this pathway and circadian clock components in normal condition and cancer pathogenesis, which provides a better understanding of how circadian rhythms may be involved in cancer progression.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Hsiang‐Yin Hsueh
- The Ohio State University Graduate Program in Molecular, Cellular and Developmental BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Somayeh Mohammadipanah
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Morteza Ghasemnejad‐Berenji
- Department of Pharmacology and Toxicology, Faculty of PharmacyUrmia University of Medical SciencesUrmiaIran
- Research Center for Experimental and Applied Pharmaceutical SciencesUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
2
|
Wang Y, Narasimamurthy R, Qu M, Shi N, Guo H, Xue Y, Barker N. Circadian regulation of cancer stem cells and the tumor microenvironment during metastasis. NATURE CANCER 2024; 5:546-556. [PMID: 38654103 DOI: 10.1038/s43018-024-00759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/07/2024] [Indexed: 04/25/2024]
Abstract
The circadian clock regulates daily rhythms of numerous physiological activities through tightly coordinated modulation of gene expression and biochemical functions. Circadian disruption is associated with enhanced tumor formation and metastasis via dysregulation of key biological processes and modulation of cancer stem cells (CSCs) and their specialized microenvironment. Here, we review how the circadian clock influences CSCs and their local tumor niches in the context of different stages of tumor metastasis. Identifying circadian therapeutic targets could facilitate the development of new treatments that leverage circadian modulation to ablate tumor-resident CSCs, inhibit tumor metastasis and enhance response to current therapies.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Meng Qu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Nuolin Shi
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Nick Barker
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Barati S, Saffar H, Mehrabadi S, Avan A. The Circadian Clock as a Potential Biomarker and Therapeutic Target in Gastrointestinal Cancers. Curr Pharm Des 2024; 30:1804-1811. [PMID: 38798218 DOI: 10.2174/0113816128302762240515054444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
The circadian clock consists of a hierarchical multi-oscillator network of intracellular and intercellular mechanisms throughout the body that contributes to anticipating metabolic activity and maintaining system homeostasis in response to environmental cues and intrinsic stimuli. Over the past few years, genetic variations of core clock genes have been associated with cancer risk in several epidemiological studies. A growing number of epidemiological research studies have demonstrated a direct correlation between the disturbance of circadian rhythms and the growth of tumors, indicating that shift workers are more susceptible to malignancies of the colon, prostate, ovarian, breast, lung, and liver. One of the most related cancers with circadian rhythm is Gastrointestinal (GI) cancer, which is a leading cause of cancer-related mortality nowadays. The aim of this review was to demonstrate the effect of the clock gene network on the growth of GI cancer, providing molecular targets for GI cancer treatment, possible prognostic biomarkers, and guidance for treatment choices.
Collapse
Affiliation(s)
- Sama Barati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homina Saffar
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, 4000, Australia
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Zhu H, Chen J, Wen Z, Li J, Yu Q, Liao W, Luo X. The role of circadian clock genes in colorectal carcinoma: Novel insights into regulatory mechanism and implications in clinical therapy. Life Sci 2023; 333:122145. [PMID: 37797685 DOI: 10.1016/j.lfs.2023.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Colorectal cancer (CRC) is a lethal malignancy with limited treatment strategies. Accumulating evidence indicates that CRC tumorigenesis, progression and metastasis are intimately associated with circadian clock, an inherent 24-h cycle oscillation of biochemical, physiological functions in almost every eukaryote. In the present review, we summarize the altered expression level of circadian genes in CRC and the prognosis associated with gene abundance switch. We illustrate the function and potential mechanisms of circadian genes in CRC pathogenesis and progression. Moreover, circadian based-therapeutic strategies including chronotherapy, therapeutics targeting potential circadian components, and melatonin treatment in CRC are also highlighted.
Collapse
Affiliation(s)
- Haodong Zhu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Jiawei Chen
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Jinfei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Qinyang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Weihua Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, PR China.
| |
Collapse
|
5
|
Moravčík R, Olejárová S, Zlacká J, Herichová I. Effect of miR-34a on the expression of clock and clock-controlled genes in DLD1 and Lovo human cancer cells with different backgrounds with respect to p53 functionality and 17β-estradiol-mediated regulation. PLoS One 2023; 18:e0292880. [PMID: 37831728 PMCID: PMC10575541 DOI: 10.1371/journal.pone.0292880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The small non-coding RNA miR-34a is a p53-regulated miRNA that acts as a tumour suppressor of colorectal cancer (CRC). Oncogenesis is also negatively influenced by deregulation of the circadian system in many types of tumours with various genetic backgrounds. As the clock gene per2 was recently recognized as one of the target genes of miR-34a, we focused on the miR-34a-mediated influence on the circadian oscillator in CRC cell lines DLD1 and LoVo, which differ in their p53 status. Previously, a sex-dependent association between the expression of per2 and that of miR-34a was demonstrated in CRC patients. Therefore, we also investigated the effect of 17β-estradiol (E2) on miR-34a oncostatic functions. miR-34a mimic caused a pronounced inhibition of per2 expression in both cell lines. Moreover, miR-34a mimic significantly inhibited bmal1 expression in LoVo and rev-erbα expression in DLD1 cells and induced clock gene expression in both cell lines. miR-34a mimic caused a pronounced decrease in sirt1 and cyclin D1 expression, which may be related to the inhibition of proliferation observed after mir-34a administration in DLD1 cells. E2 administration inhibited the migration and proliferation of DLD1 cells. E2 and miR-34a, when administered simultaneously, did not potentiate each other's effects. To conclude, miR-34a strongly influences the expression of components of the circadian oscillator without respect to p53 status and exerts its oncostatic effects via inhibition of sirt1 and cyclin D1 mRNA expression. E2 administration inhibits the growth of DLD1 cells; however, this effect seems to be independent of miR-34a-mediated action. With respect to the possible use of miR-34a in cancer treatment, clock genes can be considered as off-target genes, as changes in their expression induced by miR-34a treatment do not contribute to the oncostatic functions of miR-34a. Possible ambiguous oncogenic characteristics should be taken into consideration in future clinical studies focused on miR-34a.
Collapse
Affiliation(s)
- Roman Moravčík
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - Soňa Olejárová
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - Jana Zlacká
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - Iveta Herichová
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
6
|
Effects and Prognostic Values of Circadian Genes CSNK1E/GNA11/KLF9/THRAP3 in Kidney Renal Clear Cell Carcinoma via a Comprehensive Analysis. Bioengineering (Basel) 2022; 9:bioengineering9070306. [PMID: 35877357 PMCID: PMC9311602 DOI: 10.3390/bioengineering9070306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most prevalent and deadly types of renal cancer in adults. Recent research has identified circadian genes as being involved in the development and progression of KIRC by altering their expression. This study aimed to identify circadian genes that are differentially expressed in KIRC and assess their role in KIRC progression. In KIRC, there were 553 differentially expressed rhythm genes (DERGs), with 300 up-regulated and 253 down-regulated DERGs. Functional enrichment analyses showed that DERGs were greatly enriched in the circadian rhythm and immune response pathways. Survival analyses indicated that higher expression levels of CSNK1E were related to shorter overall survival of KIRC patients, whereas lower expression levels of GNA11, KLF9, and THRAP3 were associated with shorter overall survival of KIRC patients. Through cell assay verification, the mRNA level of CSNK1E was significantly up-regulated, whereas the mRNA levels of GNA11, KLF9, and THRAP3 were dramatically down-regulated in KIRC cells, which were consistent with the bioinformatics analysis of KIRC patient samples. Age, grade, stage, TM classification, and CSNK1E expression were all shown to be high-risk variables, whereas GNA11, KLF9, and THRAP3 expression were found to be low-risk factors in univariate Cox analyses. Multivariate Cox analyses showed that CSNK1E and KLF9 were also independently related to overall survival. Immune infiltration analysis indicated that the proportion of immune cells varied greatly between KIRC tissues and normal tissue, whereas CSNK1E, GNA11, KLF9, and THRAP3 expression levels were substantially linked with the infiltration abundance of immune cells and immunological biomarkers. Moreover, interaction networks between CSNK1E/GNA11/KLF9/THRAP3 and immune genes were constructed to explore the stream connections. The findings could help us better understand the molecular mechanisms of KIRC progression, and CSNK1E/GNA11/KLF9/THRAP3 might be used as molecular targets for chronotherapy in KIRC patients in the near future.
Collapse
|
7
|
Zhou Z, Chen H, Li Y, Liu Q, Lu K, Zhu X, Wang Y. Transcriptome and biochemical analyses of rainbow trout (Oncorhynchus mykiss) RTG-2 gonadal cells in response to BDE-47 stress indicates effects on cell proliferation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106108. [PMID: 35189508 DOI: 10.1016/j.aquatox.2022.106108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a biotoxin of polybrominated diphenyl ether (PBDEs) frequently detected in the environment. Apoptosis and cell cycle arrest are important toxic phenomena of xenobiotics that inhibit cell proliferation. In this study, we investigated the effects of BDE-47 (5 μM, 10 μM, 20 μM, 40 μM) on cell viability, morphology, cell cycle and apoptosis. BDE-47 significantly decreased cell viability, and morphological alterations were observed. The significant increase in cells at G1 phase indicated the occurrence of G1 phase cell cycle arrest in RTG-2 cells. An acridine orange and ethidium bromide (AO/EB) staining assay was employed and revealed the induction of apoptosis in RTG-2 cells. The results indicated that BDE-47 exposure inhibits cell proliferation. Transcriptome analysis was applied for further evidence. A total of 1300 differentially expressed genes (DEGs) were identified in RTG-2 cells, among which 26 DEGs were associated with the cell cycle and apoptosis. Western blotting and qPCR analyses also showed the expression of cell cycle- and apoptosis-related proteins and genes. Mapping the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, p53, Tumor necrosis factor (TNF), Mitogen-activated protein kinase (MAPK), phosphatidylinositide 3-kinase-AKT (PI3K-AKT), and reaction oxygen species (ROS)-mediated signaling pathways were determined to be the major pathways involved in modulating the cell cycle and apoptosis. Since we demonstrated simultaneous ROS overproduction during BDE-47 exposure in a previous study, we speculated a possible explanation for the observation: BDE-47-induced ROS overproduction was the initiating signal, which activated cell cycle arrest and apoptosis and finally inhibited cell proliferation.
Collapse
Affiliation(s)
- Zhongyuan Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Hongmei Chen
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, China.
| | - Yuanyuan Li
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Qian Liu
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Keyu Lu
- Department of Geography, University College London, London WC1E 6BT, UK.
| | - Xiaoshan Zhu
- Physiology and Toxicology, Graduate School of Shenzhen, Tsinghua University.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
8
|
Cui S, Chen Y, Guo Y, Chen D. Clock genes and gastric cancer. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2021.2020993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
9
|
Razi Soofiyani S, Ahangari H, Soleimanian A, Babaei G, Ghasemnejad T, Safavi SE, Eyvazi S, Tarhriz V. The role of circadian genes in the pathogenesis of colorectal cancer. Gene 2021; 804:145894. [PMID: 34418469 DOI: 10.1016/j.gene.2021.145894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequent cancer in human beings and is also the major cause of death among the other gastrointestinal cancers. The exact mechanisms of CRC development in most patients remains unclear. So far, several genetically, environmental and epigenetically risk factors have been identified for CRC development. The circadian rhythm is a 24-h rhythm that drives several biologic processes. The circadian system is guided by a central pacemaker which is located in the suprachiasmatic nucleus (SCN) in the hypothalamus. Circadian rhythm is regulated by circadian clock genes, cytokines and hormones like melatonin. Disruptions in biological rhythms are known to be strongly associated with several diseases, including cancer. The role of the different circadian genes has been verified in various cancers, however, the pathways of different circadian genes in the pathogenesis of CRC are less investigated. Identification of the details of the pathways in CRC helps researchers to explore new therapies for the malignancy.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Esmaeil Safavi
- Faculty of Veternary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shirin Eyvazi
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Tampakakis E, Gangrade H, Glavaris S, Htet M, Murphy S, Lin BL, Liu T, Saberi A, Miyamoto M, Kowalski W, Mukouyama YS, Lee G, Minichiello L, Kwon C. Heart neurons use clock genes to control myocyte proliferation. SCIENCE ADVANCES 2021; 7:eabh4181. [PMID: 34851661 PMCID: PMC8635446 DOI: 10.1126/sciadv.abh4181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Neurons can regulate the development, pathogenesis, and regeneration of target organs. However, the role of neurons during heart development and regeneration remains unclear. We genetically inhibited sympathetic innervation in vivo, which resulted in heart enlargement with an increase in cardiomyocyte number. Transcriptomic and protein analysis showed down-regulation of the two clock gene homologs Period1/Period2 (Per1/Per2) accompanied by up-regulation of cell cycle genes. Per1/Per2 deletion increased heart size and cardiomyocyte proliferation, recapitulating sympathetic neuron–deficient hearts. Conversely, increasing sympathetic activity by norepinephrine treatment induced Per1/Per2 and suppressed cardiomyocyte proliferation. We further found that the two clock genes negatively regulate myocyte mitosis entry through the Wee1 kinase pathway. Our findings demonstrate a previously unknown link between cardiac neurons and clock genes in regulation of cardiomyocyte proliferation and heart size and provide mechanistic insights for developing neuromodulation strategies for cardiac regen5eration.
Collapse
Affiliation(s)
- Emmanouil Tampakakis
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Harshi Gangrade
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stephanie Glavaris
- Division of Paediatric Oncology, Department of Paediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Myo Htet
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sean Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Department of Cell Biology, Cellular, and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brian Leei Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ting Liu
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amir Saberi
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Department of Cell Biology, Cellular, and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Department of Cell Biology, Cellular, and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Ritonja JA, Aronson KJ, Flaten L, Topouza DG, Duan QL, Durocher F, Tranmer JE, Bhatti P. Exploring the impact of night shift work on methylation of circadian genes. Epigenetics 2021; 17:1259-1268. [PMID: 34825628 DOI: 10.1080/15592294.2021.2009997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Night shift work is associated with increased breast cancer risk, but the molecular mechanisms are not well-understood. The objective of this study was to explore the relationship between night shift work parameters (current status, duration/years, and intensity) and methylation in circadian genes as a potential mechanism underlying the carcinogenic effects of night shift work. A cross-sectional study was conducted among 74 female healthcare employees (n = 38 day workers, n = 36 night shift workers). The Illumina Infinium MethylationEPIC beadchip was applied to DNA extracted from blood samples to measure methylation using a candidate gene approach at 1150 CpG loci across 22 circadian genes. Linear regression models were used to examine the association between night shift work parameters and continuous methylation measurements (β-values) for each CpG site. The false-discovery rate (q = 0.2) was used to account for multiple comparisons. Compared to day workers, current night shift workers demonstrated hypermethylation in the 5'UTR region of CSNK1E (q = 0.15). Individuals that worked night shifts for ≥10 years exhibited hypomethylation in the gene body of NR1D1 (q = 0.08) compared to those that worked <10 years. Hypermethylation in the gene body of ARNTL was also apparent in those who worked ≥3 consecutive night shifts a week (q = 0.18). These findings suggest that night shift work is associated with differential methylation in core circadian genes, including CSNK1E, NR1D1 and ARNTL. Future, larger-scale studies with long-term follow-up and detailed night shift work assessment are needed to confirm and expand on these findings.
Collapse
Affiliation(s)
- Jennifer A Ritonja
- Department of Public Health Sciences, Queen's University, Kingston, Canada
| | - Kristan J Aronson
- Department of Public Health Sciences, Queen's University, Kingston, Canada.,Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen's University, Kingston, Canada
| | - Lisa Flaten
- Department of Public Health Sciences, Queen's University, Kingston, Canada
| | - Danai G Topouza
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Qing Ling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,School of Computing, Queen's University, Kingston, Canada
| | - Francine Durocher
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Kingston, Canada.,Centre de Recherche Sur Le Cancer, Centre de Recherche Du Chu de Québec-Université Laval, Quebec, Canada
| | - Joan E Tranmer
- Department of Public Health Sciences, Queen's University, Kingston, Canada.,The School of Nursing is the department, School of Nursing, Queen's University, Kingston, Canada
| | | |
Collapse
|
12
|
Hassan SA, Ali AAH, Sohn D, Flögel U, Jänicke RU, Korf H, von Gall C. Does timing matter in radiotherapy of hepatocellular carcinoma? An experimental study in mice. Cancer Med 2021; 10:7712-7725. [PMID: 34545699 PMCID: PMC8559477 DOI: 10.1002/cam4.4277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023] Open
Abstract
This study investigates whether a chronotherapeutic treatment of hepatocellular carcinoma (HCC) may improve treatment efficacy and mitigate side effects on non-tumoral liver (NTL). HCC was induced in Per2::luc mice which were irradiated at four time points of the day. Proliferation and DNA-double strand breaks were analyzed in irradiated and nonirradiated animals by detection of Ki67 and γ-H2AX. Prior to whole animal experiments, organotypic slice cultures were investigated to determine the dosage to be used in whole animal experiments. Irradiation was most effective at the proliferation peaks in HCC at ZT02 (early inactivity phase) and ZT20 (late activity phase). Irradiation effects on NTL were minimal at ZT20. As compared with NTL, nonirradiated HCC revealed disruption in daily variation and downregulation of all investigated clock genes except Per1. Irradiation affected rhythmic clock gene expression in NTL and HCC at all ZTs except at ZT20 (late activity phase). Irradiation at ZT20 had no effect on total leukocyte numbers. Our results indicate ZT20 as the optimal time point for irradiation of HCC in mice at which the ratio between efficacy of tumor treatment and toxic side effects was maximal. Translational studies are now needed to evaluate whether the late activity phase is the optimal time point for irradiation of HCC in man.
Collapse
Affiliation(s)
- Soha A. Hassan
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
- Zoology DepartmentFaculty of ScienceSuez UniversitySuezEgypt
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
- Department of Anatomy and EmbryologyFaculty of MedicineMansoura UniversityMansouraEgypt
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and RadiooncologyMedical Faculty of Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Ulrich Flögel
- Department of Molecular CardiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Reiner U. Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and RadiooncologyMedical Faculty of Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Horst‐Werner Korf
- Institute of Anatomy IMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|
13
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
14
|
Ng MG, Ng KY, Koh RY, Chye SM. Potential role of melatonin in prevention and treatment of leukaemia. Horm Mol Biol Clin Investig 2021; 42:445-461. [PMID: 34355548 DOI: 10.1515/hmbci-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Leukaemia is a haematological malignancy originated from the bone marrow. Studies have shown that shift work could disrupt the melatonin secretion and eventually increase leukaemia incidence risk. Melatonin, a pineal hormone, has shown promising oncostatic properties on a wide range of cancers, including leukaemia. We first reviewed the relationship between shift work and the incidence rate of leukaemia and then discussed the role of melatonin receptors (MT1 and MT2) and their functions in leukaemia. Moreover, the connection between inflammation and leukaemia, and melatonin-induced anti-leukaemia mechanisms including anti-proliferation, apoptosis induction and immunomodulation are comprehensively discussed. Apart from that, the synergistic effects of melatonin with other anticancer compounds are also included. In short, this review article has compiled the evidence of anti-leukaemia properties displayed by melatonin and discuss its potential to act as adjunct for anti-leukaemia treatment. This review may serve as a reference for future studies or experimental research to explore the possibility of melatonin serving as a novel therapeutic agent for leukaemia.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Hassan SA, Schmithals C, von Harten M, Piiper A, Korf HW, von Gall C. Time-dependent changes in proliferation, DNA damage and clock gene expression in hepatocellular carcinoma and healthy liver of a transgenic mouse model. Int J Cancer 2020; 148:226-237. [PMID: 32700769 DOI: 10.1002/ijc.33228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is highly resistant to anticancer therapy and novel therapeutic strategies are needed. Chronotherapy may become a promising approach because it may improve the efficacy of antimitotic radiation and chemotherapy by considering timing of treatment. To date little is known about time-of-day dependent changes of proliferation and DNA damage in HCC. Using transgenic c-myc/transforming growth factor (TGFα) mice as HCC animal model, we immunohistochemically demonstrated Ki67 as marker for proliferation and γ-H2AX as marker for DNA damage in HCC and surrounding healthy liver (HL). Core clock genes (Per1, Per2, Cry1, Cry2, Bmal 1, Rev-erbα and Clock) were examined by qPCR. Data were obtained from samples collected ex vivo at four different time points and from organotypic slice cultures (OSC). Significant differences were found between HCC and HL. In HCC, the number of Ki67 immunoreactive cells showed two peaks (ex vivo: ZT06 middle of day and ZT18 middle of night; OSC: CT04 and CT16). In ex vivo samples, the number of γ-H2AX positive cells in HCC peaked at ZT18 (middle of the night), while in OSC their number remained high during subjective day and night. In both HCC and HL, clock gene expression showed a time-of-day dependent expression ex vivo but no changes in OSC. The expression of Per2 and Cry1 was significantly lower in HCC than in HL. Our data support the concept of chronotherapy of HCC. OSC may become useful to test novel cancer therapies.
Collapse
Affiliation(s)
- Soha A Hassan
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | | | - Maike von Harten
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Institute of Anatomy II, Goethe University, Frankfurt, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
16
|
Rajendran S, Barbon S, Pucciarelli S. Spotlight on Circadian Genes and Colorectal Cancer Crosstalk. Endocr Metab Immune Disord Drug Targets 2020; 21:4-11. [PMID: 32579510 DOI: 10.2174/1871530320666200624192517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/19/2020] [Accepted: 04/22/2020] [Indexed: 11/22/2022]
Abstract
Mammalian physiology is regulated by circadian clock through oscillating feedback loops controlling cellular processes and behaviors. Recent findings have led to an interesting connection between circadian disruption and colorectal cancer progression and incidence through controlling the hallmarks of cancer, namely cell cycle, cell metabolism and cell death. Deeper understanding of the circadian mechanisms that define the colorectal cancer pathophysiology is the need of the hour to define a chronotherapy for improving colorectal cancer patient survival. This review identifies the key areas in which circadian genes interact with cellular pathways to modify the outcome with respect to colorectal cancer incidence and progression.
Collapse
Affiliation(s)
| | - Silvia Barbon
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy
| |
Collapse
|
17
|
Sasaki Y, Hokuto D, Inoue T, Nomi T, Yoshikawa T, Matsuo Y, Koyama F, Sho M. Significance of Herpesvirus Entry Mediator Expression in Human Colorectal Liver Metastasis. Ann Surg Oncol 2019; 26:3982-3989. [PMID: 31313042 DOI: 10.1245/s10434-019-07625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Herpesvirus entry mediator (HVEM) has been suggested to play various roles in cancer biology. The authors report that HVEM expression in tumor cells is associated with a reduction in the number of tumor-infiltrating lymphocytes and a poor prognosis after surgical resection in various human gastrointestinal cancers. This study aimed to clarify the clinical significance of HVEM expression in human colorectal liver metastasis (CRLM). METHODS This study examined the cases of 104 patients with CRLM who underwent curative liver resection at Nara Medical University between 2000 and 2014. The median follow-up period was 50.2 months. Immunohistochemical staining was performed using antibodies against HVEM, CD4, CD8, and CD45RO. RESULTS High HVEM expression was observed in 49 patients (47.1%) with CRLM. Expression of HVEM was not associated with age, gender, administration of preoperative chemotherapy, tumor size, number of tumors, or histologic differentiation. The high-HVEM group exhibited significantly worse overall survival (OS) than the low-HVEM group (P = 0.002). Multivariate analysis showed that high HVEM expression in CRLM, age of 70 years or older, and having five or more tumors are independent poor prognostic factors for OS (hazard ratio [HR], 3.35; 95% confidence interval [CI], 1.41-7.93; P = 0.006). The number of tumor-infiltrating CD8+ and CD45RO+ T cells was significantly lower in the high-HVEM group than in the low-HVEM group. High HVEM expression in primary colorectal cancer was significantly associated with synchronous CRLM, but not with metachronous CRLM. CONCLUSIONS Tumor HVEM expression might play a critical role in CRLM.
Collapse
Affiliation(s)
- Yoshiyuki Sasaki
- Department of Surgery, Nara Medical University, Kashihara-Shi, Nara, Japan
| | - Daisuke Hokuto
- Department of Surgery, Nara Medical University, Kashihara-Shi, Nara, Japan.
| | - Takashi Inoue
- Department of Surgery, Nara Medical University, Kashihara-Shi, Nara, Japan
| | - Takeo Nomi
- Department of Surgery, Nara Medical University, Kashihara-Shi, Nara, Japan
| | - Takahiro Yoshikawa
- Department of Surgery, Nara Medical University, Kashihara-Shi, Nara, Japan
| | - Yasuko Matsuo
- Department of Surgery, Nara Medical University, Kashihara-Shi, Nara, Japan
| | - Fumikazu Koyama
- Department of Surgery, Nara Medical University, Kashihara-Shi, Nara, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara-Shi, Nara, Japan
| |
Collapse
|
18
|
Chok KC, Ng CH, Koh RY, Ng KY, Chye SM. The potential therapeutic actions of melatonin in colorectal cancer. Horm Mol Biol Clin Investig 2019; 39:hmbci-2019-0001. [DOI: 10.1515/hmbci-2019-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Colorectal cancer (CRC) is the third most common cancer and lethal disease worldwide. Melatonin, an indoleamine produced in pineal gland, shows anticancer effects on a variety of cancers, especially CRC. After clarifying the pathophysiology of CRC, the association of circadian rhythm with CRC, and the relationship between shift work and the incidence of CRC is reviewed. Next, we review the role of melatonin receptors in CRC and the relationship between inflammation and CRC. Also included is a discussion of the mechanism of gene regulation, control of cell proliferation, apoptosis, autophagy, antiangiogenesis and immunomodulation in CRC by melatonin. A review of the drug synergy of melatonin with other anticancer drugs suggests its usefulness in combination therapy. In summary, the information compiled may serve as comprehensive reference for the various mechanisms of action of melatonin against CRC, and as a guide for the design of future experimental research and for advancing melatonin as a therapeutic agent for CRC.
Collapse
Affiliation(s)
- Kian Chung Chok
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia
| | - Chew Hee Ng
- School of Pharmacy, International Medical University , Kuala Lumpur , Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia
| | - Khuen Yen Ng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Selangor , Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia , Phone: +6032731 7220; Fax: +60386567229
| |
Collapse
|
19
|
Dimova EY, Jakupovic M, Kubaichuk K, Mennerich D, Chi TF, Tamanini F, Oklejewicz M, Hänig J, Byts N, Mäkelä KA, Herzig KH, Koivunen P, Chaves I, van der Horst G, Kietzmann T. The Circadian Clock Protein CRY1 Is a Negative Regulator of HIF-1α. iScience 2019; 13:284-304. [PMID: 30875610 PMCID: PMC6416729 DOI: 10.1016/j.isci.2019.02.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/03/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
The circadian clock and the hypoxia-signaling pathway are regulated by an integrated interplay of positive and negative feedback limbs that incorporate energy homeostasis and carcinogenesis. We show that the negative circadian regulator CRY1 is also a negative regulator of hypoxia-inducible factor (HIF). Mechanistically, CRY1 interacts with the basic-helix-loop-helix domain of HIF-1α via its tail region. Subsequently, CRY1 reduces HIF-1α half-life and binding of HIFs to target gene promoters. This appeared to be CRY1 specific because genetic disruption of CRY1, but not CRY2, affected the hypoxia response. Furthermore, CRY1 deficiency could induce cellular HIF levels, proliferation, and migration, which could be reversed by CRISPR/Cas9- or short hairpin RNA-mediated HIF knockout. Altogether, our study provides a mechanistic explanation for genetic association studies linking a disruption of the circadian clock with hypoxia-associated processes such as carcinogenesis.
Collapse
Affiliation(s)
- Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | - Mirza Jakupovic
- Department of Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Tabughang Franklin Chi
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Filippo Tamanini
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Małgorzata Oklejewicz
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Jens Hänig
- Novartis Pharma GmbH, 97082 Würzburg, Germany
| | - Nadiya Byts
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Kari A Mäkelä
- Biocenter Oulu, Department of Physiology, University of Oulu, 90014 Oulu, Finland
| | - Karl-Heinz Herzig
- Biocenter Oulu, Department of Physiology, University of Oulu, 90014 Oulu, Finland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Ines Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Gijsbertus van der Horst
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| |
Collapse
|
20
|
Codoñer-Franch P, Gombert M. Circadian rhythms in the pathogenesis of gastrointestinal diseases. World J Gastroenterol 2018; 24:4297-4303. [PMID: 30344415 PMCID: PMC6189841 DOI: 10.3748/wjg.v24.i38.4297] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
The etiology of digestive pathologies such as irritable bowel syndrome (IBS), inflammatory bowel diseases (IBD) and cancer is not yet fully understood. In recent years, several studies have evidenced circadian variations in mechanisms involved in digestive health. In situations of disturbed circadian rhythms (chronodisruption) where the central clock and the peripheral clocks receive incoherent signals, the synchronicity is lost producing implications for health. This lack of coordination could alter the tissue function and cause long term damage to the organs. Life habits such as sleep, physical exercise, social interaction, and feeding times are determinants for stability and integrity of circadian rhythms. In recent years, experimental and clinical studies have consistently evidenced that the alteration of circadian rhythms is associated with the development of digestive pathologies mainly linked to dismotility or changes in microbiota composition. Likewise, it seems reasonable to deep into the importance of chronodisruption as a factor that may participate in the development of pathologies such as IBS, IBD and digestive cancers. Moreover, life habits respecting circadian rhythms should be promoted for the prevention of these diseases. Further studies will allow us a better understanding of the mechanisms acting at molecular level, and the development of new therapeutic targets.
Collapse
Affiliation(s)
- Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Ginecology, University of Valencia, Valencia 46010, Spain
- Department of Pediatrics, Dr. Peset University Hospital, Valencia 46017, Spain
| | - Marie Gombert
- Department of Pediatrics, Obstetrics and Ginecology, University of Valencia, Valencia 46010, Spain
- Department of Biotechnology, University of La Rochelle, La Rochelle 17000, France
| |
Collapse
|
21
|
de Assis LVM, Kinker GS, Moraes MN, Markus RP, Fernandes PA, Castrucci AMDL. Expression of the Circadian Clock Gene BMAL1 Positively Correlates With Antitumor Immunity and Patient Survival in Metastatic Melanoma. Front Oncol 2018; 8:185. [PMID: 29946530 PMCID: PMC6005821 DOI: 10.3389/fonc.2018.00185] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction Melanoma is the most lethal type of skin cancer, with increasing incidence and mortality rates worldwide. Multiple studies have demonstrated a link between cancer development/progression and circadian disruption; however, the complex role of tumor-autonomous molecular clocks remains poorly understood. With that in mind, we investigated the pathophysiological relevance of clock genes expression in metastatic melanoma. Methods We analyzed gene expression, somatic mutation, and clinical data from 340 metastatic melanomas from The Cancer Genome Atlas, as well as gene expression data from 234 normal skin samples from genotype-tissue expression. Findings were confirmed in independent datasets. Results In melanomas, the expression of most clock genes was remarkably reduced and displayed a disrupted pattern of co-expression compared to the normal skins, indicating a dysfunctional circadian clock. Importantly, we demonstrate that the expression of the clock gene aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) positively correlates with patient overall survival and with the expression of T-cell activity and exhaustion markers in the tumor bulk. Accordingly, high BMAL1 expression in pretreatment samples was significantly associated with clinical benefit from immune checkpoint inhibitors. The robust intratumoral T-cell infiltration/activation observed in patients with high BMAL1 expression was associated with a decreased expression of key DNA-repair enzymes, and with an increased mutational/neoantigen load. Conclusion Overall, our data corroborate previous reports regarding the impact of BMAL1 expression on the cellular DNA-repair capacity and indicate that alterations in the tumor-autonomous molecular clock could influence the cellular composition of the surrounding microenvironment. Moreover, we revealed the potential of BMAL1 as a clinically relevant prognostic factor and biomarker for T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Laboratory of Neuroimmunemodulation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Laboratory of Neuroimmunemodulation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Pedro Augusto Fernandes
- Laboratory of Neuroimmunemodulation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
22
|
Tang W, Peng W, Zhang H, Zhang Y, Li B, Duan C. Period 3, a tumor suppressor in non-small cell lung cancer, is silenced by hypermethylation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:120-128. [PMID: 31938093 PMCID: PMC6957972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/20/2017] [Indexed: 06/10/2023]
Abstract
Lung cancer is one of the most preventable forms of cancer, which is the second leading cause of cancer-related death. Emerging evidence has suggested a possible link between the endogenous circadian clock and cell growth, and even cancer development. However, the role of important clock gene period 3 (PER3) in lung cancer remains fully understand, especially its regulatory mechanism. In this study, we investigated the biological role of PER3 in non-small cell lung cancer (NSCLC), and also demonstrated the possible mechanism that induces dysfunction of PER3 in lung cancer. QPCR was performed to measure the expression of PER3 in NSCLC tissues and cell lines. Bisulfite genomic sequencing PCR (BSP) and methylation specific PCR (MSP) were used to determine the methylation status of PER3. And a battery of cell biology assays was used to measure the effects of PER3 on cell proliferation, apoptosis, migration and invasion. We found that PER3 was downregulated in NSCLC tissues and cell lines compared with the adjacent or normal cells control. The promoter of PER3 was hypermethylated, which could be restored by demethylation drug 5-Aza. And overexpression of PER3 suppressed NSCLC cell proliferation, induced apoptosis and inhibited the ability of migration and invasion. These findings reveal that PER3 is a tumor suppressor in NSCLC and provide a promising target and a novel strategy to control cancer progression.
Collapse
Affiliation(s)
- Wenhui Tang
- Department of Respiratory Medicine, Shenzhen Shekou People’s HospitalShenzhen, Guangdong Province, P. R. China
- Institute of Medical Sciences, Xiangya Hospital, Central South UniversityChangsha, Hunan Province, P. R. China
| | - Wei Peng
- Institute of Medical Sciences, Xiangya Hospital, Central South UniversityChangsha, Hunan Province, P. R. China
| | - Hongmei Zhang
- Department of Respiratory Medicine, Shenzhen Shekou People’s HospitalShenzhen, Guangdong Province, P. R. China
| | - Yan Zhang
- Department of Respiratory Medicine, Shenzhen Shekou People’s HospitalShenzhen, Guangdong Province, P. R. China
| | - Bin Li
- Institute of Medical Sciences, Xiangya Hospital, Central South UniversityChangsha, Hunan Province, P. R. China
| | - Chaojun Duan
- Institute of Medical Sciences, Xiangya Hospital, Central South UniversityChangsha, Hunan Province, P. R. China
| |
Collapse
|