1
|
Park J, Brown C, Hess C, Armstrong M, Rocke DM, Galvez F, Whitehead A. Multiple Stressors in the Anthropocene: Urban Evolutionary History Modifies Sensitivity to the Toxic Effects of Crude Oil Exposure in Killifish. Evol Appl 2025; 18:e70112. [PMID: 40385352 PMCID: PMC12081835 DOI: 10.1111/eva.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Persistence of wild species in human-altered environments is difficult, in part because challenges to fitness are complex when multiple environmental changes occur simultaneously, which is common in the Anthropocene. This complexity is difficult to conceptualize because the nature of environmental change is often highly context specific. A mechanism-guided approach may help to shape intuition and predictions about complexity; fitness challenges posed by co-occurring stressors with similar mechanisms of action may be less severe than for those with different mechanisms of action. We approach these considerations within the context of ecotoxicology because this field is built upon a rich mechanistic foundation. We hypothesized that evolved resistance to one class of common toxicants would afford resilience to the fitness impacts of another class of common toxicants that shares mechanisms of toxicity. Fundulus killifish populations in urban estuaries have repeatedly evolved resistance to persistent organic pollutants including PCBs. Since PCBs and some of the toxicants that constitute crude oil (e.g., high molecular weight PAHs) exert toxicity through perturbation of AHR signaling, we predicted that PCB-resistant populations would also be resilient to crude oil toxicity. Common garden comparative oil exposure experiments, including killifish populations with different exposure histories, showed that most killifish populations were sensitive to fitness impacts (reproduction and development) caused by oil exposure, but that fish from the PCB-resistant population were insensitive. Population differences in toxic outcomes were not compatible with random-neutral expectations. Transcriptomics revealed that the molecular mechanisms that contributed to population variation in PAH resilience were shared with those that contribute to evolved variation in PCB resilience. We conclude that the fitness challenge posed by environmental pollutants is effectively reduced when those chemicals share mechanisms that affect fitness. Mechanistic considerations may help to scale predictions regarding the fitness challenges posed by stressors that may co-occur in human-altered environments.
Collapse
Affiliation(s)
- Jane Park
- Department of Environmental ToxicologyUniversity of California DavisDavisCaliforniaUSA
| | - Charles Brown
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Chelsea Hess
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Madison Armstrong
- Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| | - David M. Rocke
- Department of Biomedical EngineeringUniversity of California DavisDavisCaliforniaUSA
| | - Fernando Galvez
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Andrew Whitehead
- Department of Environmental ToxicologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
2
|
Park J, Brown C, Hess C, Armstrong M, Galvez F, Whitehead A. Multiple stressors in the Anthropocene: Urban evolutionary history modifies sensitivity to the toxic effects of crude oil exposure in killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640141. [PMID: 40060406 PMCID: PMC11888386 DOI: 10.1101/2025.02.25.640141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Persistence of wild species in human-altered environments is difficult, in part because challenges to fitness are complex when multiple environmental changes occur simultaneously, which is common in the Anthropocene. This complexity is difficult to conceptualize because the nature of environmental change is often highly context specific. A mechanism-guided approach may help to shape intuition and predictions about complexity; fitness challenges posed by co-occurring stressors with similar mechanisms of action may be less severe than for those with different mechanisms of action. We approach these considerations within the context of ecotoxicology because this field is built upon a rich mechanistic foundation. We hypothesized that evolved resistance to one class of common toxicants would afford resilience to the fitness impacts of another class of common toxicants that shares mechanisms of toxicity. Fundulus killifish populations in urban estuaries have repeatedly evolved resistance to persistent organic pollutants including PCBs. Since PCBs and some of the toxicants that constitute crude oil (e.g., high molecular weight PAHs) exert toxicity through perturbation of AHR signaling, we predicted that PCB resistant populations would also be resilient to crude oil toxicity. Common garden comparative oil exposure experiments, including killifish populations with different exposure histories, showed that most killifish populations were sensitive to fitness impacts (reproduction and development) caused by oil exposure, but that fish from the PCB-resistant population were insensitive. Population differences in toxic outcomes were not compatible with random-neutral expectations. Transcriptomics revealed that the molecular mechanisms that contributed to population variation in PAH resilience were shared with those that contribute to evolved variation in PCB resilience. We conclude that the fitness challenge posed by environmental pollutants is effectively reduced when those chemicals share mechanisms that affect fitness. Mechanistic considerations may help to scale predictions regarding the fitness challenges posed by stressors that may co-occur in human-altered environments.
Collapse
Affiliation(s)
- Jane Park
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Charles Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chelsea Hess
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Madison Armstrong
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - Fernando Galvez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Park J, Hess C, Brown C, Rocke D, Aeppli C, Galvez F, Whitehead A. Adult killifish exposure to crude oil perturbs embryonic gene expression and larval morphology in first- and second-generation offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637481. [PMID: 39990372 PMCID: PMC11844404 DOI: 10.1101/2025.02.10.637481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Exposures to environmental toxicants can have both immediate and long-term impacts, including those that persist into the next generation. Using Gulf killifish (Fundulus grandis), we tested whether adult progenitor exposure to crude oil caused perturbations to larval morphology and embryonic genome-wide gene expression in their first- and second-generation descendants raised in clean water. We also tracked responses of additional direct oil exposures in the F1 and F2 embryos. Exposure to oil in progenitor fish caused altered larval morphology in F1 and F2 descendants. Some perturbations were enhanced by additional oil exposure in lineages with progenitors that had been exposed to oil. Progenitor exposures altered embryonic gene expression in F1 and F2 descendants, implicating impacts on neurological and cardiovascular systems. Molecular responses to progenitor exposure were distinct between F1 and F2 offspring, suggesting complex interactions between mechanisms that contribute to the transgenerational transfer of information. In contrast, molecular responses to additional direct oil exposures during early-life development were highly conserved between generations and between progenitor exposure treatments. We conclude that exposure to crude oil causes developmental perturbations that propagate at least two generations, and we present additional hypotheses about underlying molecular mechanisms and emergent health consequences.
Collapse
Affiliation(s)
- Jane Park
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, United States
| | - Chelsea Hess
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Charles Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - David Rocke
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Christoph Aeppli
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Fernando Galvez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
4
|
Rekadwad BN, Shouche YS, Jangid K. Oil spill pollution and diversity analyses of resistant bacteria isolated from soil across the Arabian Sea and Bay of Bengal coastlines. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1265. [PMID: 39601988 DOI: 10.1007/s10661-024-13428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Pelagic transport causes oil pollution via international tanker routes in the open ocean across southern Asia and the Indian Territory. Nutrient-rich runoff from residential, commercial, and industrial wastes, oil tanker mishaps, and sailing flags have all resulted in pollution. The natural flow of ocean water from east to west dragged pollutants into Indian Territory. We have investigated that the severe deposition of oil spills and biohazardous wastes is causing faunal mortality. Microbiome analyses helped us understand the sample's microbial load. 16S amplicon metagenome analysis, followed by enumeration and confirmation using molecular methods, indicates the presence of diverse microbial profiles. The presence of non-native hydrocarbon- and AMR-resistant bacterial taxa, such as Brevundimonas, Staphylococcus spp., Mycolicibacterium, Spingomonas spp., Bacillus spp., Chitinophaga spp., Priestia spp., Domibacillus spp., Rossellomorea spp., and Acinetobacter spp., confirms the impacts of oil and urban pollution. This indicates that the coastal soil of Goa and Andhra Pradesh has hydrocarbon- and antibiotic-resistant bacteria, which confirms that the present pollution status and that high-traffic recreational activities put biodiversity and humans at risk of getting illnesses linked to antibiotic resistance.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- National Centre for Microbial Resource, BRIC-National Centre for Cell Science, SP Pune University Campus, Ganeshkhind, Pune, 411007, Maharashtra, India.
- MicrobeAI Lab, Department of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India.
| | - Yogesh Shreepad Shouche
- National Centre for Microbial Resource, BRIC-National Centre for Cell Science, SP Pune University Campus, Ganeshkhind, Pune, 411007, Maharashtra, India
- Gut Microbiology Research Division, SKAN Research Trust, Bangalore, 560034, Karnataka, India
| | - Kamlesh Jangid
- Bioenergy Group, DST-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, Maharashtra, India
| |
Collapse
|
5
|
Topuz F, Abdulhamid MA. Tailored nanofibrous polyimide-based membranes for highly effective oil spill cleanup in marine ecosystems. CHEMOSPHERE 2024; 368:143730. [PMID: 39536829 DOI: 10.1016/j.chemosphere.2024.143730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Oil spills pose significant environmental threats to marine ecosystems and indirectly affect human health. They are often caused by tanker accidents and pipeline leaks. The persistence of hydrocarbons in the marine environment and their long-term ecological impacts necessitate efficient remediation strategies. Nanofibrous membranes made from polyimides with varying hydrophobicity present a promising solution for oil spill cleanup and oil/water separation. In this study, electrospun nanofibrous membranes were fabricated using 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) combined with 3,5-diamino-2,4,6-trimethylbenzenesulfonic acid (TrMSA) and 2,3,5,6- tetramethyl-p-phenylenediamine (TMPD) to produce bead-free nanofibers at optimized concentrations. These membranes exhibited hydrophobic characteristics and high oil absorption capabilities. The 6FDA-TMPD membrane achieved a maximum adsorption capacity of 76.50 ± 7.32 g g-1 for Varinca crude oil, while the 6FDA-TrMSA membrane reached 80.05 ± 6.60 g g-1. In comparison, the commercial 3M™ oil sorbent had a significantly lower capacity of 29.4 ± 3.8 g g-1 for the same oil. The nanofibrous membranes also demonstrated superior performance in adsorbing gasoline and diesel and maintained their effectiveness across multiple cycles, highlighting their potential to mitigate the environmental impact of oil spills.
Collapse
Affiliation(s)
- Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences (CPG), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
6
|
Apostol I, Dinu MV, Anghel N, Spiridon I. A Green Approach to Oil Spill Mitigation: New Hybrid Materials for Wastewater Treatment. Polymers (Basel) 2024; 16:2225. [PMID: 39125252 PMCID: PMC11314923 DOI: 10.3390/polym16152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
This study focuses on the development of adsorptive materials to retain degraded 5w40 motor oil. The materials were prepared using xanthan (XG) and XG esterified with acrylic acid (XGAC) as the polymeric matrix. LignoBoost lignin (LB), LB esterified with oleic (LBOL), stearic acid (LBST) and montmorillonite (CL) were added into XG and XGAC matrices to obtain the adsorbents. Adsorption experiments revealed that XG/CL/LBOL had the highest adsorption capacity at 46.80 g/g, followed by XGAC/CL at 45.73 g/g, and XG/CL at 37.58 g/g. The kinetic studies, employing the pseudo-second-order (PSO) model, indicated rapid sorption rates with a good correlation to experimental data. FTIR spectra analysis have evidenced the physical nature of adsorption process, involving interactions such as hydrogen bonding, van der Waals forces, and π-π interactions. Equilibrium data fitting to the Henry, Freundlich, and Temkin isotherm models showed that the adsorption occurs within materials diverse pore structures, enhancing oil retention. Structural parameters like density, porosity, and surface area were pivotal, with XG/CL/LBOL showing the most favorable properties for high oil adsorption. Additionally, it was found that the adsorption efficiency was influenced by the material's morphology and the presence of chemical modifications. This comprehensive evaluation highlights the potential of these novel adsorptive materials for environmental remediation applications, offering an efficient and sustainable approach to reducing degraded motor oil pollution.
Collapse
Affiliation(s)
| | | | | | - Iuliana Spiridon
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Vodă 41 A, 700487 Iași, Romania (M.V.D.); (N.A.)
| |
Collapse
|
7
|
Kulkarni V, Lolla VY, Tamvada S, Anand S. Bursting of Underwater Oil Drops. PHYSICAL REVIEW LETTERS 2024; 133:034004. [PMID: 39094157 DOI: 10.1103/physrevlett.133.034004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/24/2024] [Indexed: 08/04/2024]
Abstract
For decades, two main facets of underwater oil spills have been explored extensively-the rise of oil drops and resulting evolution of the oil slick at the air-water interface. We report on the bursting of rising oil drops at an air-liquid interface which precedes slick formation and reveal a counterintuitive bulge reversal that releases a daughter oil droplet inside the bulk as opposed to upward-shooting jets observed in bursting air bubbles. By unraveling the underlying physics we show that daughter droplet size and bulk liquid properties are correlated and their formation can be suppressed by an increase in the bulk viscosity.
Collapse
|
8
|
Mayor P, Soliño L, Cartró-Sabaté M, Orta-Martínez M. Impact of hydrocarbon extraction on heavy metal concentrations in lowland paca (Cuniculus paca) from the Peruvian Amazon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172371. [PMID: 38631638 DOI: 10.1016/j.scitotenv.2024.172371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Oil has been extracted from the Western Amazon since the 1920s, leading to severe environmental contamination due to frequent occurrence oil spills and the dumping of produced water. Local inhabitants, along with environmental and human rights organizations, have reported the adverse effects of oil-related pollution on their livelihoods and the ecosystems they depend on. Here, we study accumulation of oil-related heavy metals in wildlife, and its subsequent incorporation into the trophic chain. We analysed the concentration of 14 heavy metals (Cd, Cr, Hg, As, Ni, V, Ba, Se, Be, Fe, Cu, Zn, Mn, Al) in liver samples from 78 lowland pacas (Cuniculus paca) hunted for subsistence in an oil-polluted area from the northern Peruvian Amazon where oil has been extracted since the 1970s (n = 38), and two control areas, the Yavari-Mirín River basin (n = 20), and the Pucacuro River basin (n = 20). Pacas in the oil-polluted area have significantly higher concentrations of Cd (P < 0.01) and Ba (P < 0.0001) compared to those in control areas, suggesting bioaccumulation of oil-related pollution. Conversely, Se levels were significantly lower in the oil-polluted area (P < 0.0001), likely due to the sequestration of Se by other heavy metals, particularly Cd. Additionally, minor variations in other heavy metals, e.g., Fe and Zn, were observed in pacas from the oil-polluted area, whereas control areas showed higher concentrations of Ni and Cu. Mn and Al levels did not significantly differ between the study areas. These results underscore the impact of oil extraction on the absorption and assimilation of heavy metals in wildlife, point at oil activities as the source of the high and unsafe blood Cd levels reported for the indigenous population of the studied oil extraction area and raise concerns about the long-term health risks from oil extraction posed to local Indigenous People who rely on subsistence hunting.
Collapse
Affiliation(s)
- Pedro Mayor
- Dept. Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Catalonia, Spain; Museo de Culturas Indígenas Amazónicas, Fundamazonia, Iquitos, Peru.
| | - Lucía Soliño
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Mar Cartró-Sabaté
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Martí Orta-Martínez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Catalonia, Spain; Institute de Recerca de la Biodiversitat, Universitat de Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Ola I, Drebenstedt C, Burgess RM, Mensah M, Hoth N, Okoroafor P, Külls C. Assessing petroleum contamination in parts of the Niger Delta based on a sub-catchment delineated field assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:585. [PMID: 38809286 PMCID: PMC11136865 DOI: 10.1007/s10661-024-12743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
The Niger Delta in Nigeria is a complex and heavily contaminated area with over 150,000 interconnected contaminated sites. This intricate issue is compounded by the region's strong hydrological processes and high-energy environment, necessitating a science-based approach for effective contamination assessment and management. This study introduces the concept of sub-catchment contamination assessment and management, providing an overarching perspective rather than addressing each site individually. A description of the sub-catchment delineation process using the digital elevation model data from an impacted area within the Delta is provided. Additionally, the contamination status from the delineated sub-catchment is reported. Sediment, surface water and groundwater samples from the sub-catchment were analyzed for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), respectively. Surface sediment TPH concentrations ranged from 129 to 20,600 mg/kg, with subsurface (2-m depth) concentrations from 15.5 to 729 mg/kg. PAHs in surface and subsurface sediment reached 9.55 mg/kg and 0.46 mg/kg, respectively. Surface water exhibited TPH concentrations from 10 to 620 mg/L, while PAHs ranged from below detection limits to 1 mg/L. Groundwater TPH concentrations spanned 3 to 473 mg/L, with total PAHs varying from below detection limits to 0.28 mg/L. These elevated TPH and PAH levels indicate extensive petroleum contamination in the investigated sediment and water environment. Along with severe impacts on large areas of mangroves and wetlands, comparison of TPH and PAH concentrations with sediment and water quality criteria found 54 to 100% of stations demonstrated exceedances, suggesting adverse biological effects on aquatic and sediment biota are likely occurring.
Collapse
Affiliation(s)
- Ibukun Ola
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy Freiberg DE, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany.
| | - Carsten Drebenstedt
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy Freiberg DE, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany
| | - Robert M Burgess
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, Rhode Island, 02882, USA
| | - Martin Mensah
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy Freiberg DE, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany
| | - Nils Hoth
- Institute of Mining and Special Civil Engineering, Technical University Mining Academy Freiberg DE, Gustav-Zeuner Street 1A, 09599, Freiberg, Germany
| | - Precious Okoroafor
- Institute of Biosciences/Interdisciplinary Environmental Research Centre, Freiberg Technical University of Mining, Leipziger Street 29, 09599, Freiberg, Germany
| | - Christoph Külls
- Labor Für Hydrologie Und Internationale Wasserwirtschaft, Technische Hochschule, 23562, Lübeck, Schleswig-Holstein, Germany
| |
Collapse
|
10
|
Pellegrini L, Arsel M, Muñoa G, Rius-Taberner G, Mena C, Orta-Martínez M. The atlas of unburnable oil for supply-side climate policies. Nat Commun 2024; 15:2318. [PMID: 38485960 PMCID: PMC10940309 DOI: 10.1038/s41467-024-46340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
To limit the increase in global mean temperature to 1.5 °C, CO2 emissions must be drastically reduced. Accordingly, approximately 97%, 81%, and 71% of existing coal and conventional gas and oil resources, respectively, need to remain unburned. This article develops an integrated spatial assessment model based on estimates and locations of conventional oil resources and socio-environmental criteria to construct a global atlas of unburnable oil. The results show that biodiversity hotspots, richness centres of endemic species, natural protected areas, urban areas, and the territories of Indigenous Peoples in voluntary isolation coincide with 609 gigabarrels (Gbbl) of conventional oil resources. Since 1524 Gbbl of conventional oil resources are required to be left untapped in order to keep global warming under 1.5 °C, all of the above-mentioned socio-environmentally sensitive areas can be kept entirely off-limits to oil extraction. The model provides spatial guidelines to select unburnable fossil fuels resources while enhancing collateral socio-environmental benefits.
Collapse
Affiliation(s)
- Lorenzo Pellegrini
- International Institute of Social Studies (ISS), Erasmus University Rotterdam, The Hague, the Netherlands
| | - Murat Arsel
- International Institute of Social Studies (ISS), Erasmus University Rotterdam, The Hague, the Netherlands
| | - Gorka Muñoa
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institute de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Guillem Rius-Taberner
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institute de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos Mena
- Institute of Geography, Universidad San Francisco de Quito, Quito, Ecuador
| | - Martí Orta-Martínez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Institute de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
11
|
He S, Li K, Du C, Li Z, Huang Y, Cao C. Temperature and pH dual response flexible silica aerogel with switchable wettability for selective oil/water separation. MARINE POLLUTION BULLETIN 2024; 199:116011. [PMID: 38183836 DOI: 10.1016/j.marpolbul.2023.116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Silica aerogels are attractive oil-absorbing agents due to their low density, high porosity. However, how to discharge the oil which adsorbed by silica aerogels is a difficult issue. To address this challenge, new separation strategies with high efficiency are needed. In this study, we prepared the temperature and pH dual response flexible silica aerogel have temperature response and pH response effect, which can change its wettability by adjusting temperature or pH. On the one hand, the temperature and pH responsive flexible silica aerogel can be used to adsorb water at the temperature below 34.73 °C or pH > 7. On the other hand, it can adsorb oil at a temperature above 34.73 °C or pH < 7. The automatic desorption of oil can be achieved without consuming additional energy and damaging the pore structure. Therefore, the sample could continuously adsorb and filtrate efficiently and realize the recovery of oil and adsorption materials.
Collapse
Affiliation(s)
- Song He
- School of Safety Science and Emergency Management, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Kangwei Li
- School of Safety Science and Emergency Management, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Chunhua Du
- School of Safety Science and Emergency Management, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Zhiqi Li
- School of Safety Science and Emergency Management, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Yajun Huang
- College of Emergency Management Nanjing Tech University, Nanjing 211816, PR China.
| | - Chengyang Cao
- School of Resources & Safety Engineering, Wuhan Institute of Technology, Wuhan 430074, PR China.
| |
Collapse
|
12
|
Letendre F, Ramos PAS, Cameron CB. The loss of crude oil droplets by filter feeders and the role of surfactants. MARINE POLLUTION BULLETIN 2023; 193:115174. [PMID: 37336047 DOI: 10.1016/j.marpolbul.2023.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Various methods of oil spill remediation exist, e.g., floating booms, controlled burning and the release of chemical surfactants. These surfactants facilitate the breakup of the slick into micron-sized droplets. Here, we studied the impact such a surfactant has on the size distribution of oil droplets in the water column and in the gut of the filter feeder Daphnia magna. We also studied the effect of surfactants on detachment conditions of chemically and mechanically dispersed oil (respectively MDO and CDO) droplets from capture fibers. Our results show that including solubilized dioctyl sulfosuccinate sodium salt in the mixing of the emulsion produces smaller droplets and a narrower size distribution in the water. In the gut, the size of ingested droplets does not change whether the oil is mixed mechanically or chemically. Also, surfactant coated droplets detach at a lower velocity than mechanically dispersed droplet because of their lower oil/water interfacial tension.
Collapse
Affiliation(s)
- Francis Letendre
- Département de sciences biologiques, Complexe des sciences, Université de Montréal, Montréal, Québec, Canada.
| | - Paloma Arena Serrano Ramos
- Département de sciences biologiques, Complexe des sciences, Université de Montréal, Montréal, Québec, Canada
| | - Christopher B Cameron
- Département de sciences biologiques, Complexe des sciences, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Succession Patterns of Microbial Composition and Activity following the Diesel Spill in an Urban River. Microorganisms 2023; 11:microorganisms11030698. [PMID: 36985271 PMCID: PMC10058704 DOI: 10.3390/microorganisms11030698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Diesel spills in freshwater systems have adverse impacts on the water quality and the shore wetland. Microbial degradation is the major and ultimate natural mechanism that can clean the diesel from the environment. However, which, and how fast, diesel-degrading microorganisms could degrade spilled diesel has not been well-documented in river water. Using a combination of 14C-/3H--based radiotracer assays, analytical chemistry, MiSeq sequencing, and simulation-based microcosm incubation approaches, we demonstrated succession patterns of microbial diesel-degrading activities, and bacterial and fungal community compositions. The biodegradation activities of alkanes and polycyclic aromatic hydrocarbons (PAHs) were induced within 24 h after diesel addition, and reached their maximum after incubation for 7 days. Potential diesel-degrading bacteria Perlucidibaca, Acinetobacter, Pseudomonas, Acidovorax, and Aquabacterium dominated the community initially (day 3 and day 7), but later community structure (day 21) was dominated by bacteria Ralstonia and Planctomyces. The key early fungi responders were Aspergillus, Mortierella, and Phaeoacremonium by day 7, whereas Bullera and Basidiobolus dominated the fungal community at day 21. These results directly characterize the rapid response of microbial community to diesel spills, and suggest that the progression of diesel microbial degradation is performed by the cooperative system of the versatile obligate diesel-degrading and some general heterotrophic microorganisms in river diesel spills.
Collapse
|
14
|
Mo Y, Zhang F, Dong H, Zhang X, Gao S, Zhang S, Jin J. Ultrasmall Cu 3(PO 4) 2 Nanoparticles Reinforced Hydrogel Membrane for Super-antifouling Oil/Water Emulsion Separation. ACS NANO 2022; 16:20786-20795. [PMID: 36475618 DOI: 10.1021/acsnano.2c07977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane fouling is a persistent and crippling challenge for oily wastewater treatment due to the high susceptibility of membranes to contamination. A feasible strategy is to design a robust and stable hydration layer on the membrane surface to prevent contaminates. A hydrogel illustrates a distinct category of materials with outstanding antifouling performance but is limited by its weak mechanical property. In this research, we report a reinforced hydrogel on a membrane by in situ growing ultrasmall hydrophilic Cu3(PO4)2 nanoparticles in a copper alginate (CuAlg) layer via metal-ion-coordination-mediated mineralization. The embeddedness of hydrophilic Cu3(PO4)2 nanoparticle with a size of 3-5 nm endows the CuAlg/Cu3(PO4)2 composite hydrogel with enhanced mechanical property as well as reinforced hydrate ability. The as-prepared CuAlg/Cu3(PO4)2 modified membrane exhibits a superior oil-repulsive property and achieves a nearly zero flux decline for separating surfactant stabilized oil-in-water emulsions with a high permeate flux up to ∼1330 L m-2 h-1 bar-1. Notably, it is capable of keeping similar permeate flux for both pure water and oil-in-water emulsions during filtration, which is superior to the currently reported membranes, indicating its super-antifouling properties.
Collapse
Affiliation(s)
- Yuyue Mo
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Hefeng Dong
- China State Shipbuilding Corporation System Engineering Research Institute, Beijing100036, China
| | - Xingzhen Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Shoujian Gao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
15
|
Alea C, Ruiz CI, Yap JB, Molina EF, Saballa AJ, Ñuneza JS, Bacharo KBB. An investigation of aquatic oil spills in the Philippines from 2000 to 2021. MARINE POLLUTION BULLETIN 2022; 185:114241. [PMID: 36274562 DOI: 10.1016/j.marpolbul.2022.114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
As an archipelago, the Philippines is heavily engaged in domestic and foreign shipping activities which makes it highly vulnerable to oil pollution. It is the purpose of this present paper to make a follow-up review of the oil spill situation in the Philippines which provides analysis and evaluation of aquatic oil spills in the past 22 years. Results showed that the frequency and volume of oil spills generally occur in areas with high maritime traffic and experienced short-term decreases on periods affected by economic recessions. The sources and causes of oil spills are discussed while examining the possible influences of the changing climate. While, these had been identified, there is a gap in the incident reporting of oil spills. It is recommended that data records on oil spill incidents in the Philippines be systematic, consistent and comprehensively entail information not limited to date, locality, source, cause, and spillage amount.
Collapse
Affiliation(s)
- Christine Alea
- Basic Education Department, University of San Carlos, Cebu City 6000, Philippines
| | - Crissha Izhy Ruiz
- Basic Education Department, University of San Carlos, Cebu City 6000, Philippines
| | - Jillian Beyonce Yap
- Basic Education Department, University of San Carlos, Cebu City 6000, Philippines
| | - Eloisa Faye Molina
- Basic Education Department, University of San Carlos, Cebu City 6000, Philippines
| | | | - Jade Steven Ñuneza
- Basic Education Department, University of San Carlos, Cebu City 6000, Philippines
| | - Kurt Bryant B Bacharo
- Basic Education Department, University of San Carlos, Cebu City 6000, Philippines; Marine Biology Section, Biology Department, University of San Carlos, Cebu City 6000, Philippines.
| |
Collapse
|
16
|
Hung H, Halsall C, Ball H, Bidleman T, Dachs J, De Silva A, Hermanson M, Kallenborn R, Muir D, Sühring R, Wang X, Wilson S. Climate change influence on the levels and trends of persistent organic pollutants (POPs) and chemicals of emerging Arctic concern (CEACs) in the Arctic physical environment - a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1577-1615. [PMID: 35244108 DOI: 10.1039/d1em00485a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.
Collapse
Affiliation(s)
- Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M5P 1W4, Canada.
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hollie Ball
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Terry Bidleman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Amila De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark Hermanson
- Hermanson & Associates LLC, 2000 W 53rd Street, Minneapolis, Minnesota 55419, USA
| | - Roland Kallenborn
- Department of Arctic Technology, University Centre in Svalbard (UNIS), Longyearbyen, 9171, Norway
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås, 1432, Norway
| | - Derek Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Roxana Sühring
- Department for Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme Secretariat, The Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
17
|
Filewood T, Kwok H, Brunswick P, Yan J, Ollinik JE, Cote C, Kim M, van Aggelen G, Helbing CC, Shang D. Advancement in oil forensics through the addition of polycyclic aromatic sulfur heterocycles as biomarkers in diagnostic ratios. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129027. [PMID: 35525008 DOI: 10.1016/j.jhazmat.2022.129027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
In current oil spill forensics, diagnostic ratios of hydrocarbon biomarker responses are commonly used to compare oil spill samples to source materials in order to determine the identity of the oil. This well recognized procedure was developed by the European Committee for Standardization (CEN) with corresponding published EN 15522-2 Oil Spill Identification guidelines. However, it is further recognized that weathering can have a negative effect on some of the biomarkers used in the analysis, leading to decreased confidence in the result. In this study, polycyclic aromatic sulfur heterocycles (PASHs) and their alkylated forms (APASHs) were assessed for their potential as additional biomarkers. With the aim of identifying stable PASHs and APASHs useful as weathered oil biomarkers, the superior specificity of gas chromatography with high resolution mass spectrometry was exploited to determine chromatographic peak responses for sixteen petroleum oil samples. Extensive study, involving microcosm extreme weathering and spreadsheet development, led to the identification of 19 new diagnostic ratios based on newly discovered stable PASH and APASH biomarkers. Application of the extended diagnostic ratio suite showed high potential to improve the forensic attribution of post-spill weathered oil back to its original source.
Collapse
Affiliation(s)
- Taylor Filewood
- Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada
| | - Honoria Kwok
- Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada
| | - Pamela Brunswick
- Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.
| | - Jeffrey Yan
- Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada
| | - Jessica E Ollinik
- Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada
| | - Christopher Cote
- Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada
| | - Marcus Kim
- Agilent Technologies Inc., Mississauga, ON, Canada
| | - Graham van Aggelen
- Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada
| | - Caren C Helbing
- Department of Biochemistry & Microbiology and Centre for Biomedical Research, University of Victoria, BC, Canada
| | - Dayue Shang
- Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.
| |
Collapse
|
18
|
Adofo YK, Nyankson E, Agyei-Tuffour B. Dispersants as an oil spill clean-up technique in the marine environment: A review. Heliyon 2022; 8:e10153. [PMID: 36016520 PMCID: PMC9396545 DOI: 10.1016/j.heliyon.2022.e10153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
Oil is a major source of energy in the industrial world. Exploitation of oil and rigging activities, transportation via sea, and many other mechanical failures lead to oil spills into the marine environment. In view of these, the suitability and effectiveness of oil spill response methods have always been a topical discussion worldwide. It has become necessary, now than ever, for existing spill response methods used to remove oil from the environment to be improved upon and more importantly, develop new response materials that are sustainable and environmentally friendly. There exist surfactants in nature that are non-toxic and biodegradable, which can be explored to produce potential dispersants to help remove oil safely from the surface of marine water. This review comprises of the works and resourceful materials produced by various researchers and agencies in the field of oil spill response, placing emphasis on the use of dispersants in the marine environment. Smart dispersants have the potential to minimize dispersant wastage. Biodegradable dispersants may bring a closure to discussions on toxicity. Bio-based formulations have the potential to replace chemical based dispersants.
Collapse
Affiliation(s)
- Yaw Kwakye Adofo
- Material Science and Engineering Department, School of Engineering Sciences, University of Ghana, Legon-Accra, Ghana
| | - Emmanuel Nyankson
- Material Science and Engineering Department, School of Engineering Sciences, University of Ghana, Legon-Accra, Ghana
| | - Benjamin Agyei-Tuffour
- Material Science and Engineering Department, School of Engineering Sciences, University of Ghana, Legon-Accra, Ghana
| |
Collapse
|
19
|
Machine-Learning Classification of SAR Remotely-Sensed Sea-Surface Petroleum Signatures—Part 1: Training and Testing Cross Validation. REMOTE SENSING 2022. [DOI: 10.3390/rs14133027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sea-surface petroleum pollution is observed as “oil slicks” (i.e., “oil spills” or “oil seeps”) and can be confused with “look-alike slicks” (i.e., environmental phenomena, such as low-wind speed, upwelling conditions, chlorophyll, etc.) in synthetic aperture radar (SAR) measurements, the most proficient satellite sensor to detect mineral oil on the sea surface. Even though machine learning (ML) has become widely used to classify remotely-sensed petroleum signatures, few papers have been published comparing various ML methods to distinguish spills from look-alikes. Our research fills this gap by comparing and evaluating six traditional techniques: simple (naive Bayes (NB), K-nearest neighbor (KNN), decision trees (DT)) and advanced (random forest (RF), support vector machine (SVM), artificial neural network (ANN)) applied to different combinations of satellite-retrieved attributes. 36 ML algorithms were used to discriminate “ocean-slick signatures” (spills versus look-alikes) with ten-times repeated random subsampling cross validation (70-30 train-test partition). Our results found that the best algorithm (ANN: 90%) was >20% more effective than the least accurate one (DT: ~68%). Our empirical ML observations contribute to both scientific ocean remote-sensing research and to oil and gas industry activities, in that: (i) most techniques were superior when morphological information and Meteorological and Oceanographic (MetOc) parameters were included together, and less accurate when these variables were used separately; (ii) the algorithms with the better performance used more variables (without feature selection), while lower accuracy algorithms were those that used fewer variables (with feature selection); (iii) we created algorithms more effective than those of benchmark-past studies that used linear discriminant analysis (LDA: ~85%) on the same dataset; and (iv) accurate algorithms can assist in finding new offshore fossil fuel discoveries (i.e., misclassification reduction).
Collapse
|
20
|
Oghenetega OB, Okunlola MA, Ana GREE, Morhason-Bello O, Ojengbede OA. Exposure to oil pollution and maternal outcomes: The Niger Delta prospective cohort study. PLoS One 2022; 17:e0263495. [PMID: 35235569 PMCID: PMC9090450 DOI: 10.1371/journal.pone.0263495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Maternal exposure to oil pollution is an important public health concern. However, there is a dearth of literature on the effects of maternal exposure to oil pollution on maternal outcomes in the Niger Delta region of Nigeria. This study was therefore designed to determine the effect of maternal exposure to oil pollution on maternal outcomes in the Niger Delta region of Nigeria. METHODS Prospective cohort study design involving 1720 pregnant women followed from pregnancy to delivery was conducted. The participants were 18-45 years old at a gestational age of less than 17 weeks, who attended randomly selected health facilities in the areas with high exposure and low exposure to oil pollution in the Niger Delta, Nigeria. Data were collected using an interviewer-administered questionnaire and review of medical records from April 2018 to April 2019. Multivariate log-binomial model was used to examine the effect of maternal exposure to oil pollution on the risk of adverse maternal outcomes adjusting for sociodemographic, maternal and lifestyle characteristics. RESULTS A total of 1418 women completed the follow-up and were included in the analysis. Women in high exposure areas had a higher incidence of premature rupture of membrane (PROM), caesarean section (CS) and postpartum haemorrhage (PPH) compared to women in areas with low exposure to oil pollution. After adjusting for cofounders, women in high exposure areas also had a higher risk of PROM (ARR = 1.96; 95% CI: 1.24-3.10) and PPH (ARR = 2.12; 95% CI: 1.28-3.36) in Model I-III when compared to women in areas with low exposure to oil pollution. However, pregnancy-induced hypertension and CS had no association with maternal exposure area status to oil pollution. CONCLUSION Women in high exposure areas are at a higher risk of PROM and PPH. This calls for policies and intervention toward reducing maternal exposure to oil pollution in the Niger Delta region of Nigeria.
Collapse
Affiliation(s)
- Onome B. Oghenetega
- Reproductive Health Science, Pan African University, Institute of Life
and Earth Sciences (Including Health and Agriculture), University of Ibadan,
Ibadan, Nigeria
| | - Michael A. Okunlola
- Department of Obstetrics and Gynecology, College of Medicine, University
College Hospital, University of Ibadan, Ibadan, Nigeria
| | - Godson R. E. E. Ana
- Department of Environmental Health, Faculty of Public Health, University
of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oludare Morhason-Bello
- Department of Obstetrics and Gynecology, College of Medicine, University
College Hospital, University of Ibadan, Ibadan, Nigeria
| | - Oladosu A. Ojengbede
- Department of Obstetrics and Gynecology, College of Medicine, University
College Hospital, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
21
|
Loza A, García-Guevara F, Segovia L, Escobar-Zepeda A, Sanchez-Olmos MDC, Merino E, Sanchez-Flores A, Pardo-Lopez L, Juarez K, Gutierrez-Rios RM. Definition of the Metagenomic Profile of Ocean Water Samples From the Gulf of Mexico Based on Comparison With Reference Samples From Sites Worldwide. Front Microbiol 2022; 12:781497. [PMID: 35178038 PMCID: PMC8846951 DOI: 10.3389/fmicb.2021.781497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Computational and statistical analysis of shotgun metagenomes can predict gene abundance and is helpful for elucidating the functional and taxonomic compositions of environmental samples. Gene products are compared against physicochemical conditions or perturbations to shed light on the functions performed by the microbial community of an environmental sample; however, this information is not always available. The present study proposes a method for inferring the metabolic potential of metagenome samples by constructing a reference based on determining the probability distribution of the counts of each enzyme annotated. To test the methodology, we used marine water samples distributed worldwide as references. Then, the references were utilized to compare the annotated enzymes of two different water samples extracted from the Gulf of Mexico (GoM) to distinguish those enzymes with atypical behavior. The enzymes whose annotation counts presented frequencies significantly different from those of the reference were used to perform metabolic reconstruction, which naturally identified pathways. We found that several of the enzymes were involved in the biodegradation of petroleum, which is consistent with the impact of human hydrocarbon extraction activity and its ubiquitous presence in the GoM. The examination of other reconstructed pathways revealed significant enzymes indicating the presence of microbial communities characterizing each ocean depth and ocean cycle, providing a fingerprint of each sampled site.
Collapse
|
22
|
Laothamteep N, Naloka K, Pinyakong O. Bioaugmentation with zeolite-immobilized bacterial consortium OPK results in a bacterial community shift and enhances the bioremediation of crude oil-polluted marine sandy soil microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118309. [PMID: 34626709 DOI: 10.1016/j.envpol.2021.118309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
A pyrene-degrading consortium OPK containing Mycolicibacterium strains PO1 and PO2, Novosphingobium pentaromativorans PY1 and Bacillus subtilis FW1 effectively biodegraded medium- and long-chain alkanes as well as mixed hydrocarbons in crude oil. The detection of alkB and CYP153 genes in the genome of OPK members supports its phenotypic ability to effectively degrade a broad range of saturated hydrocarbons in crude oil. Zeolite-immobilized OPK was developed as a ready-to-use bioproduct and it exhibited 74% removal of 1000 mg L-1 crude oil within 96 h in sterilized seawater without nutrient supplementation and maintained high crude oil-removal activity under a broad range of pH values (5.0-9.0), temperatures (30-40 °C) and salinities (20-60‰). In addition, the immobilized OPK retained a high crude oil removal efficacy in semicontinuous experiments and showed reusability for at least 5 cycles. Remarkably, bioaugmentation with zeolite-immobilized OPK in sandy soil microcosms significantly increased crude oil (10,000 mg kg-1 soil) removal from 45% to 80.67% within 21 days compared to biostimulation and natural attenuation. Moreover, bioaugmentation with exogenous immobilized OPK stimulated an increase in the relative abundances of Alcanivorax genus, indigenous hydrocarbon-degrading bacteria, which in turn enhanced removal efficiency of crude oil contamination from sandy soil microcosms. The results indicate positive interactions between the bioaugmented immobilized consortium, harboring Mycolicibacterium as a key player, and indigenous Alcanivorax, which exhibited crucial functions for improving crude oil removal efficacy. The knowledge obtained forms an important basis for further synthesis and handling of a promising bio-based product for enhancing the in situ bioremediation of crude oil-polluted marine environments.
Collapse
Affiliation(s)
- Natthariga Laothamteep
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kallayanee Naloka
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Onruthai Pinyakong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
23
|
Mitra D, Tai MH, Abdullah EB, Wang CH, Neoh KG. Facile fabrication of porous waste-derived carbon-polyethylene terephthalate composite sorbent for separation of free and emulsified oil from water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Mohammad AF, Mourad AAHI, Galiwango E, Lwisa EG, Al-Marzouqi AH, El-Naas MH, Van der Bruggen B, Al-Marzouqi MH. Effective and sustainable adsorbent materials for oil spill cleanup based on a multistage desalination process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113652. [PMID: 34482113 DOI: 10.1016/j.jenvman.2021.113652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Oil spills, which are often caused by crude oil transportation accidents, contaminate coastal waters and land and can harm aquatic life, seabirds, humans, and the entire ecosystem. Ocean currents and wind complicate oil spill cleanup and extend the oil spill area. This study proposes a new approach to control oil spills using solids recovered from the treatment of reject brine through a novel multistage desalination process. The aim is to produce applicable adsorbent for oil spill cleanup especially in the final cleaning stages. The multistage desalination process is based on the electrochemical treatment of high-salinity reject brine and Solvay and modified Solvay liquid effluents in a closed Plexiglas electrocoagulation cell. After the electrochemical treatment, the collected solids were dried and ground for utilization as adsorbents in oil spill cleanup. Results were promising for the adsorbent produced from the electrochemical treatment of the modified Solvay effluent. A maximum adsorption capacity of 2.8 g oil/g adsorbent was achieved, with an oil recovery of 98%. In addition, the regenerated solids after toluene extraction process were recycled and achieved an adsorption capacity of 2.1 g oil/g adsorbent in the second oil spill clean-up cycle. The structural and chemical characteristics of the adsorbents produced from the multistage desalination process were investigated using X-ray powder diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Results support the adoption of the collected solids as effective oil-adsorbent materials.
Collapse
Affiliation(s)
- Ameera F Mohammad
- Chemical and Petroleum Engineering Department, UAE University, Al Ain, United Arab Emirates; Chemical Engineering Department, KU Leuven, Leuven, Belgium
| | - Aya A-H I Mourad
- Chemical and Petroleum Engineering Department, UAE University, Al Ain, United Arab Emirates; Academic Support Department, Abu Dhabi Polytechnic, Institute of Applied Technology, Abu Dhabi, United Arab Emirates
| | - Emmanuel Galiwango
- Chemical and Petroleum Engineering Department, UAE University, Al Ain, United Arab Emirates
| | - Essa G Lwisa
- Chemical and Petroleum Engineering Department, UAE University, Al Ain, United Arab Emirates
| | - Ali H Al-Marzouqi
- Chemical and Petroleum Engineering Department, UAE University, Al Ain, United Arab Emirates.
| | - Muftah H El-Naas
- Gas Processing Center, College of Engineering, Qatar University, Doha, Qatar.
| | | | - Mohamed H Al-Marzouqi
- Chemical and Petroleum Engineering Department, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
25
|
Madhubashani AMP, Giannakoudakis DA, Amarasinghe BMWPK, Rajapaksha AU, Pradeep Kumara PBT, Triantafyllidis KS, Vithanage M. Propensity and appraisal of biochar performance in removal of oil spills: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117676. [PMID: 34265555 DOI: 10.1016/j.envpol.2021.117676] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Recently, the adsorption-based environmental remediation techniques have gained a considerable attention, due to their economic viability and simplicity over other methods. Hence, detailed presentation and analysis were herein focused on describing the role of biochar in oil spill removal. Oil removal by utilizing biochar is assumed as a green-oriented concept. Biochar is a carbon-rich low-cost material with high porosity and specific surface chemistry, with a tremendous potentiality for oil removal from aqueous solutions. Oil sorption properties of biochar mainly depend on the biochar production/synthesis method, and the biomass feedstock type. In order to preserve the stability of functional groups in the structure, biochar needs to be produced/activated at low temperatures (<700 ᵒC). In general, biochar derived from biomass containing high lignin content via slow pyrolysis is more favorable for oil removal. Exceptional characteristics of biochar which intensify the oil removal capability such as hydrophobicity, oleophilicity or/and specific contaminant-surface interaction of biochar can be enhanced and be tuned by chemical and physical activation methods. Considering all the presented results, future perspectives such as the examination of biochar efficacy on oil removal efficiency in multi-element contaminated aqueous solutions to identify the best biomass feedstocks, the production protocols and large-scale field trials, are also discussed.
Collapse
Affiliation(s)
- A M P Madhubashani
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Department of Chemical and Process Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Dimitrios A Giannakoudakis
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - B M W P K Amarasinghe
- Department of Chemical and Process Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - P B Terney Pradeep Kumara
- Department of Oceanography and Marine Geology, University of Ruhuna, Matara, Sri Lanka; Marine Environment Protection Authority, No 177, Nawala Road, Narahenpita, Colombo 05, Sri Lanka
| | | | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
26
|
Panickar R, Sobhan CB, Chakravorti S. Highly Efficient Amorphous Carbon Sphere-Based Superhydrophobic and Superoleophilic Sponges for Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12501-12511. [PMID: 34637316 DOI: 10.1021/acs.langmuir.1c02307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this experimental study, a commercially available polyurethane (PU) sponge coated with amorphous carbon spheres (ACSs) is investigated for oil/water separation. The ACSs synthesized using chemical vapor deposition are embedded in the PU sponge by a simple dip-coating method. The superhydrophobic ACS-PU sponge exhibits a water contact angle (WCA) of 156.2 ± 1° and a sliding angle <5°. The prepared sponge exhibits high absorption capacity, removal of oil spills from water, and demulsification of an oil-in-water emulsion. Absorption capacities of 32-68 times the ACS-PU sponge weight were obtained for different organic solvents and oils. It was found that the prepared ACS-PU sponge can effectively absorb oils under both static and turbulent conditions. Compared with the reported studies on the loading of different carbon materials in sponges for oil/water separation, ACSs in PU have a low loading percentage of ∼7 wt % and better absorption recyclability. The method proposes a simple and cost-effective preparation technique of highly hydrophobic and oleophilic ACS-PU sponges for effective oil/water separation.
Collapse
Affiliation(s)
- Radhika Panickar
- School of Materials Science and Engineering, National Institute of Technology Calicut, NITC Campus, Calicut 673601, India
| | - Choondal B Sobhan
- School of Materials Science and Engineering, National Institute of Technology Calicut, NITC Campus, Calicut 673601, India
| | - Sivaji Chakravorti
- Department of Electrical Engineering, National Institute of Technology Calicut, NITC Campus, Calicut 673601, India
| |
Collapse
|
27
|
Omer AM, Eweida BY, Tamer TM, Soliman HMA, Ali SM, Zaatot AA, Mohy-Eldin MS. Removal of oil spills by novel developed amphiphilic chitosan-g-citronellal schiff base polymer. Sci Rep 2021; 11:19879. [PMID: 34615906 PMCID: PMC8494754 DOI: 10.1038/s41598-021-99241-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
A novel chitosan grafted citronellal (Ch-Cit) schiff base amphiphilic polymer was developed for the adsorptive removal of oil spills. The chemical structure was verified by FT-IR spectroscopy and 1H NMR spectrometer, while the morphological changes and surface area were investigated by SEM and BET analysis tools. The amphiphilic character of Ch-Cit schiff base was controlled through variation of the grafting percentage (G%) of citronellal from 11 to 61%. Dramatic changes in the ion exchange capacity (IEC), solubility and water uptake profiles were established, while the oil adsorption capacity was founded in direct relation with the G (%) of citronellal. Operational conditions such as oil amount, adsorption time, adsorbent dose and agitation speed were investigated. The developed Ch-Cit schiff base exhibited a higher surface area (115.94 m2/g) compared to neat chitosan (57.78 m2/g). The oil adsorption capacity of the Ch-Cit schiff base was greatly improved by 166% and 120% for light crude and heavy crude oil, respectively. Finally, the adsorption process was optimized using response surface methodology (RSM).The results substantiate that the amphiphilic Ch-Cit schiff base could be efficiently applied as a low-cost oil-adsorbent for the removal of crude oil spills from sea-water surfaces.
Collapse
Affiliation(s)
- Ahmed Mohamed Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Basant Yossry Eweida
- Modeling and Simulation Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Tamer Mahmoud Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Hesham M A Soliman
- Nanotechnology and New Composite Materials Department Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Safaa Mohamed Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Ahmed Amin Zaatot
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Mohamed Samir Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| |
Collapse
|
28
|
Gladyshev MI. Oil Spills in Fresh Waters and State of Ecosystem of Lake Pyasino before the Incidental Spill of 2020. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Kolmakova OV, Trusova MY, Baturina OA, Kabilov MR. Bacteria of Lake Pyasino and Adjacent Rivers after an Accidental Diesel Spill in 2020. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Dubovskaya OP, Yolgina OE, Morozova II. Zooplankton of Lake Pyasino and the Rivers Flowing into It after the Diesel Spill in 2020. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s199542552104003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Kravchuk ES, Kotovshchikov AV, Ivanova EA. Phytoplankton and Phytoperiphyton Characteristics of Lake Pyasino and Its Tributaries after an Accidental Fuel Spill in 2020. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers (Basel) 2021; 13:polym13162739. [PMID: 34451277 PMCID: PMC8400096 DOI: 10.3390/polym13162739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022] Open
Abstract
Recent developments in the application of lignocellulosic materials for oil spill removal are discussed in this review article. The types of lignocellulosic substrate material and their different chemical and physical modification strategies and basic preparation techniques are presented. The morphological features and the related separation mechanisms of the materials are summarized. The material types were classified into 3D-materials such as hydrophobic and oleophobic sponges and aerogels, or 2D-materials such as membranes, fabrics, films, and meshes. It was found that, particularly for 3D-materials, there is a clear correlation between the material properties, mainly porosity and density, and their absorption performance. Furthermore, it was shown that nanocellulosic precursors are not exclusively suitable to achieve competitive porosity and therefore absorption performance, but also bulk cellulose materials. This finding could lead to developments in cost- and energy-efficient production processes of future lignocellulosic oil spillage removal materials.
Collapse
|
33
|
Schreiber ME, Cozzarelli IM. Arsenic release to the environment from hydrocarbon production, storage, transportation, use and waste management. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125013. [PMID: 33482508 DOI: 10.1016/j.jhazmat.2020.125013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/26/2020] [Accepted: 12/29/2020] [Indexed: 05/12/2023]
Abstract
Arsenic (As) is a toxic trace element with many sources, including hydrocarbons such as oil, natural gas, oil sands, and oil- and gas-bearing shales. Arsenic from these hydrocarbon sources can be released to the environment through human activities of hydrocarbon production, storage, transportation and use. In addition, accidental release of hydrocarbons to aquifers with naturally occurring (geogenic) As can induce mobilization of As to groundwater through biogeochemical reactions triggered by hydrocarbon biodegradation. In this paper, we review the occurrence of As in different hydrocarbons and the release of As from these sources into the environment. We also examine the occurrence of As in wastes from hydrocarbon production, including produced water and sludge. Last, we discuss the potential for As release related to waste management, including accidental or intentional releases, and recycling and reuse of these wastes.
Collapse
Affiliation(s)
- Madeline E Schreiber
- Department of Geosciences, Virginia Tech 926 W. Campus Drive, Blacksburg, VA 24061-0420, USA.
| | | |
Collapse
|
34
|
Biermann LK, Szedlmayer ST. Age frequency, growth, mortality, and PAH levels of roughtongue bass (Pronotogrammus martinicensis) following the Deepwater Horizon oil spill. MARINE POLLUTION BULLETIN 2021; 166:112214. [PMID: 33711603 DOI: 10.1016/j.marpolbul.2021.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Age, growth, mortality, and polycyclic aromatic hydrocarbons (PAHs) in roughtongue bass (Pronotogrammus martinicensis) were examined in the northern Gulf of Mexico following the 2010 Deepwater Horizon oil spill. Fish (N = 1090) were collected from September 2014 to July 2015 from the Alabama Alps (54 km from the spill site) and Roughtongue Reef (111 km from the spill site). Sites were dominated by the 2010 year-class. Growth rates were significantly lower for fish from Alabama Alps compared to Roughtongue Reef (p < 0.001) and likely linked to proximity of the Mississippi River discharge. Mean total PAH ± SD was 50 ± 52.6 and ranged from 0 to 220 ppb. These PAH levels were below a 300-ppb minimum effect level and not significantly different between sites. The dominant 2010 year-class, low PAH levels, and similar growth rates to pre-spill measures indicated that the Deepwater Horizon oil spill had little effect on roughtongue bass.
Collapse
Affiliation(s)
- Lindsay K Biermann
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 8300 State Hwy 104, Fairhope, AL 36532, United States of America.
| | - Stephen T Szedlmayer
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 8300 State Hwy 104, Fairhope, AL 36532, United States of America.
| |
Collapse
|
35
|
Oflaz K, Oflaz Z, Ozaytekin I, Dincer K, Barstugan R. Time and volume‐ratio effect on reusable polybenzoxazole nanofiber oil sorption capacity investigated via machine learning. J Appl Polym Sci 2021. [DOI: 10.1002/app.50732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kamil Oflaz
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences Konya Technical University Konya Turkey
| | - Zarina Oflaz
- Department of Insurance and Social Security, Faculty of Economics and Administrative Sciences KTO Karatay University Konya Turkey
| | - Ilkay Ozaytekin
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences Konya Technical University Konya Turkey
| | - Kevser Dincer
- Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences Konya Technical University Konya Turkey
| | - Rabia Barstugan
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences Konya Technical University Konya Turkey
| |
Collapse
|
36
|
Orisakwe OE. Crude oil and public health issues in Niger Delta, Nigeria: Much ado about the inevitable. ENVIRONMENTAL RESEARCH 2021; 194:110725. [PMID: 33428909 DOI: 10.1016/j.envres.2021.110725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
The importance of crude oil has come at a great cost. In many developing economies of the world, it can be described as the bitter-sweet crude for its double-edged impacts on the welfare, wellness and wellness of the people. Agitations and restiveness remain characteristic features of Niger Delta following claims of exploitation and neglect of the local population by the multinationals. Literature on the environmental and public health impacts of crude oil was searched from relevant databases such as google scholar, Science Direct, Scopus and PubMed. This paper is a translational scientific and toxicological insight on what should be done by the major players rather than casting unending aspersions. Since living near oil spills and crude oil production sites is an environmental stressor occasioned by exposure to both chemical pollutants and physical menace that are all detrimental to health, cumulative risk assessment CRA is proposed as a viable approach for a comprehensive understanding of the size of this problem. Multinational oil companies should support development of Environmental Medicine Research which will in turn generate data on both how to harness the natural resources to combat the public health issues associated with oil exploration and the mitigation and remediation of the environment. This endeavor will create a waste-to-wealth program that will pacify the restiveness in oil exploring communities. It will be interesting to know that in the same environment that breeds the elephant-in-the-parlor lies the natural antidotes to check-mate the public health malady.
Collapse
Affiliation(s)
- Orish Ebere Orisakwe
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB,5323, Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|
37
|
Luo S, Dai X, Sui Y, Li P, Zhang C. Preparation of biomimetic membrane with hierarchical structure and honeycombed through-hole for enhanced oil–water separation performance. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Facile Fabrication of Superhydrophobic Cross-Linked Nanocellulose Aerogels for Oil-Water Separation. Polymers (Basel) 2021; 13:polym13040625. [PMID: 33669607 PMCID: PMC7921982 DOI: 10.3390/polym13040625] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
A facile and environmental-friendly approach was developed for the preparation of the cross-linked nanocellulose aerogel through the freeze-drying process and subsequent esterification. The as-prepared aerogel had a three-dimensional cellular microstructure with ultra-low density of 6.05 mg·cm-3 and high porosity (99.61%). After modifying by chemical vapor deposition (CVD) with hexadecyltrimethoxysilane (HTMS), the nanocellulose aerogel displayed stable super-hydrophobicity and super-oleophilicity with water contact angle of 151°, and had excellent adsorption performance for various oil and organic solvents with the adsorption capacity of 77~226 g/g. Even after 30 cycles, the adsorption capacity of the nanocellulose aerogel for chloroform was as high as 170 g/g, indicating its outstanding reusability. Therefore, the superhydrophobic cross-linked nanocellulose aerogel is a promising oil adsorbent for wastewater treatment.
Collapse
|
39
|
Chilvers BL, Morgan KJ, White BJ. Sources and reporting of oil spills and impacts on wildlife 1970-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:754-762. [PMID: 32822011 DOI: 10.1007/s11356-020-10538-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
The extraction, transport, and consumption of hydrocarbons occur daily worldwide and can lead to environmental pollution and significant incidents of wildlife mortality. This review of literature and publicly available databases from 1970 to 2018 summarises records on oil spill incidents, sources of spills, and reported effects on wildlife. During this time period, millions of tonnes of oil were released from over 1700 acute oil spills, with only 312 (18%) reporting wildlife effects. The most numerous reported spill source was shipping. From this review, there are obvious global gaps in reporting of oil spills and recording of effects on wildlife. We recommend there is a global need for increased consistency of reporting and availability of data of oil spills, and wildlife impacts. This information is critical to preparedness and response procedures for industry (shipping and oil) and governments.
Collapse
Affiliation(s)
- B L Chilvers
- Wildbase, School of Veterinary Science, Massey University, Private Bag, Palmerston North, 11222, New Zealand.
| | | | - B J White
- Wildbase, School of Veterinary Science, Massey University, Private Bag, Palmerston North, 11222, New Zealand
| |
Collapse
|
40
|
Rowe GT, Fernando H, Elferink C, Ansari GAS, Sullivan J, Heathman T, Quigg A, Petronella Croisant S, Wade TL, Santschi PH. Polycyclic aromatic hydrocarbons (PAHs) cycling and fates in Galveston Bay, Texas, USA. PLoS One 2020; 15:e0243734. [PMID: 33370322 PMCID: PMC7769252 DOI: 10.1371/journal.pone.0243734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022] Open
Abstract
The cycling and fate of polycyclic aromatic hydrocarbons (PAHs) is not well understood in estuarine systems. It is critical now more than ever given the increased ecosystem pressures on these critical coastal habitats. A budget of PAHs and cycling has been created for Galveston Bay (Texas) in the northwestern Gulf of Mexico, an estuary surrounded by 30-50% of the US capacity of oil refineries and chemical industry. We estimate that approximately 3 to 4 mt per year of pyrogenic PAHs are introduced to Galveston Bay via gaseous exchange from the atmosphere (ca. 2 mt/year) in addition to numerous spills of petrogenic PAHs from oil and gas operations (ca. 1.0 to 1.9 mt/year). PAHs are cycled through and stored in the biota, and ca. 20 to 30% of the total (0.8 to 1.5 mt per year) are estimated to be buried in the sediments. Oysters concentrate PAHs to levels above their surroundings (water and sediments) and contain substantially greater concentrations than other fish catch (shrimp, blue crabs and fin fish). Smaller organisms (infaunal invertebrates, phytoplankton and zooplankton) might also retain a significant fraction of the total, but direct evidence for this is lacking. The amount of PAHs delivered to humans in seafood, based on reported landings, is trivially small compared to the total inputs, sediment accumulation and other possible fates (metabolic remineralization, export in tides, etc.), which remain poorly known. The generally higher concentrations in biota from Galveston Bay compared to other coastal habitats can be attributed to both intermittent spills of gas and oil and the bay's close proximity to high production of pyrogenic PAHs within the urban industrial complex of the city of Houston as well as periodic flood events that transport PAHs from land surfaces to the Bay.
Collapse
Affiliation(s)
- Gilbert T. Rowe
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, Texas, United States of America
| | - Cornelis Elferink
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - G. A. Shakeel Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John Sullivan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Heathman
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| | | | - Terry L. Wade
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| | - Peter H. Santschi
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
41
|
Frank YA, Vorobiev DS, Merzlyakov OE, Sataev FR, Trifonov AA, Kopylov EO, Stryuk KV, Kalinovskaya EA, Gronskiy SV, Chibrikov OV, Perminova VV, Branevskiy YV, Kulizhskiy SP, Hunter TS. Cleaning of oil-polluted bottom sediments of the boreal lake, Samotlor oil field, North Russia: case report. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:3062-3073. [PMID: 33341793 DOI: 10.2166/wst.2020.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Small lakes in areas of intensive crude oil production may be susceptible to oil pollution arising from accidental spills and leaks, eventually leading to the pollution of bottom sediments. Effective cleaning of aquatic bottom sediments remains a challenge. Flotation is a potentially simple and reliable approach for the cleanup of bottom sediments without their excavation from the water body. Full-scale testing of flotation-based technology using the specially designed airlift plant allowed the cleaning of bottom sediments of an unnamed boreal lake ('the lake') within the Samotlor oil field, North Russia, heavily polluted with crude oil several decades ago. The lake bottom sediments are dominated by peat and unevenly polluted with oil. The average oil content in the lake bottom sediments was 111 g kg-1. During the 1.5 months' field test in July-August 2018, the average total oil concentration in the bottom sediments of the lake was reduced to 1.99 g kg-1. Secondary water contamination was minimal; the content of oil hydrocarbons in the water after completion of work did not exceed 0.09 ± 0.04 mg L-1. This study demonstrates that flotation-based technology can be applied for in situ cleaning of oil-contaminated lake bottom sediments including those in boreal climates.
Collapse
Affiliation(s)
- Yulia A Frank
- National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050, Russia E-mail: ; Tomsk Oil and Gas Research and Design Institute (TomskNIPIneft JSC), Mira Ave., 72, Tomsk, 634027, Russia
| | - Danil S Vorobiev
- National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050, Russia E-mail: ; Tomsk Oil and Gas Research and Design Institute (TomskNIPIneft JSC), Mira Ave., 72, Tomsk, 634027, Russia
| | - Oleg E Merzlyakov
- National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050, Russia E-mail:
| | - Farid R Sataev
- National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050, Russia E-mail:
| | - Andrey A Trifonov
- National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050, Russia E-mail:
| | - Evgeny O Kopylov
- Samotlorneftegaz JSC, Rosneft, Lenina St., 4, the Tyumen Region, Khanty-Mansiysk Autonomous District, Nizhnevartovsk, 628606, Russia
| | - Konstantin V Stryuk
- National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050, Russia E-mail: ; Samotlorneftegaz JSC, Rosneft, Lenina St., 4, the Tyumen Region, Khanty-Mansiysk Autonomous District, Nizhnevartovsk, 628606, Russia
| | - Ekaterina A Kalinovskaya
- Samotlorneftegaz JSC, Rosneft, Lenina St., 4, the Tyumen Region, Khanty-Mansiysk Autonomous District, Nizhnevartovsk, 628606, Russia
| | - Sergey V Gronskiy
- Samotlorneftegaz JSC, Rosneft, Lenina St., 4, the Tyumen Region, Khanty-Mansiysk Autonomous District, Nizhnevartovsk, 628606, Russia
| | - Oleg V Chibrikov
- Samotlorneftegaz JSC, Rosneft, Lenina St., 4, the Tyumen Region, Khanty-Mansiysk Autonomous District, Nizhnevartovsk, 628606, Russia
| | - Vladislava V Perminova
- National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050, Russia E-mail:
| | - Yaroslav V Branevskiy
- National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050, Russia E-mail:
| | - Sergey P Kulizhskiy
- National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050, Russia E-mail:
| | | |
Collapse
|
42
|
Rajabi H, Hadi Mosleh M, Mandal P, Lea-Langton A, Sedighi M. Emissions of volatile organic compounds from crude oil processing - Global emission inventory and environmental release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138654. [PMID: 32498184 DOI: 10.1016/j.scitotenv.2020.138654] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Airborne Volatile organic compounds (VOCs) are known to have strong and adverse impacts on human health and the environment by contributing to the formation of tropospheric ozone. VOCs can escape during various stages of crude oil processing, from extraction to refinery, hence the crude oil industry is recognised as one of the major sources of VOC release into the environment. In the last few decades, volatile emissions from crude oil have been investigated either directly by means of laboratory and field-based analyses, or indirectly via emission inventories (EIs) which have been used to develop regulatory and controlling measures in the petroleum industry. There is a vast amount of scattered data in the literature for both regional emissions from crude oil processing and scientific measurements of VOC releases. This paper aims to provide a critical analysis of the overall scale of global emissions of VOCs from all stages of oil processing based on data reported in the literature. The volatile compounds, identified via EIs of the crude oil industry or through direct emissions from oil mass, are collected and analysed to present a global-scale evaluation of type, average concentration and detection frequency of the most prevalent VOCs. We provide a critical analysis on the total averages of VOCs and key pieces of evidence which highlights the necessity of implementing control measures to regulate crude oil volatile emissions (CVEs) in primary steps of extraction-to-refinery pathways of crude oil processing. We have identified knowledge gaps in this field which are of importance to control the release of VOCs from crude oil, independent of oil type, location, operating conditions and metrological parameters.
Collapse
Affiliation(s)
- Hamid Rajabi
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, the University of Manchester, Manchester M13 9PL, UK
| | - Mojgan Hadi Mosleh
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, the University of Manchester, Manchester M13 9PL, UK.
| | - Parthasarathi Mandal
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, the University of Manchester, Manchester M13 9PL, UK
| | - Amanda Lea-Langton
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, the University of Manchester, Manchester M13 9PL, UK
| | - Majid Sedighi
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, the University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
43
|
Nordborg FM, Jones RJ, Oelgemöller M, Negri AP. The effects of ultraviolet radiation and climate on oil toxicity to coral reef organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137486. [PMID: 32325569 DOI: 10.1016/j.scitotenv.2020.137486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 05/20/2023]
Abstract
Oil pollution remains a significant local threat to shallow tropical coral reef environments, but the environmental conditions typical of coral reefs are rarely considered in oil toxicity testing and risk assessments. Here we review the effects of three environmental co-factors on petroleum oil toxicity towards coral reef organisms, and show that the impacts of oil pollution on coral reef taxa can be exacerbated by environmental conditions commonly encountered in tropical reef environments. Shallow reefs are routinely exposed to high levels of ultraviolet radiation (UVR), which can substantially increase the toxicity of some oil components through phototoxicity. Exposure to UVR represents the most likely and harmful environmental co-factor reviewed here, leading to an average toxicity increase of 7.2-fold across all tests reviewed. The clear relevance of UVR co-exposure and its strong influence on tropical reef oil toxicity highlights the need to account for UVR as a standard practice in future oil toxicity studies. Indeed, quantifying the influence of UVR on toxic thresholds of oil to coral reef species is essential to develop credible oil spill risk models required for oil extraction developments, shipping management and spill responses in the tropics. The few studies available indicate that co-exposure to elevated temperature and low pH, both within the range of current daily and seasonal fluctuations and/or projected under continued climate change, can increase oil toxicity on average by 3.0- and 1.3-fold, respectively. While all three of the reviewed environmental co-factors have the potential to substantially increase the impacts of oil pollution in shallow reef environments, their simultaneous effects have not been investigated. Assessments of the combined effects of oil pollution, UVR, temperature and low pH will become increasingly important to identify realistic hazard thresholds suitable for future risk assessments over the coming century.
Collapse
Affiliation(s)
- F Mikaela Nordborg
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Ross J Jones
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | - Michael Oelgemöller
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia
| | - Andrew P Negri
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
44
|
Barron MG, Vivian DN, Heintz RA, Yim UH. Long-Term Ecological Impacts from Oil Spills: Comparison of Exxon Valdez, Hebei Spirit, and Deepwater Horizon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6456-6467. [PMID: 32267150 PMCID: PMC7397809 DOI: 10.1021/acs.est.9b05020] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The long-term ecological impacts of the Exxon Valdez oil spill (EVOS) are compared to two extensively studied and more recent large spills: Deepwater Horizon (DWH) and the Hebei Spirit oil spill (HSOS). Each of the three spills differed in magnitude and duration of oil released, environmental conditions, ecological communities, response and clean up measures, and ecological recovery. The EVOS began on March 24, 1989, and released 40.8 million liters of Alaska North Slope crude oil into the cold, nearly pristine environment of Prince William Sound, Alaska. EVOS oiled wildlife and rocky intertidal shorelines and exposed early life stages of fish to embryotoxic levels of polycyclic aromatic hydrocarbons (PAH). Long-term impacts following EVOS were observed on seabirds, sea otters, killer whales, and subtidal communities. The DWH spill began on April 20, 2010, and released 507 million liters of light Louisiana crude oil from 1600 m on the ocean floor into the Gulf of Mexico over an 87-day period. The DWH spill exposed a diversity of complex aquatic communities in the deep ocean, offshore pelagic areas, and coastal environments to petroleum hydrocarbons. Large-scale persistent ecological effects included impacts to deep ocean corals, failed recruitment of oysters over multiple years, damage to coastal wetlands, and reduced dolphin, sea turtle, and seabird populations. The HSOS began on December 7, 2007, and released approximately 13 million liters of Middle East crude oils into ecologically sensitive areas of the Taean area of western Korea. Environmental conditions and the extensive initial cleanup of HSOS oil stranded on shorelines limited the long-term impacts to changes in composition and abundance of intertidal benthic communities. Comparisons of EVOS, DWH, and HSOS show the importance and complexity of the interactions among the environment, oil spill dynamics, affected ecological systems, and response actions.
Collapse
Affiliation(s)
- Mace G. Barron
- U.S. EPA, Office of Research and Development, Gulf Breeze, FL USA
| | | | | | - Un Hyuk Yim
- Korea Institute of Science and Technology, Geoje, Republic of Korea
| |
Collapse
|
45
|
Bosman SH, Schwing PT, Larson RA, Wildermann NE, Brooks GR, Romero IC, Sanchez-Cabeza JA, Ruiz-Fernández AC, Machain-Castillo ML, Gracia A, Escobar-Briones E, Murawski SA, Hollander DJ, Chanton JP. The southern Gulf of Mexico: A baseline radiocarbon isoscape of surface sediments and isotopic excursions at depth. PLoS One 2020; 15:e0231678. [PMID: 32294128 PMCID: PMC7159241 DOI: 10.1371/journal.pone.0231678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/29/2020] [Indexed: 11/19/2022] Open
Abstract
The southern Gulf of Mexico (sGoM) is home to an extensive oil recovery and development infrastructure. In addition, the basin harbors sites of submarine hydrocarbon seepage and receives terrestrial inputs from bordering rivers. We used stable carbon, nitrogen, and radiocarbon analyses of bulk sediment organic matter to define the current baseline isoscapes of surface sediments in the sGoM and determined which factors might influence them. These baseline surface isoscapes will be useful for accessing future environmental impacts. We also examined the region for influence of hydrocarbon deposition in the sedimentary record that might be associated with hydrocarbon recovery, spillage and seepage, as was found in the northern Gulf of Mexico (nGoM) following the Deepwater Horizon (DWH) oil spill in 2010. In 1979, the sGoM experienced a major oil spill, Ixtoc 1. Surface sediment δ13C values ranged from -22.4‰ to -19.9‰, while Δ14C values ranged from -337.1‰ to -69.2‰. Sediment δ15N values ranged from 2.8‰ to 7.2‰, while the %C on a carbonate-free basis ranged in value of 0.65% to 3.89% and %N ranged in value of 0.09% to 0.49%. Spatial trends for δ13C and Δ14C were driven by water depth and distance from the coastline, while spatial trends for δ15N were driven by location (latitude and longitude). Location and distance from the coastline were significantly correlated with %C and %N. At depth in two of twenty (10%) core profiles, we found negative δ13C and Δ14C excursions from baseline values in bulk sedimentary organic material, consistent with either oil-residue deposition or terrestrial inputs, but likely the latter. We then used 210Pb dating on those two profiles to determine the time in which the excursion-containing horizons were deposited. Despite the large spill in 1979, no evidence of hydrocarbon residue remained in the sediments from this specific time period.
Collapse
Affiliation(s)
- Samantha H. Bosman
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (SHB); (JPC)
| | - Patrick T. Schwing
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
- Eckerd College, Saint Petersburg, Florida, United States of America
| | | | - Natalie E. Wildermann
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, United States of America
| | - Gregg R. Brooks
- Eckerd College, Saint Petersburg, Florida, United States of America
| | - Isabel C. Romero
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| | - Joan-Albert Sanchez-Cabeza
- Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Ciudad de México, Mexico
| | - Ana Carolina Ruiz-Fernández
- Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Ciudad de México, Mexico
| | | | - Adolfo Gracia
- Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Ciudad de México, Mexico
| | - Elva Escobar-Briones
- Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Ciudad de México, Mexico
| | - Steven A. Murawski
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| | - David J. Hollander
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| | - Jeffrey P. Chanton
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (SHB); (JPC)
| |
Collapse
|
46
|
Weinnig AM, Gómez CE, Hallaj A, Cordes EE. Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure. Sci Rep 2020; 10:1768. [PMID: 32019964 PMCID: PMC7000676 DOI: 10.1038/s41598-020-58556-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/16/2020] [Indexed: 11/15/2022] Open
Abstract
There are numerous studies highlighting the impacts of direct and indirect stressors on marine organisms, and multi-stressor studies of their combined effects are an increasing focus of experimental work. Lophelia pertusa is a framework-forming cold-water coral that supports numerous ecosystem services in the deep ocean. These corals are threatened by increasing anthropogenic impacts to the deep-sea, such as global ocean change and hydrocarbon extraction. This study implemented two sets of experiments to assess the effects of future conditions (temperature: 8 °C and 12 °C, pH: 7.9 and 7.6) and hydrocarbon exposure (oil, dispersant, oil + dispersant combined) on coral health. Phenotypic response was assessed through three independent observations of diagnostic characteristics that were combined into an average health rating at four points during exposure and recovery. In both experiments, regardless of environmental condition, average health significantly declined during 24-hour exposure to dispersant alone but was not significantly altered in the other treatments. In the early recovery stage (24 hours), polyp health returned to the pre-exposure health state under ambient temperature in all treatments. However, increased temperature resulted in a delay in recovery (72 hours) from dispersant exposure. These experiments provide evidence that global ocean change can affect the resilience of corals to environmental stressors and that exposure to chemical dispersants may pose a greater threat than oil itself.
Collapse
Affiliation(s)
- Alexis M Weinnig
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA.
| | - Carlos E Gómez
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, D.C., Colombia
| | - Adam Hallaj
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Erik E Cordes
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Chen Q, Chen P. Changes in the heavy metals and petroleum hydrocarbon contents in seawater and surface sediment in the year following artificial reef construction in the Pearl River Estuary, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6009-6021. [PMID: 31863380 DOI: 10.1007/s11356-019-07406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Marine pollution is an important driver of ocean biodiversity loss, which can be mitigated by the construction of artificial reefs (ARs). Many studies have explored how ARs affect marine organisms, but our understanding of the changes in heavy metals and petroleum hydrocarbons after AR construction is limited. In the current study, we assessed the heavy metal and petroleum hydrocarbon contents of the seawater (surface and bottom seawater) and surface sediment before and after AR construction in AR habitat and in nearby non-reef control habitat in the Pearl River Estuary, China. AR construction tended to decrease the contents of Cu, Pb, Cd, and Hg but tended to increase Zn content in seawater and in surface sediment. Petroleum hydrocarbon content changed irregularly in seawater and surface sediment. Effects of AR construction were similar in the nearby non-reef habitat vs. the AR habitat. Seawater heavy metal and petroleum hydrocarbon contents were correlated with the seawater physicochemical properties (mainly temperature, inorganic nitrogen, chemical oxygen demand, available phosphate, and suspended particulate organic matter), and sediment heavy metal content was correlated with sediment organic matter content. Additional studies over longer time periods and at larger spatial scales are needed to clarify how AR construction affects heavy metal and petroleum hydrocarbon contents in marine environments.
Collapse
Affiliation(s)
- Quan Chen
- Key Laboratory of Marine Ranch Technology, Chinese Academy of Fishery Sciences, 231 West Xingang Road, Haizhu District, Guangzhou, 510300, People's Republic of China.
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 West Xingang Road, Haizhu District, Guangzhou, 510300, People's Republic of China.
| | - Pimao Chen
- Key Laboratory of Marine Ranch Technology, Chinese Academy of Fishery Sciences, 231 West Xingang Road, Haizhu District, Guangzhou, 510300, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 West Xingang Road, Haizhu District, Guangzhou, 510300, People's Republic of China
| |
Collapse
|
48
|
Amor-Carro Ó, White KM, Fraga-Iriso R, Mariñas-Pardo LA, Núñez-Naveira L, Lema-Costa B, Villarnovo M, Verea-Hernando H, Ramos-Barbón D. Airway Hyperresponsiveness, Inflammation, and Pulmonary Emphysema in Rodent Models Designed to Mimic Exposure to Fuel Oil-Derived Volatile Organic Compounds Encountered during an Experimental Oil Spill. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:27003. [PMID: 32074461 PMCID: PMC7064321 DOI: 10.1289/ehp4178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Fuel oil-derived volatile organic compounds (VOCs) inhalation is associated with accidental marine spills. After the Prestige petroleum tanker sank off northern Spain in 2002 and the Deepwater Horizon oil rig catastrophe in 2009, subjects involved in environmental decontamination showed signs of ongoing or residual lung disease up to 5 y after the exposure. OBJECTIVES We aimed at investigating mechanisms driving persistent respiratory disease by developing an animal model of inhalational exposure to fuel oil-derived VOCs. METHODS Female Wistar and Brown Norway (BN) rats and C57BL mice were exposed to VOCs produced from fuel oil mimicking the Prestige spill. Exposed animals inhaled the VOCs 2 h daily, 5 d per week, for 3 wk. Airway responsiveness to methacholine (MCh) was assessed, and bronchoalveolar lavage (BAL) and lung tissues were analyzed after the exposure and following a 2-wk washout. RESULTS Consistent with data from human studies, both strains of rats that inhaled fuel oil-derived VOCs developed airway hyperresponsiveness that persisted after the washout period, in the absence of detectable inflammation in any lung compartment. Histopathology and quantitative morphology revealed the development of peripherally distributed pulmonary emphysema, which persisted after the washout period, associated with increased alveolar septal cell apoptosis, microvascular endothelial damage of the lung parenchyma, and inhibited expression of vascular endothelial growth factor (VEGF). DISCUSSION In this rat model, fuel oil VOCs inhalation elicited alveolar septal cell apoptosis, likely due to DNA damage. In turn, the development of a peculiar pulmonary emphysema pattern altered lung mechanics and caused persistent noninflammatory airway hyperresponsiveness. Such findings suggest to us that humans might also respond to VOCs through physiopathological pathways different from those chiefly involved in typical cigarette smoke-driven emphysema in chronic obstructive pulmonary disease (COPD). If so, this study could form the basis for a novel disease mechanism for lasting respiratory disease following inhalational exposure to catastrophic fuel oil spills. https://doi.org/10.1289/EHP4178.
Collapse
Affiliation(s)
- Óscar Amor-Carro
- Respiratory Research Unit, Complexo Hospitalario Universitario and the Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
- Respiratory Department, Hospital de la Santa Creu i Sant Pau and the Biomedical Research Institute (IIb Sant Pau), Barcelona, Spain
| | - Kathryn M. White
- Respiratory Research Unit, Complexo Hospitalario Universitario and the Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
| | - Rebeca Fraga-Iriso
- Respiratory Research Unit, Complexo Hospitalario Universitario and the Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
- Respiratory Department, Hospital de la Santa Creu i Sant Pau and the Biomedical Research Institute (IIb Sant Pau), Barcelona, Spain
| | - Luis A. Mariñas-Pardo
- Respiratory Research Unit, Complexo Hospitalario Universitario and the Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
| | - Laura Núñez-Naveira
- Respiratory Research Unit, Complexo Hospitalario Universitario and the Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
| | - Beatriz Lema-Costa
- Respiratory Research Unit, Complexo Hospitalario Universitario and the Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
| | - Marta Villarnovo
- Respiratory Research Unit, Complexo Hospitalario Universitario and the Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
| | - Héctor Verea-Hernando
- Respiratory Research Unit, Complexo Hospitalario Universitario and the Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
| | - David Ramos-Barbón
- Respiratory Research Unit, Complexo Hospitalario Universitario and the Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
- Respiratory Department, Hospital de la Santa Creu i Sant Pau and the Biomedical Research Institute (IIb Sant Pau), Barcelona, Spain
| |
Collapse
|
49
|
Chilvers BL, Battley PF. Species prioritization index for oiled wildlife response planning in New Zealand. MARINE POLLUTION BULLETIN 2019; 149:110529. [PMID: 31470208 DOI: 10.1016/j.marpolbul.2019.110529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Birds are extremely vulnerable to the effects of oil pollution. For wildlife, prevention of oiling is the best response option, however if not feasible, the fastest response gives the highest chance of survival. Therefore, the development of an oiled wildlife preparedness plan based on analysis of areas at risk, vulnerable species and potential response options is critical. This research developed an area based, species priority index (SPI) for New Zealand birds to guide oiled wildlife planning. The SPI shows significant areas of New Zealand's shoreline and offshore islands have many highly vulnerable species that need careful consideration given restricted response options available. Identification of these areas and species allows priority planning for placement of personal and equipment. This SPI can be adapted for other species (marine mammals and reptiles) and for other geographical areas to help develop response plans for oil pollution and oiled wildlife response worldwide.
Collapse
Affiliation(s)
- B Louise Chilvers
- Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Phil F Battley
- Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
50
|
Abstract
Oily wastewater from shipping waste and marine accidents have seriously polluted the marine environment and brought great harm to human production and health. With the increasing awareness of environmental protection, the treatment of marine oily wastewater has attracted extensive attention from the international community. Marine oily wastewater has various forms and complex components, so its treatment technology faces great challenges. Sources, types, supervision, and treatment of marine oily wastewater are introduced in this paper. The research progress of marine and ship’s oily wastewater treatment technologies in recent years are reviewed from the perspectives of physical treatment, chemical treatment, biological treatment, and combined treatment, respectively. Principles and characteristics of all kinds of technologies were analyzed. In addition, this paper shows that multiple processing technologies used in combination for the purpose of high efficiency, environmental protection, economy, and energy conservation are the future development trend.
Collapse
|