1
|
Basu N, Abass K, Dietz R, Krümmel E, Rautio A, Weihe P. The impact of mercury contamination on human health in the Arctic: A state of the science review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154793. [PMID: 35341859 DOI: 10.1016/j.scitotenv.2022.154793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The 2021 Arctic Monitoring and Assessment Programme (AMAP) Mercury (Hg) Assessment is motivated by Arctic populations, and most notably Indigenous Peoples in the region, who are particularly vulnerable to Hg pollution. The objective of this review paper is to answer the following AMAP policy-relevant question: what is the human health impact of Hg pollution in the Arctic? In doing so, this state of the science review paper builds on information published 10 years ago in the last AMAP Hg assessment. The synthesized results demonstrate that: a) global influences (e.g., sources and transport pathways, biogeochemical processes, climate change, globalization) drive Hg exposures into human communities; b) Hg exposures are realized through dietary intake of certain country food items, and that new exposure science approaches are helping to deepen understandings; c) the nutritional and cultural benefits of country foods are immense, though a dietary transition is underway raising concerns over metabolic syndrome and broader issues of food security as well as cultural and social well-being; d) blood Hg measures are among the highest worldwide based on the results of human biomonitoring studies; e) Hg exposures are associated with adverse health outcomes across life stages (e.g., neurodevelopmental outcomes in young children to cardiovascular disease in adults); and f) risk communication needs to be balanced, targeted and clear, culturally appropriate, and be done collaboratively. These synthesized findings are particularly timely and policy-relevant given that the Minamata Convention entered into legal force worldwide in 2017 as a regulatory scheme to reduce the use and environmental release of Hg in order to protect human health and the environment. The Convention was influenced by health concerns raised by northern populations as indicated in the preamble text which makes reference to "the particular vulnerabilities of Arctic ecosystems and Indigenous communities".
Collapse
Affiliation(s)
- Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.
| | - Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Pesticides, Menoufia University, Menoufia, Egypt
| | - Rune Dietz
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, Frederiksbirgvej 399, DK-4000 Roskilde, Denmark
| | - Eva Krümmel
- Inuit Circumpolar Council - Canada, Ottawa, Canada
| | - Arja Rautio
- Thule Institute and Faculty of Medicine, University of Oulu and University of the Arctic, Oulu, Finland
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, Sigmundargøta 5, 100 Tórshavn, Faroe Islands; Center of Health Science, University of The Faroe Islands, J.C. Svabosgøta 14, 100 Tórshavn, Faroe Islands
| |
Collapse
|
2
|
Nexus between Water Security Framework and Public Health: A Comprehensive Scientific Review. WATER 2021. [DOI: 10.3390/w13101365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water scarcity, together with the projected impacts of water stress worldwide, has led to a rapid increase in research on measuring water security. However, water security has been conceptualized under different perspectives, including various aspects and dimensions. Since public health is also an integral part of water security, it is necessary to understand how health has been incorporated as a dimension in the existing water security frameworks. While supply–demand and governance narratives dominated several popular water security frameworks, studies that are specifically designed for public health purposes are generally lacking. This research aims to address this gap, firstly by assessing the multiple thematic dimensions of water security frameworks in scientific disclosure; and secondly by looking into the public health dimensions and evaluating their importance and integration in the existing water security frameworks. For this, a systematic review of the Scopus database was undertaken using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A detailed review analysis of 77 relevant papers was performed. The result shows that 11 distinct dimensions have been used to design the existing water security framework. Although public health aspects were mentioned in 51% of the papers, direct health impacts were considered only by 18%, and indirect health impacts or mediators were considered by 33% of the papers. Among direct health impacts, diarrhea is the most prevalent one considered for developing a water security framework. Among different indirect or mediating factors, poor accessibility and availability of water resources in terms of time and distance is a big determinant for causing mental illnesses, such as stress or anxiety, which are being considered when framing water security framework, particularly in developing nations. Water quantity is more of a common issue for both developed and developing countries, water quality and mismanagement of water supply-related infrastructure is the main concern for developing nations, which proved to be the biggest hurdle for achieving water security. It is also necessary to consider how people treat and consume the water available to them. The result of this study sheds light on existing gaps for different water security frameworks and provides policy-relevant guidelines for its betterment. Also, it stressed that a more wide and holistic approach must be considered when framing a water security framework to result in sustainable water management and human well-being.
Collapse
|
3
|
|
4
|
Alvarez J, Yumashev D, Whiteman G. A framework for assessing the economic impacts of Arctic change. AMBIO 2020; 49:407-418. [PMID: 31236784 PMCID: PMC6965338 DOI: 10.1007/s13280-019-01211-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 05/29/2023]
Abstract
The scientific literature on physical changes in the Arctic region driven by climate change is extensive. In addition, the emerging understanding of physical feedbacks and teleconnections between the Arctic and the rest of the world suggests that the warming in the Arctic region is likely to cause impacts that extend well beyond the region itself. However, there is only limited research on how Arctic change may affect economies and individual industry sectors around the world. We argue that there is a pressing need for more research on this topic and present a conceptual framework to guide future research for assessing the regional and global economic impacts of Arctic change, including both possible benefits and costs. We stress on the importance of a transdisciplinary approach, which includes an integration of the natural sciences, economics and social sciences, as well as engagement with a wide range of stakeholders to better understand and manage the implications of Arctic change.
Collapse
Affiliation(s)
- Jimena Alvarez
- Pentland Centre for Sustainability in Business, Lancaster University, Lancaster, LA1 4YX UK
- Salguero 3055, 1425, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Dmitry Yumashev
- Pentland Centre for Sustainability in Business, Lancaster University, Lancaster, LA1 4YX UK
| | - Gail Whiteman
- Pentland Centre for Sustainability in Business, Lancaster University, Lancaster, LA1 4YX UK
| |
Collapse
|
5
|
Potential for Hydroclimatically Driven Shifts in Infectious Disease Outbreaks: The Case of Tularemia in High-Latitude Regions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193717. [PMID: 31581631 PMCID: PMC6801375 DOI: 10.3390/ijerph16193717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 01/14/2023]
Abstract
Hydroclimatic changes may be particularly pronounced in high-latitude regions and can influence infectious diseases, jeopardizing regional human and animal health. In this study, we consider the example of tularemia, one of the most studied diseases in high-latitude regions, which is likely to be impacted by large regional hydroclimatic changes. For this disease case, we use a validated statistical model and develop a method for quantifying possible hydroclimatically driven shifts in outbreak conditions. The results show high sensitivity of tularemia outbreaks to certain combinations of hydroclimatic variable values. These values are within the range of past regional observations and may represent just mildly shifted conditions from current hydroclimatic averages. The methodology developed also facilitates relatively simple identification of possible critical hydroclimatic thresholds, beyond which unacceptable endemic disease levels may be reached. These results call for further research on how projected hydroclimatic changes may affect future outbreaks of tularemia and other infectious diseases in high-latitude and other world regions, with particular focus on critical thresholds to high-risk conditions. More research is also needed on the generality and spatiotemporal transferability of statistical disease models.
Collapse
|
6
|
Daley K, Jamieson R, Rainham D, Truelstrup Hansen L, Harper SL. Screening-level microbial risk assessment of acute gastrointestinal illness attributable to wastewater treatment systems in Nunavut, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1253-1264. [PMID: 30677892 DOI: 10.1016/j.scitotenv.2018.11.408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Most arctic communities use primary wastewater treatment systems that are capable of only low levels of pathogen removal. Effluent potentially containing fecally derived microorganisms is released into wetlands and marine waters that may simultaneously serve as recreation or food harvesting locations for local populations. The purpose of this study is to provide the first estimates of acute gastrointestinal illness (AGI) attributable to wastewater treatment systems in Arctic Canada. A screening-level, point estimate quantitative microbial risk assessment model was developed to evaluate worst-case scenarios across an array of exposure pathways in five case study locations. A high annual AGI incidence rate of 5.0 cases per person is estimated in Pangnirtung, where a mechanical treatment plant discharges directly to marine waters, with all cases occurring during low tide conditions. The probability of AGI per person per single exposure during this period ranges between 1.0 × 10-1 (shore recreation) and 6.0 × 10-1 (shellfish consumption). A moderate incidence rate of 1.2 episodes of AGI per person is estimated in Naujaat, where a treatment system consisting of a pond and tundra wetland is used, with the majority of cases occurring during spring. The pathway with the highest individual probability of AGI per single exposure event is wetland travel at 6.0 × 10-1. All other risk probabilities per single exposure are <1.0 × 10-1. The AGI incidence rates estimated for the other three case study locations are <0.1. These findings suggest that wastewater treatment sites may be contributing to elevated rates of AGI in some arctic Canadian communities. Absolute risk values, however, should be weighed with caution based on the exploratory nature of this study design. These results can be used to inform future risk assessment and epidemiological research as well as support public health and sanitation decisions in the region.
Collapse
Affiliation(s)
- Kiley Daley
- Centre for Water Resources Studies, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Rob Jamieson
- Centre for Water Resources Studies, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Daniel Rainham
- Healthy Populations Institute, Dalhousie University, 1318 Robie Street, Halifax, Nova Scotia B3H 4R2, Canada.
| | | | - Sherilee L Harper
- School of Public Health, University of Alberta, 11405 87th Avenue, Edmonton, Alberta T6G 1C9, Canada.
| |
Collapse
|
7
|
Haines A, Hanson C, Ranganathan J. Planetary Health Watch: integrated monitoring in the Anthropocene epoch. Lancet Planet Health 2018; 2:e141-e143. [PMID: 29615211 DOI: 10.1016/s2542-5196(18)30047-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Andy Haines
- Department of Public Health, Environments and Society and Department of Population Health, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK.
| | | | | |
Collapse
|
8
|
Quin A, Jaramillo F, Destouni G. Dissecting the ecosystem service of large-scale pollutant retention: The role of wetlands and other landscape features. AMBIO 2015; 44 Suppl 1:S127-37. [PMID: 25576287 PMCID: PMC4288994 DOI: 10.1007/s13280-014-0594-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Various features of a landscape contribute to the regulating ecosystem service of reducing waterborne pollutant loading to downstream environments. At local scales, wetlands have been shown to be effective in retaining pollutants. Here, we investigate the landscape-scale contribution to pollutant retention provided by multiple wetlands. We develop a general analytical model which shows that the retention contribution of wetlands and other landscape features is only significant if a large fraction of the total waterborne pollutant transport passes through them. Next, by means of a statistical analysis of official data, we quantify the nutrient retention contribution of wetlands for multiple sub-catchments in two Swedish Water Management Districts. We compare this with the retention contribution of two other landscape features: the waterborne transport distance and major lakes. The landscape-scale retention contribution of wetlands is undetectable; rather, the other two landscape features account for much of the total nutrient retention.
Collapse
Affiliation(s)
- Andrew Quin
- Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden
| | - Fernando Jaramillo
- Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden
| | - Georgia Destouni
- Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|