1
|
Oshima S, Kim A, Sun XR, Rifi Z, Cross KA, Fu KA, Salamon N, Ellingson BM, Bari AA, Yao J. Predicting Post-Operative Side Effects in VIM MRgFUS Based on THalamus Optimized Multi Atlas Segmentation (THOMAS) on White-Matter-Nulled MRI: A Retrospective Study. AJNR Am J Neuroradiol 2024:ajnr.A8448. [PMID: 39730158 DOI: 10.3174/ajnr.a8448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/01/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND PURPOSE Precise and individualized targeting of the ventral intermediate thalamic nucleus for the MR-guided focused ultrasound is crucial for enhancing treatment efficacy and avoiding undesirable side effects. In this study, we tested the hypothesis that the spatial relationships between Thalamus Optimized Multi Atlas Segmentation derived segmentations and the post-focused ultrasound lesion can predict post-operative side effects in patients treated with MR-guided focused ultrasound. MATERIALS AND METHODS We retrospectively analyzed 30 patients (essential tremor, n = 26; tremor-dominant Parkinson's disease, n = 4) who underwent unilateral ventral intermediate thalamic nucleus focused ultrasound treatment. We created ROIs of coordinate-based indirect treatment target, focused ultrasound-induced lesion, and thalamus and ventral intermediate thalamic nucleus segmentations. We extracted imaging features including 1) focused ultrasound-induced lesion volumes, 2) overlap between lesions and thalamus and ventral intermediate thalamic nucleus segmentations, 3) distance between lesions and ventral intermediate thalamic nucleus segmentation and 4) distance between lesions and the indirect standard target. These imaging features were compared between patients with and without post-operative gait/balance side effects using Wilcoxon rank-sum test. Multivariate prediction models of side effects based on the imaging features were evaluated using the receiver operating characteristic analyses. RESULTS Patients with self-reported gait/balance side effects had a significantly larger extent of focused ultrasound-induced edema, a smaller fraction of the lesion within the ventral intermediate thalamic nucleus segmentation, a larger fraction of the off-target lesion outside the thalamus segmentation, a more inferior centroid of the lesion from the ventral intermediate thalamic nucleus segmentation, and a larger distance between the centroid of the lesion and ventral intermediate thalamic nucleus segmentation (p < 0.05). Similar results were found for exam-based side effects. Multivariate regression models based on the imaging features achieved areas under the curve of 0.99 (95% CI: 0.88 to 1.00) and 0.96 (95% CI: 0.73 to 1.00) for predicting self-reported and exam-based side effects, respectively. CONCLUSIONS Thalamus Optimized Multi Atlas Segmentation-based patient-specific segmentation of the ventral intermediate thalamic nucleus can predict post-operative side effects, which has implications for aiding the direct targeting of MR-guided focused ultrasound and reducing side effects.
Collapse
Affiliation(s)
- Sonoko Oshima
- From the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Asher Kim
- From the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (A.K., B.M.E., J.Y.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
| | - Xiaonan R Sun
- Department of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ziad Rifi
- Department of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katy A Cross
- Department of Neurology (K.A.C., K.A.F.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katherine A Fu
- Department of Neurology (K.A.C., K.A.F.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Noriko Salamon
- Department of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Benjamin M Ellingson
- From the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (A.K., B.M.E., J.Y.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Psychiatry and Biobehavioral Sciences (B.M.E.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Ausaf A Bari
- Department of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jingwen Yao
- From the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (A.K., B.M.E., J.Y.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Bai F, Deng Y, Li L, Lv M, Razzokov J, Xu Q, Xu Z, Chen Z, Chen G, Chen Z. Advancements and challenges in brain cancer therapeutics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230177. [PMID: 39713205 PMCID: PMC11655316 DOI: 10.1002/exp.20230177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/24/2024]
Abstract
Treating brain tumors requires a nuanced understanding of the brain, a vital and delicate organ. Location, size, tumor type, and surrounding tissue health are crucial in developing treatment plans. This review comprehensively summarizes various treatment options that are available or could be potentially available for brain tumors, including physical therapies (radiotherapy, ablation therapy, photodynamic therapy, tumor-treating field therapy, and cold atmospheric plasma therapy) and non-physical therapies (surgical resection, chemotherapy, targeted therapy, and immunotherapy). Mechanisms of action, potential side effects, indications, and latest developments, as well as their limitations, are highlighted. Furthermore, the requirements for personalized, multi-modal treatment approaches in this rapidly evolving field are discussed, emphasizing the balance between efficacy and patient safety.
Collapse
Affiliation(s)
- Fan Bai
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
| | - Yueyang Deng
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Long Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
| | - Ming Lv
- Department of Medical EngineeringMedical Supplies Center of Chinese PLA General HospitalBeijingChina
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied ResearchNational Research University TIIAMETashkentUzbekistan
- Laboratory of Experimental BiophysicsCentre for Advanced TechnologiesTashkentUzbekistan
- Department of Biomedical EngineeringTashkent State Technical UniversityTashkentUzbekistan
| | - Qingnan Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhen Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhaowei Chen
- Institute of Food Safety and Environment MonitoringMOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhouChina
| | - Guojun Chen
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Zhitong Chen
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
- Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhenChina
| |
Collapse
|
3
|
Campbell WA, Makary MS. Advances in Image-Guided Ablation Therapies for Solid Tumors. Cancers (Basel) 2024; 16:2560. [PMID: 39061199 PMCID: PMC11274819 DOI: 10.3390/cancers16142560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Image-guided solid tumor ablation methods have significantly advanced in their capability to target primary and metastatic tumors. These techniques involve noninvasive or percutaneous insertion of applicators to induce thermal, electrochemical, or mechanical stress on malignant tissue to cause tissue destruction and apoptosis of the tumor margins. Ablation offers substantially lower risks compared to traditional methods. Benefits include shorter recovery periods, reduced bleeding, and greater preservation of organ parenchyma compared to surgical intervention. Due to the reduced morbidity and mortality, image-guided tumor ablation offers new opportunities for treatment in cancer patients who are not candidates for resection. Currently, image-guided ablation techniques are utilized for treating primary and metastatic tumors in various organs with both curative and palliative intent, including the liver, pancreas, kidneys, thyroid, parathyroid, prostate, lung, breast, bone, and soft tissue. The invention of new equipment and techniques is expanding the criteria of eligible patients for therapy, as now larger and more high-risk tumors near critical structures can be ablated. This article provides an overview of the different imaging modalities, noninvasive, and percutaneous ablation techniques available and discusses their applications and associated complications across various organs.
Collapse
Affiliation(s)
- Warren A. Campbell
- Division of Vascular and Interventional Radiology, Department of Radiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mina S. Makary
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Lima Pessôa B, Hauwanga WN, Thomas A, Valentim G, McBenedict B. A Comprehensive Narrative Review of Neuropathic Pain: From Pathophysiology to Surgical Treatment. Cureus 2024; 16:e58025. [PMID: 38738050 PMCID: PMC11087935 DOI: 10.7759/cureus.58025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Neuropathic pain is a challenging condition. Despite the immense progress made in the pathophysiology and treatment of such conditions, so much work still has to be done. New frontiers previously unexplored are now objects of study with exciting results, mainly regarding neuromodulation and optogenetics. This review explores the already known pathophysiology and the clinical and surgical treatment in the light of evidence-based medicine. Additionally, new concepts and insights are discussed, presenting the hope for the development of new paradigms in the treatment of neuropathic pain.
Collapse
Affiliation(s)
| | - Wilhelmina N Hauwanga
- Family Medicine, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | | | | | |
Collapse
|
5
|
Filippou A, Georgiou A, Nikolaou A, Evripidou N, Damianou C. Advanced software for MRgFUS treatment planning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107726. [PMID: 37480647 DOI: 10.1016/j.cmpb.2023.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Herein, a user-friendly software platform for 3-dimensional Focused Ultrasound treatment planning based on Magnetic Resonance Imaging (MRI) images is presented. METHODS The software directly retrieves and loads MRI images. Various design tools can be used on the MRI images to define the treatment area and the sonication parameters. Based on the treatment plan, the software controls the robotic motion and motion pattern of Magnetic Resonance guided Focused Ultrasound (MRgFUS) robotic systems to execute the treatment procedure. Real-time treatment monitoring is achieved through MRI images and thermometry. The software's functionality and performance were evaluated in both laboratory and MRI environments. Different treatment plans were designed on MRI images and sonications were executed on agar-based phantoms and polymer films. RESULTS Magnetic Resonance (MR) thermometry maps were acquired in the agar-based phantoms. An exceptional agreement was observed between the software-planned treatment area and the lesions produced on the polymer films. CONCLUSIONS The developed software was successfully integrated with the MRI and robotic system controls for performing accurate treatment planning and real-time monitoring during sonications. The software provides an extremely user-friendly interface, while in the future it could be enhanced by providing dynamic modulation of the ultrasonic parameters during the treatment process.
Collapse
Affiliation(s)
- Antria Filippou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Andreas Georgiou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus
| | - Anastasia Nikolaou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Nikolas Evripidou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Christakis Damianou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| |
Collapse
|
6
|
Hughes A, Khan DS, Alkins R. Current and Emerging Systems for Focused Ultrasound-Mediated Blood-Brain Barrier Opening. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1479-1490. [PMID: 37100672 DOI: 10.1016/j.ultrasmedbio.2023.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 05/17/2023]
Abstract
With an ever-growing list of neurological applications of focused ultrasound (FUS), there has been a consequent increase in the variety of systems for delivering ultrasound energy to the brain. Specifically, recent successful pilot clinical trials of blood-brain barrier (BBB) opening with FUS have generated substantial interest in the future applications of this relatively novel therapy, with divergent, purpose-built technologies emerging. With many of these technologies at various stages of pre-clinical and clinical investigation, this article seeks to provide an overview and analysis of the numerous medical devices in active use and under development for FUS-mediated BBB opening.
Collapse
Affiliation(s)
- Alec Hughes
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Dure S Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
7
|
Bex A, Bex V, Carpentier A, Mathon B. Therapeutic ultrasound: The future of epilepsy surgery? Rev Neurol (Paris) 2022; 178:1055-1065. [PMID: 35853776 DOI: 10.1016/j.neurol.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
Abstract
Epilepsy is one of the leading neurological diseases in both adults and children and in spite of advancement in medical treatment, 20 to 30% of patients remain refractory to current medical treatment. Medically intractable epilepsy has a real impact on a patient's quality of life, neurologic morbidity and even mortality. Actual therapy options are an increase in drug dosage, radiosurgery, resective surgery and non-resective neuromodulatory treatments (deep brain stimulation, vagus nerve stimulation). Resective, thermoablative or neuromodulatory surgery in the treatment of epilepsy are invasive procedures, sometimes requiring long stay-in for the patients, risks of permanent neurological deficit, general anesthesia and other potential surgery-related complications such as a hemorrhage or an infection. Radiosurgical approaches can trigger radiation necrosis, brain oedema and transient worsening of epilepsy. With technology-driven developments and pursuit of minimally invasive neurosurgery, transcranial MR-guided focused ultrasound has become a valuable treatment for neurological diseases. In this critical review, we aim to give the reader a better understanding of current advancement for ultrasound in the treatment of epilepsy. By outlining the current understanding gained from both preclinical and clinical studies, this article explores the different mechanisms and potential applications (thermoablation, blood brain barrier disruption for drug delivery, neuromodulation and cortical stimulation) of high and low intensity ultrasound and compares the various possibilities available to patients with intractable epilepsy. Technical limitations of therapeutic ultrasound for epilepsy surgery are also detailed and discussed.
Collapse
Affiliation(s)
- A Bex
- Department of Neurosurgery, CHR Citadelle, Liege, Belgium; Department of Neurosurgery, Sorbonne University, AP-HP, La Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - V Bex
- Department of Neurosurgery, CHR Citadelle, Liege, Belgium
| | - A Carpentier
- Department of Neurosurgery, Sorbonne University, AP-HP, La Pitié-Salpêtrière Hospital, 75013, Paris, France; Sorbonne University, GRC 23, Brain Machine Interface, AP-HP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Sorbonne University, Advanced Surgical Research Technology Lab, Paris, France
| | - B Mathon
- Department of Neurosurgery, Sorbonne University, AP-HP, La Pitié-Salpêtrière Hospital, 75013, Paris, France; Sorbonne University, GRC 23, Brain Machine Interface, AP-HP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Sorbonne University, Advanced Surgical Research Technology Lab, Paris, France; Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne University, UMRS, 1127 Paris, France.
| |
Collapse
|
8
|
Rohringer CR, Sewell IJ, Gandhi S, Isen J, Davidson B, McSweeney M, Swardfager W, Scantlebury N, Swartz RH, Hamani C, Giacobbe P, Nestor SM, Yunusova Y, Lam B, Schwartz ML, Lipsman N, Abrahao A, Rabin JS. Cognitive effects of unilateral thalamotomy for tremor: a meta-analysis. Brain Commun 2022; 4:fcac287. [PMID: 36440102 PMCID: PMC9683603 DOI: 10.1093/braincomms/fcac287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/19/2022] [Accepted: 11/01/2022] [Indexed: 02/26/2024] Open
Abstract
Tremor is a debilitating symptom that can lead to functional impairment. Pharmacotherapy is often successful, but up to 50% of patients are resistant to medications or cannot tolerate side effects. Thalamotomy to the ventral intermediate nucleus of the thalamus is a surgical intervention for refractory tremor. Thalamotomy surgeries include radiofrequency and incisionless procedures, such as Gamma Knife radiosurgery and magnetic resonance-guided focused ultrasound. Cognitive changes following thalamotomy have been inconsistently reported across studies. We performed a meta-analysis to summarize the impact of unilateral thalamotomy to the ventral intermediate nucleus of the thalamus across multiple cognitive domains. We searched MEDLINE, Embase Classic, Embase and EBM Reviews for relevant studies. Neuropsychological tests were categorized into seven cognitive domains: global cognition, verbal memory, non-verbal memory, executive function, phonemic fluency, semantic fluency and visuospatial processing. We calculated standardized mean differences as Hedges' g and 95% confidence intervals of the change between pre- and postoperative cognitive scores. Pooling of standardized mean differences across studies was performed using random-effects models. Risk of bias across studies and quality of evidence for each cognitive domain were assessed with the National Institute of Health quality assessment tool and the GRADEpro Guideline Development Tool, respectively. Of the 1251 records reviewed, eight studies met inclusion criteria. We included 193 patients with essential tremor, Parkinson's disease, or multiple sclerosis in the meta-analysis. There was a small significant decline in phonemic fluency [standardized mean difference = -0.29, 95% confidence interval: (-0.52, -0.05), P = 0.017] and a trend towards a decline in semantic fluency [standardized mean difference = -0.19, 95% confidence interval: (-0.40, 0.01), P = 0.056]. No postoperative changes were observed in the other cognitive domains (P values >0.14). In secondary analyses, we restricted the analyses to studies using magnetic resonance-guided focused ultrasound given its growing popularity and more precise targeting. In those analyses, there was no evidence of cognitive decline across any domain (P values >0.37). In terms of risk of bias, five studies were rated as 'good' and three studies were rated as 'fair'. According to GRADEpro guidelines, the certainty of the effect for all cognitive domains was low. This study provides evidence that unilateral thalamotomy to the ventral intermediate nucleus of the thalamus is relatively safe from a cognitive standpoint, however, there may be a small decline in verbal fluency. Magnetic resonance-guided focused ultrasound might have a more favourable postoperative cognitive profile compared with other thalamotomy techniques.
Collapse
Affiliation(s)
- Camryn R Rohringer
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Isabella J Sewell
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Shikha Gandhi
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Jonah Isen
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Benjamin Davidson
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Melissa McSweeney
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Nadia Scantlebury
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Clement Hamani
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Peter Giacobbe
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sean M Nestor
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Yana Yunusova
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON M5G 1V7, Canada
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Benjamin Lam
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Michael L Schwartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Agessandro Abrahao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
9
|
Garg K, Ranjan M, Krishna V, Singh M, Rezai A. A scientometric analysis of the 100 most cited articles on magnetic resonance guided focused ultrasound. Front Hum Neurosci 2022; 16:981571. [PMID: 36171874 PMCID: PMC9511032 DOI: 10.3389/fnhum.2022.981571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDiagnostic ultrasound has long been a part of a physician’s armamentarium, but transcranial focused ultrasound (FUS) is an emerging treatment of neurological disorders. Consequently, the literature in this field is increasing at a rapid pace.ObjectiveThis analysis was aimed to identify the top-cited articles on FUS to discern their origin, spread, current trends highlighting future impact of this novel neurosurgical intervention.MethodsWe searched the Web of Science database on 28th May 2021 and identified the top 100 cited articles. These articles were analyzed with various scientometric parameters like the authors, corresponding authors, country of corresponding author, journal of publication, year of publication. Citation based parameters including total citations, mean citations per article and mean citations, citation count, and the citation per year, citations per year and co-authors per document were studied as well in addition to Hirsch h-index, g-index, m-index, Bradford’s Law, Lotka’s law and Collaboration index.ResultsThe 100 top-cited articles were published between 1998 and 2019 in 45 different journals. The average citations per document and citations per document per year were 97.78 and 12.47, respectively. The most prolific authors were Hynynen K (Medical Biophysics—Toronto), Elias WJ (Neurosurgery—Virginia), Zadicario (InSightec). The Journal of Neurosurgery published the most top-cited articles (n = 11), and most articles originated from the United States, followed by Canada. Among individual institutions, the University of Toronto was the most productive.ConclusionFUS is an emerging treatment of neurological disorders. With its increasing application, the FUS literature is increasing rapidly. Eleven countries contributed to the top 100 cited articles, with the top 2 countries (the United States and Canada) contributing to more than half of these articles.
Collapse
Affiliation(s)
| | - Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- *Correspondence: Manish Ranjan,
| | - Vibhor Krishna
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Manmohan Singh
- All India Institute of Medical Sciences, New Delhi, India
| | - Ali Rezai
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
10
|
Li L, Zhang X, Zhou J, Zhang L, Xue J, Tao W. Non-Invasive Thermal Therapy for Tissue Engineering and Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107705. [PMID: 35475541 DOI: 10.1002/smll.202107705] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Owing to the development of nanotechnology and noninvasive treatment, thermal therapy in combination with external stimuli has been applied for tissue engineering and regenerative medicine (TERM), which has attracted more and more attention in recent years. In this review, the recent progress of applying a variety of non-invasive thermal therapeutic modalities for TERM, including photothermal therapy, magnetic thermotherapy, and ultrasound thermotherapy, as well as other thermal therapeutics are discussed. The parameters and conditions that need to be considered and regulated to realize a well-controlled thermal therapy for tissue regeneration are also discussed. Afterwards, the current concerns and challenges of putting thermal therapy into clinical applications are pointed out. At last, perspectives are provided for the future development directions, aiming to providing opportunities and a novel pathway for TERM.
Collapse
Affiliation(s)
- Longfei Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaodi Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Liqun Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
11
|
Tempaku A. Hybrid surgery of ventral intermediate nucleus thalamotomy using magnetic resonance-guided focus ultrasound and modulation by deep brain stimulation controls bilateral essential tremor. J Rural Med 2022; 17:265-269. [PMID: 36397792 PMCID: PMC9613375 DOI: 10.2185/jrm.2022-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/16/2022] [Indexed: 11/07/2022] Open
Abstract
Objective: Medication-resistant essential tremor requires surgical treatment. Deep brain stimulation to the thalamic ventral intermediate nucleus is an established procedure to
diminish tremors. Tremor on both sides needs dual deep brain stimulation implantation. Nowadays, magnetic resonance-guided focus ultrasound is broaden to treat essential tremor. However, the
safety of magnetic resonance-guided focus ultrasound against dual ventral intermediate is still under discussion, since bilateral thalamotomy causes speech disturbance or ataxia. Patient and Methods: A 66-year-old right-handed man had medication-resistant essential tremor at bilateral upper extremities superior to the left arm. A treatment of magnetic
resonance-guided focus ultrasound was performed by using the ExAblate transcranial system against the left ventral intermediate. One year after magnetic resonance-guided focus ultrasound
treatment, the stereotactic implantation of a deep brain stimulation electrode into the right ventral intermediate was done. Results: Clinical rating scale for tremor in the right arm was reduced from 12 to 0 points by magnetic resonance-guided focus ultrasound against the left ventral intermediate.
The clinical rating scale for tremor in the left arm was reduced from 23 to 1 point by deep brain stimulation to the right ventral intermediate. Conclusion: Hybrid surgery of magnetic resonance-guided focus ultrasound and deep brain stimulation refined bilateral essential tremor, without any neurological deficiencies.
This combined surgery would be useful to manage medication-resistant bilateral essential tremor patients who are carrying some difficulties to introduce deep brain stimulation on the
bilateral side.
Collapse
|
12
|
Davidson B, Hamani C, Huang Y, Jones RM, Meng Y, Giacobbe P, Lipsman N. Magnetic Resonance-Guided Focused Ultrasound Capsulotomy for Treatment-Resistant Psychiatric Disorders. Oper Neurosurg (Hagerstown) 2021; 19:741-749. [PMID: 32735671 DOI: 10.1093/ons/opaa240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Psychiatric surgery is an important domain of functional neurosurgery and involves deep brain stimulation (DBS) or lesional procedures performed for treatment-resistant psychiatric illness. It has recently become possible to use magnetic-guided focused ultrasound (MRgFUS) to perform bilateral capsulotomy, a lesional technique commonly carried out with surgical radiofrequency ablation or stereotactic radiosurgery. MRgFUS offers several advantages, including improved safety and real-time imaging of the lesions. OBJECTIVE To describe the clinical and technical aspects of performing bilateral MRgFUS capsulotomy in patients with severe refractory depression and obsessive-compulsive disorder. METHODS We describe the clinical and technical considerations of performing MRgFUS capsulotomy. Topics discussed include patient selection, headframe application, targeting, sonication strategies, and follow-up procedures. RESULTS MRgFUS capsulotomy was performed in 16 patients without serious clinical or radiographic adverse events. CONCLUSION MRgFUS allows for a safe, less invasive technique for performing a well-studied psychiatric surgery procedure-the anterior capsulotomy.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| | - Yuexi Huang
- Sunnybrook Research Institute, Toronto Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ryan M Jones
- Sunnybrook Research Institute, Toronto Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| |
Collapse
|
13
|
Adams C, Jones RM, Yang SD, Kan WM, Leung K, Zhou Y, Lee KU, Huang Y, Hynynen K. Implementation of a Skull-Conformal Phased Array for Transcranial Focused Ultrasound Therapy. IEEE Trans Biomed Eng 2021; 68:3457-3468. [PMID: 33950835 DOI: 10.1109/tbme.2021.3077802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To implement a skull-conformal phased array for ultrasound-guided transcranial focused ultrasound therapy with improved patient comfort. METHODS Using patient-specific computed tomography and MRI neuroimaging data, tightly-conforming helmet scaffolds were designed computationally. The helmet scaffolds were designed to hold reusable transducer modules at near-normal incidence in an optimal configuration for the treatment location(s) of interest. Numerical simulations of trans-skull ultrasound propagation were performed to evaluate different conformal array designs and to compare with hemispherical arrays similar to those employed clinically. A 4096-element phased array was constructed by 3D printing a helmet scaffold optimised for an ex vivo human skullcap, and its performance was evaluated via benchtop and in vivo experiments. RESULTS Acoustic field measurements confirmed the system's ability to focus through human skull bone using simulation-based transcranial aberration corrections. Preliminary in vivo testing demonstrated safe trans-human skull blood-brain barrier (BBB) opening in rodents. CONCLUSION Patient-specific conformal ultrasound phased arrays appear to be a feasible and safe approach for conducting transcranial BBB opening procedures. SIGNIFICANCE Skull-conformal phased arrays stand to improve patient comfort and have the potential to accelerate the adoption of transcranial FUS therapy by improving access to the technology.
Collapse
|
14
|
Sugino C, Ruzzene M, Erturk A. Experimental and Computational Investigation of Guided Waves in a Human Skull. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:787-798. [PMID: 33358510 DOI: 10.1016/j.ultrasmedbio.2020.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
We investigate guided (Lamb) waves in a human cadaver skull through experiments and computational simulations. Ultrasonic wedge transducers and scanning laser Doppler vibrometry are used respectively to excite and measure Lamb waves propagating in the cranial bone of a degassed skull. Measurements are performed over a section of the parietal bone and temporal bone spanning the squamous suture. The experimental data are analyzed for the identification of wave modes and the characterization of dispersion properties. In the parietal bone, for instance, the A0 wave mode is excited between 200 and 600 kHz, and higher-order Lamb waves are excited from 1 to 1.8 MHz. From the experimental dispersion curves and average thickness extracted from the skull computed tomography scan, we estimate average isotropic material properties that capture the essential dispersion characteristics using a semi-analytical finite-element model. We also explore the leaky and non-leaky wave behavior of the degassed skull with water loading in the cranial cavity. Successful excitation of leaky Lamb waves is confirmed (for higher-order wave modes with phase velocity faster than the speed of sound in water) from 500 kHz to 1.5 MHz, which may find applications in imaging and therapeutics at the brain periphery or skull-brain interface (e.g., for metastases). The non-leaky A0 Lamb wave mode propagates between 200 and 600 kHz, with or without fluid loading, for potential use in skull-related diagnostics and imaging (e.g., for sutures).
Collapse
Affiliation(s)
- Christopher Sugino
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | - Massimo Ruzzene
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Alper Erturk
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Lin Z, Tam F, Churchill NW, Schweizer TA, Graham SJ. Tablet Technology for Writing and Drawing during Functional Magnetic Resonance Imaging: A Review. SENSORS 2021; 21:s21020401. [PMID: 33430023 PMCID: PMC7826671 DOI: 10.3390/s21020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful modality to study brain activity. To approximate naturalistic writing and drawing behaviours inside the scanner, many fMRI-compatible tablet technologies have been developed. The digitizing feature of the tablets also allows examination of behavioural kinematics with greater detail than using paper. With enhanced ecological validity, tablet devices have advanced the fields of neuropsychological tests, neurosurgery, and neurolinguistics. Specifically, tablet devices have been used to adopt many traditional paper-based writing and drawing neuropsychological tests for fMRI. In functional neurosurgery, tablet technologies have enabled intra-operative brain mapping during awake craniotomy in brain tumour patients, as well as quantitative tremor assessment for treatment outcome monitoring. Tablet devices also play an important role in identifying the neural correlates of writing in the healthy and diseased brain. The fMRI-compatible tablets provide an excellent platform to support naturalistic motor responses and examine detailed behavioural kinematics.
Collapse
Affiliation(s)
- Zhongmin Lin
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada;
| | - Fred Tam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
| | - Nathan W. Churchill
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (N.W.C.); (T.A.S.)
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (N.W.C.); (T.A.S.)
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Simon J. Graham
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Correspondence:
| |
Collapse
|
16
|
Franzini A, Moosa S, Prada F, Elias WJ. Ultrasound Ablation in Neurosurgery: Current Clinical Applications and Future Perspectives. Neurosurgery 2020; 87:1-10. [PMID: 31745558 DOI: 10.1093/neuros/nyz407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/21/2019] [Indexed: 11/14/2022] Open
Abstract
The concept of focusing high-intensity ultrasound beams for the purpose of cerebral ablation has interested neurosurgeons for more than 70 yr. However, the need for a craniectomy or a cranial acoustic window hindered the clinical diffusion of this technique. Recent technological advances, including the development of phased-array transducers and magnetic resonance imaging technology, have rekindled the interest in ultrasound for ablative brain surgery and have led to the development of the transcranial magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation procedure. In the last decade, this method has become increasingly popular, and its clinical applications are broadening. Despite the demonstrated efficacy of MRgFUS, transcranial thermal ablation using ultrasound is limited in that it can target exclusively the central region of the brain where the multiple acoustic beams are most optimally focused. On the contrary, lesioning of the cortex, the superficial subcortical areas, and regions close to the skull base is not possible with the limited treatment envelope of current phased-array transducers. Therefore, new ultrasound ablative techniques, which are not based on thermal mechanisms, have been developed and tested in experimental settings. This review describes the mechanisms by which these novel, nonthermal ablative techniques are based and also presents the current clinical applications of MRgFUS thermal ablation.
Collapse
Affiliation(s)
- Andrea Franzini
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Shayan Moosa
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Francesco Prada
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia.,Focused Ultrasound Foundation, Charlottesville, Virginia
| | - W Jeffrey Elias
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
17
|
Allen SP, Prada F, Xu Z, Gatesman J, Feng X, Sporkin H, Gilbo Y, DeCleene S, Pauly KB, Meyer CH. A preclinical study of diffusion-weighted MRI contrast as an early indicator of thermal ablation. Magn Reson Med 2020; 85:2145-2159. [PMID: 33174639 DOI: 10.1002/mrm.28537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Intraoperative T2 -weighted (T2-w) imaging unreliably captures image contrast specific to thermal ablation after transcranial MR-guided focused ultrasound surgery, impeding dynamic imaging feedback. Using a porcine thalamotomy model, we test the unproven hypothesis that intraoperative DWI can improve dynamic feedback by detecting lesioning within 30 minutes of transcranial MR-guided focused ultrasound surgery. METHODS Twenty-five thermal lesions were formed in six porcine models using a clinical transcranial MR-guided focused ultrasound surgery system. A novel diffusion-weighted pulse sequence monitored the formation of T2-w and diffusion-weighted lesion contrast after ablation. Using postoperative T2-w contrast to indicate lesioning, apparent intraoperative image contrasts and diffusion coefficients at each lesion site were computed as a function of time after ablation, observed peak temperature, and observed thermal dose. Lesion sizes segmented from imaging and thermometry were compared. Image reviewers estimated the time to emergence of lesion contrast. Intraoperative image contrasts were analyzed using receiver operator curves. RESULTS On average, the apparent diffusion coefficient at lesioned sites decreased within 5 minutes after ablation relative to control sites. In-plane lesion areas on intraoperative DWI varied from postoperative T2-w MRI and MR thermometry by 9.6 ± 9.7 mm2 and - 4.0 ± 7.1 mm2 , respectively. The 0.25, 0.5, and 0.75 quantiles of the earliest times of observed T2-w and diffusion-weighted lesion contrast were 10.7, 21.0, and 27.8 minutes and 3.7, 8.6, and 11.8 minutes, respectively. The T2-w and diffusion-weighted contrasts and apparent diffusion coefficient values produced areas under the receiver operator curve of 0.66, 0.80, and 0.74, respectively. CONCLUSION Intraoperative DWI can detect MR-guided focused ultrasound surgery lesion formation in the brain within several minutes after treatment.
Collapse
Affiliation(s)
- Steven P Allen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy.,Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Zhiyuan Xu
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Jeremy Gatesman
- Center for Comparative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Xue Feng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Helen Sporkin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Yekaterina Gilbo
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Sydney DeCleene
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
18
|
Samotus O, Lee J, Jog M. Standardized algorithm for muscle selection and dosing of botulinum toxin for Parkinson tremor using kinematic analysis. Ther Adv Neurol Disord 2020; 13:1756286420954083. [PMID: 33014139 PMCID: PMC7517980 DOI: 10.1177/1756286420954083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022] Open
Abstract
Background Inadequate efficacy and significant side effect profile makes pharmacological treatment of Parkinson's disease (PD) tremor challenging. Personalized dosing of botulinum toxin type A (BoNT-A) using tremor analysis has shown efficacy and safety for treating upper limb tremor. This study incorporated a novel, standardized treatment algorithm for determining injection pattern and BoNT-A dosing, customizable by the physician, in PD patients with disabling tremor in one or both arms. Methods This open-label study included 47 PD participants (25 "De-novo" and 22 "L-dopa") who received 4 serial BoNT-A treatments with follow-ups at 6 weeks post-treatment over 42 weeks. The treatment algorithm utilized kinematic tremor analysis of each participant's whole arm tremor and determined the physician's injection pattern of BoNT-A. Endpoints included changes in angular tremor amplitude, Fahn-Tolosa-Marin (FTM C) tremor scale, Movement Disorder Society-Unified Parkinson's disease rating scale (MDS-UPDRS) tremor-related score, tremor-related quality of life questionnaire, Likert ratings of perceived weakness, and maximal grip strength. Results BoNT-A significantly (p < 0.05) improved tremor amplitude (41.6%), quality of life (23.0%), UPDRS tremor score (29.6%), and arm function (FTM C; 24.6%) for both treatment cohorts from weeks 6 to 42. Maximum grip strength was reduced between 7.4% and 23.0% at follow-up visits and did not impact activities of daily living. Efficacy was obtained with first injection and remained without adjustment over two serial injection in 45% of participants. Conclusions This is the first study to use a fully standardized treatment algorithm for personalization of BoNT-A injection patterns for disabling PD tremor over serial treatments. A sustained alleviation of tremor severity and improved arm function and quality of life fulfills an important unmet need for the treatment of PD tremor. This study demonstrated that BoNT-A can be administered as a monotherapy in tremor-dominant PD or as an add-on therapy for refractory PD tremor.
Collapse
Affiliation(s)
- Olivia Samotus
- Department of Clinical Neurological Sciences, London Health Sciences Centre - Lawson Health Research Institute, London, ON, Canada
| | - Jack Lee
- Department of Clinical Neurological Sciences, London Health Sciences Centre - Lawson Health Research Institute, London, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, London Health Sciences Centre - Lawson Health Research Institute, 339 Windermere Road, A10-026, London, ON N6A 5A5, Canada
| |
Collapse
|
19
|
Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder and major depressive disorder: clinical and imaging results from two phase I trials. Mol Psychiatry 2020; 25:1946-1957. [PMID: 32404942 DOI: 10.1038/s41380-020-0737-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
Obsessive compulsive disorder (OCD) and major depressive disorder (MDD) are common, often refractory, neuropsychiatric conditions for which new treatment approaches are urgently needed. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel surgical technique permitting incisionless ablative neurosurgery. We examined the safety profile, clinical response, and imaging correlates of MRgFUS bilateral anterior capsulotomy in patients with refractory obsessive compulsive disorder (OCD, N = 6) and major depressive disorder (MDD, n = 6). There were no serious adverse events. Nonserious adverse events included headaches and pin-site swelling in 7/12 patients. The response rate was 4/6 and 2/6 in the OCD and MDD cohorts respectively. To delineate the white-matter tracts impacted by capsulotomy, a normative diffusion MRI-based structural connectome was used, revealing tracts terminating primarily in the frontal pole, medial thalamus, striatum, and medial-temporal lobe. Positron emission tomography (PET) analysis (nine subjects) revealed widespread decreases in metabolism bilaterally in the cerebral hemispheres at 6 months post treatment, as well as in the right hippocampus, amygdala, and putamen. A pretreatment seed-to-voxel resting-state functional magnetic resonance imaging (rs-fMRI) analysis (12 subjects) revealed three voxel clusters significantly associated with eventual clinical response. MRgFUS capsulotomy appears to be safe, well tolerated, and according to these initial results, may be an important treatment option for patients with refractory OCD and MDD. MRgFUS capsulotomy results in both targeted and widespread changes in neural activity, and neuroimaging may hold potential for the prediction of outcome.
Collapse
|
20
|
Siragusa MA, Réméniéras JP, Bouakaz A, Escoffre JM, Patat F, Dujardin PA, Brizard B, Belzung C, Camus V, El-Hage W, Desmidt T. A systematic review of ultrasound imaging and therapy in mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109919. [PMID: 32169563 DOI: 10.1016/j.pnpbp.2020.109919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Increasing evidence suggests that ultrasound (US) imaging may provide biomarkers and therapeutic options in mental disorders. We systematically reviewed the literature to provide a global overview of the possibilities of US for psychiatry. METHODS Original English language articles published between January 2000 and September 2019 were identified through databases searching and analyzed to summarize existing evidence according to PRISMA methodology. RESULTS A total of 81 articles were included. Various US techniques and markers have been used in mental disorders, including Transcranial Doppler and Intima-Media Thickness. Most of the studies have focused on characterizing the pathophysiology of mental disorders, especially vascular physiology. Studies on therapeutic applications are still scarce. DISCUSSION US imaging has proved to be useful in characterizing vascular impairment and structural and functional brain changes in mental disorders. Preliminary findings also suggest potential interests for therapeutic applications. Growing evidence suggests that US imaging could provide a non-invasive, portable and low-cost tool for pathophysiological characterization, prognostic assessment and therapeutic applications in mental disorders.
Collapse
Affiliation(s)
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Frédéric Patat
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; CHU de Tours, Tours, France; CIC 1415, CHU Tours, Inserm, Tours Cedex, France
| | | | - Bruno Brizard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Vincent Camus
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; CHU de Tours, Tours, France
| | - Wissam El-Hage
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; CHU de Tours, Tours, France; CIC 1415, CHU Tours, Inserm, Tours Cedex, France
| | - Thomas Desmidt
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; CHU de Tours, Tours, France.
| |
Collapse
|
21
|
Gu J, Jing Y. A modified mixed domain method for modeling acoustic wave propagation in strongly heterogeneous media. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:4055. [PMID: 32611145 PMCID: PMC7311178 DOI: 10.1121/10.0001454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/17/2020] [Accepted: 06/03/2020] [Indexed: 05/23/2023]
Abstract
In this paper, phase correction and amplitude compensation are introduced to a previously developed mixed domain method (MDM), which is only accurate for modeling wave propagation in weakly heterogeneous media. Multiple reflections are also incorporated with the one-way model to improve the accuracy. The resulting model is denoted as the modified mixed domain method (MMDM) and is numerically evaluated for its accuracy and efficiency using four distinct cases. It is found that the MMDM is significantly more accurate than the MDM for strongly heterogeneous media, especially when the phase aberrating layer is approximately perpendicular to the acoustic beam. Additionally, a convergence study suggests that the second-order reflection could be sufficient for cases involving high contrast inhomogeneities and large loss values (e.g., skulls). The method developed in this work could facilitate therapeutic ultrasound for treating brain-related diseases and disorders.
Collapse
Affiliation(s)
- Juanjuan Gu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Yun Jing
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
22
|
Boutet A, Gwun D, Gramer R, Ranjan M, Elias GJB, Tilden D, Huang Y, Li SX, Davidson B, Lu H, Tyrrell P, Jones RM, Fasano A, Hynynen K, Kucharczyk W, Schwartz ML, Lozano AM. The relevance of skull density ratio in selecting candidates for transcranial MR-guided focused ultrasound. J Neurosurg 2020; 132:1785-1791. [PMID: 31051458 DOI: 10.3171/2019.2.jns182571] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Transcranial MR-guided focused ultrasound (MRgFUS) is a minimally invasive treatment for movement disorders. Considerable interpatient variability in skull transmission efficiency exists with the current clinical devices, which is thought to be dependent on each patient's specific skull morphology. Lower skull density ratio (SDR) values are thought to impede acoustic energy transmission across the skull, attenuating or preventing the therapeutic benefits of MRgFUS. Patients with SDR values below 0.4 have traditionally been deemed poor candidates for MRgFUS. Although considerable anecdotal evidence has suggested that SDR is a reliable determinant of procedural and clinical success, relationships between SDR and clinical outcomes have yet to be formally investigated. Moreover, as transcranial MRgFUS is becoming an increasingly widespread procedure, knowledge of SDR distribution in the general population may enable improved preoperative counseling and preparedness. METHODS A total of 98 patients who underwent MRgFUS thalamotomy at the authors' institutions between 2012 and 2018 were analyzed (cohort 1). The authors retrospectively assessed the relationships between SDR and various clinical outcomes, including tremor improvement and adverse effects, as well as procedural factors such as sonication parameters. An SDR was also prospectively obtained in 163 random emergency department patients who required a head CT scan for various clinical indications (cohort 2). Patients' age and sex were used to explore relationships with SDR. RESULTS In the MRgFUS treatment group, 17 patients with a thalamotomy lesion had an SDR below 0.4. Patients with lower SDRs required more sonication energy; however, their low SDR did not influence their clinical outcomes. In the emergency department patient group, about one-third of the patients had a low SDR (< 0.4). SDR did not correlate with age or sex. CONCLUSIONS Although lower SDR values correlated with higher energy requirements during MRgFUS thalamotomy, within the range of this study population, the SDR did not appreciably impact or provide the ability to predict the resulting clinical outcomes. Sampling of the general population suggests that age and sex have no relationship with SDR. Other variables, such as local variances in bone density, should also be carefully reviewed to build a comprehensive appraisal of a patient's suitability for MRgFUS treatment.
Collapse
Affiliation(s)
- Alexandre Boutet
- 1University Health Network, Toronto
- 6Joint Department of Medical Imaging, University of Toronto
| | | | | | | | | | | | - Yuexi Huang
- 4Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto
| | | | | | - Hua Lu
- 6Joint Department of Medical Imaging, University of Toronto
| | - Pascal Tyrrell
- 5Department of Statistical Sciences, University of Toronto
- 6Joint Department of Medical Imaging, University of Toronto
| | - Ryan M Jones
- 4Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto
| | - Alfonso Fasano
- 2Krembil Research Institute, Toronto
- 7Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto
| | - Kullervo Hynynen
- 4Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto
- 8Department of Medical Biophysics, University of Toronto
- 9Institute of Biomaterials and Biomedical Engineering, University of Toronto
| | - Walter Kucharczyk
- 1University Health Network, Toronto
- 6Joint Department of Medical Imaging, University of Toronto
| | - Michael L Schwartz
- 10Division of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada; and
| | | |
Collapse
|
23
|
Gagliardo C, Cannella R, Quarrella C, D'Amelio M, Napoli A, Bartolotta TV, Catalano C, Midiri M, Lagalla R. Intraoperative imaging findings in transcranial MR imaging-guided focused ultrasound treatment at 1.5T may accurately detect typical lesional findings correlated with sonication parameters. Eur Radiol 2020; 30:5059-5070. [PMID: 32346791 DOI: 10.1007/s00330-020-06712-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/28/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To assess the intraoperative neuroimaging findings in patients treated with transcranial MR-guided focused ultrasound (tcMRgFUS) thalamotomy using 1.5T equipment in comparison with the 48-h follow-up. METHODS Fifty prospectively enrolled patients undergoing unilateral tcMRgFUS thalamotomy for either medication-refractory essential tremor (n = 39) or Parkinson tremor (n = 11) were included. Two radiologists evaluated the presence and size of concentric lesional zones (zone I, zone II, and zone III) on 2D T2-weighted sequences acquired intraoperatively after the last high-energy sonication and at 48 h. Sonication parameters including number of sonications, delivered energy, and treatment temperatures were also recorded. Differences in lesion pattern and size were assessed using the McNemar test and paired t test, respectively. RESULTS Zones I, II, and III were visualized in 34 (68%), 50 (100%), and 44 (88%) patients, and 31 (62%), 50 (100%), and 45 (90%) patients after the last high-energy sonication for R1 and R2, respectively. All three concentric zones were visualized intraoperatively in 56-58% of cases. Zone I was significantly more commonly visualized at 48 h (p < 0.001). Diameter of zones I and II and the thickness of zone III significantly increased at 48 h (p < 0.001). Diameters of zones I and II measured intraoperatively demonstrated significant correlation with thermal map temperatures (p ≤ 0.001). Maximum temperature significantly correlated with zone III thickness at 48 h. A threshold of 60.5° had a sensitivity of 56.5-66.7% and a specificity of 70.5-75.5% for thickness > 6 mm at 48 h. CONCLUSIONS Intraoperative imaging may accurately detect typical lesional findings, before completing the treatment. These imaging characteristics significantly correlate with sonication parameters and 48-h follow-up. KEY POINTS • Intraoperative T2-weighted images allow the visualization of the zone I (coagulation necrosis) in most of the treated patients, while zone II (cytotoxic edema) is always detected. • Lesion size depicted with intraoperative transcranial MRgFUS imaging correlates well with procedure parameters. • Intraoperative transcranial MRgFUS imaging may have a significant added value for treating physicians.
Collapse
Affiliation(s)
- Cesare Gagliardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Cettina Quarrella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Marco D'Amelio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Alessandro Napoli
- Department of Radiological, Oncological and Anatomopathological Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Tommaso Vincenzo Bartolotta
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Anatomopathological Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Massimo Midiri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Roberto Lagalla
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
24
|
Gaur P, Casey KM, Kubanek J, Li N, Mohammadjavadi M, Saenz Y, Glover GH, Bouley DM, Pauly KB. Histologic safety of transcranial focused ultrasound neuromodulation and magnetic resonance acoustic radiation force imaging in rhesus macaques and sheep. Brain Stimul 2020; 13:804-814. [PMID: 32289711 DOI: 10.1016/j.brs.2020.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Neuromodulation by transcranial focused ultrasound (FUS) offers the potential to non-invasively treat specific brain regions, with treatment location verified by magnetic resonance acoustic radiation force imaging (MR-ARFI). OBJECTIVE To investigate the safety of these methods prior to widespread clinical use, we report histologic findings in two large animal models following FUS neuromodulation and MR-ARFI. METHODS Two rhesus macaques and thirteen Dorset sheep were studied. FUS neuromodulation was targeted to the primary visual cortex in rhesus macaques and to subcortical locations, verified by MR-ARFI, in eleven sheep. Both rhesus macaques and five sheep received a single FUS session, whereas six sheep received repeated sessions three to six days apart. The remaining two control sheep did not receive ultrasound but otherwise underwent the same anesthetic and MRI procedures as the eleven experimental sheep. Hematoxylin and eosin-stained sections of brain tissue (harvested zero to eleven days following FUS) were evaluated for tissue damage at FUS and control locations as well as tissue within the path of the FUS beam. TUNEL staining was used to evaluate for the presence of apoptosis in sheep receiving high dose FUS. RESULTS No FUS-related pre-mortem histologic findings were observed in the rhesus macaques or in any of the examined sheep. Extravascular red blood cells (RBCs) were present within the meninges of all sheep, regardless of treatment group. Similarly, small aggregates of perivascular RBCs were rarely noted in non-target regions of neural parenchyma of FUS-treated (8/11) and untreated (2/2) sheep. However, no concurrent histologic abnormalities were observed, consistent with RBC extravasation occurring as post-mortem artifact following brain extraction. Sheep within the high dose FUS group were TUNEL-negative at the targeted site of FUS. CONCLUSIONS The absence of FUS-related histologic findings suggests that the neuromodulation and MR-ARFI protocols evaluated do not cause tissue damage.
Collapse
Affiliation(s)
- Pooja Gaur
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Yamil Saenz
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Gary H Glover
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Izadifar Z, Izadifar Z, Chapman D, Babyn P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J Clin Med 2020; 9:jcm9020460. [PMID: 32046072 PMCID: PMC7073974 DOI: 10.3390/jcm9020460] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/22/2022] Open
Abstract
Ultrasound can penetrate deep into tissues and interact with human tissue via thermal and mechanical mechanisms. The ability to focus an ultrasound beam and its energy onto millimeter-size targets was a significant milestone in the development of therapeutic applications of focused ultrasound. Focused ultrasound can be used as a non-invasive thermal ablation technique for tumor treatment and is being developed as an option to standard oncologic therapies. High-intensity focused ultrasound has now been used for clinical treatment of a variety of solid malignant tumors, including those in the pancreas, liver, kidney, bone, prostate, and breast, as well as uterine fibroids and soft-tissue sarcomas. Magnetic resonance imaging and Ultrasound imaging can be combined with high intensity focused ultrasound to provide real-time imaging during ablation. Magnetic resonance guided focused ultrasound represents a novel non-invasive method of treatment that may play an important role as an alternative to open neurosurgical procedures for treatment of a number of brain disorders. This paper briefly reviews the underlying principles of HIFU and presents current applications, outcomes, and complications after treatment. Recent applications of Focused ultrasound for tumor treatment, drug delivery, vessel occlusion, histotripsy, movement disorders, and vascular, oncologic, and psychiatric applications are reviewed, along with clinical challenges and potential future clinical applications of HIFU.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-7827; Fax: +1-306-966-4651
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Dean Chapman
- Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada
| |
Collapse
|
26
|
Mithani K, Meng Y, Abrahao A, Mikhail M, Hamani C, Giacobbe P, Lipsman N. Electroencephalography in Psychiatric Surgery: Past Use and Future Directions. Stereotact Funct Neurosurg 2019; 97:141-152. [PMID: 31412334 DOI: 10.1159/000500994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
The last two decades have seen a re-emergence of surgery for intractable psychiatric disease, in large part due to increased use of deep brain stimulation. The development of more precise, image-guided, less invasive interventions has improved the safety of these procedures, even though the relative merits of modulation at various targets remain under investigation. With an increase in the number and type of interventions for modulating mood/anxiety circuits, the need for biomarkers to guide surgeries and predict treatment response is as critical as ever. Electroencephalography (EEG) has a long history in clinical neurology, cognitive neuroscience, and functional neurosurgery, but has limited prior usage in psychiatric surgery. MEDLINE, Embase, and Psyc-INFO searches on the use of EEG in guiding psychiatric surgery yielded 611 articles, which were screened for relevance and quality. We synthesized three important themes. First, considerable evidence supports EEG as a biomarker for response to various surgical and non-surgical therapies, but large-scale investigations are lacking. Second, intraoperative EEG is likely more valuable than surface EEG for guiding target selection, but comes at the cost of greater invasiveness. Finally, EEG may be a promising tool for objective functional feedback in developing "closed-loop" psychosurgeries, but more systematic investigations are required.
Collapse
Affiliation(s)
- Karim Mithani
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ying Meng
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Mirriam Mikhail
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, Ontario, Canada,
| |
Collapse
|
27
|
Boutet A, Ranjan M, Zhong J, Germann J, Xu D, Schwartz ML, Lipsman N, Hynynen K, Devenyi GA, Chakravarty M, Hlasny E, Llinas M, Lozano CS, Elias GJB, Chan J, Coblentz A, Fasano A, Kucharczyk W, Hodaie M, Lozano AM. Focused ultrasound thalamotomy location determines clinical benefits in patients with essential tremor. Brain 2019; 141:3405-3414. [PMID: 30452554 DOI: 10.1093/brain/awy278] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/17/2018] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance guided focused ultrasound (MRgFUS) thalamotomy is a novel and minimally invasive ablative treatment for essential tremor. The size and location of therapeutic lesions producing the optimal clinical benefits while minimizing adverse effects are not known. We examined these relationships in patients with essential tremor undergoing MRgFUS. We studied 66 patients with essential tremor who underwent MRgFUS between 2012 and 2017. We assessed the Clinical Rating Scale for Tremor (CRST) scores at 3 months after the procedure and tracked the adverse effects (sensory, motor, speech, gait, and dysmetria) 1 day (acute) and 3 months after the procedure. Clinical data associated with the postoperative Day 1 lesions were used to correlate the size and location of lesions with tremor benefit and acute adverse effects. Diffusion-weighted imaging was used to assess whether acute adverse effects were related to lesions encroaching on nearby major white matter tracts (medial lemniscus, pyramidal, and dentato-rubro-thalamic). The area of optimal tremor response at 3 months after the procedure was identified at the posterior portion of the ventral intermediate nucleus. Lesions extending beyond the posterior region of the ventral intermediate nucleus and lateral to the lateral thalamic border were associated with increased risk of acute adverse sensory and motor effects, respectively. Acute adverse effects on gait and dysmetria occurred with lesions inferolateral to the thalamus. Lesions inferolateral to the thalamus or medial to the ventral intermediate nucleus were also associated with acute adverse speech effects. Diffusion-weighted imaging revealed that lesions associated with adverse sensory and gait/dysmetria effects compromised the medial lemniscus and dentato-rubro-thalamic tracts, respectively. Lesions associated with adverse motor and speech effects encroached on the pyramidal tract. Lesions larger than 170 mm3 were associated with an increased risk of acute adverse effects. Tremor improvement and acute adverse effects of MRgFUS for essential tremor are highly dependent on the location and size of lesions. These novel findings could refine current MRgFUS treatment planning and targeting, thereby improving clinical outcomes in patients.
Collapse
Affiliation(s)
| | - Manish Ranjan
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Jidan Zhong
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Jurgen Germann
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montreal, Canada
| | - David Xu
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Michael L Schwartz
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montreal, Canada.,Departments of Psychiatry, McGill University, Montreal, Canada
| | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montreal, Canada.,Departments of Psychiatry, McGill University, Montreal, Canada
| | | | | | | | | | - Jason Chan
- University Health Network, Toronto, ON, Canada
| | | | - Alfonso Fasano
- Krembil Research Institute, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Walter Kucharczyk
- University Health Network, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Mojgan Hodaie
- University Health Network, Toronto, ON, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Andres M Lozano
- University Health Network, Toronto, ON, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO. Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1509-1536. [PMID: 31109842 PMCID: PMC6996285 DOI: 10.1016/j.ultrasmedbio.2018.12.015] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/13/2018] [Accepted: 12/29/2018] [Indexed: 05/03/2023]
Abstract
Ultrasonic neuromodulation is a rapidly growing field, in which low-intensity ultrasound (US) is delivered to nervous system tissue, resulting in transient modulation of neural activity. This review summarizes the findings in the central and peripheral nervous systems from mechanistic studies in cell culture to cognitive behavioral studies in humans. The mechanisms by which US mechanically interacts with neurons and could affect firing are presented. An in-depth safety assessment of current studies shows that parameters for the human studies fall within the safety envelope for US imaging. Challenges associated with accurately targeting US and monitoring the response are described. In conclusion, the literature supports the use of US as a safe, non-invasive brain stimulation modality with improved spatial localization and depth targeting compared with alternative methods. US neurostimulation has the potential to be used both as a scientific instrument to investigate brain function and as a therapeutic modality to modulate brain activity.
Collapse
Affiliation(s)
- Joseph Blackmore
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shamit Shrivastava
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Nueroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Robin O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
29
|
Wang JB, Aryal M, Zhong Q, Vyas DB, Airan RD. Noninvasive Ultrasonic Drug Uncaging Maps Whole-Brain Functional Networks. Neuron 2018; 100:728-738.e7. [PMID: 30408444 PMCID: PMC6274638 DOI: 10.1016/j.neuron.2018.10.042] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/13/2018] [Accepted: 10/24/2018] [Indexed: 01/06/2023]
Abstract
Being able to noninvasively modulate brain activity, where and when an experimenter desires, with an immediate path toward human translation is a long-standing goal for neuroscience. To enable robust perturbation of brain activity while leveraging the ability of focused ultrasound to deliver energy to any point of the brain noninvasively, we have developed biocompatible and clinically translatable nanoparticles that allow ultrasound-induced uncaging of neuromodulatory drugs. Utilizing the anesthetic propofol, together with electrophysiological and imaging assays, we show that the neuromodulatory effect of ultrasonic drug uncaging is limited spatially and temporally by the size of the ultrasound focus, the sonication timing, and the pharmacokinetics of the uncaged drug. Moreover, we see secondary effects in brain regions anatomically distinct from and functionally connected to the sonicated region, indicating that ultrasonic drug uncaging could noninvasively map the changes in functional network connectivity associated with pharmacologic action at a particular brain target.
Collapse
Affiliation(s)
- Jeffrey B Wang
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA 94305, USA
| | - Muna Aryal
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA 94305, USA
| | - Qian Zhong
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA 94305, USA
| | - Daivik B Vyas
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA 94305, USA
| | - Raag D Airan
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Alli S, Figueiredo CA, Golbourn B, Sabha N, Wu MY, Bondoc A, Luck A, Coluccia D, Maslink C, Smith C, Wurdak H, Hynynen K, O'Reilly M, Rutka JT. Brainstem blood brain barrier disruption using focused ultrasound: A demonstration of feasibility and enhanced doxorubicin delivery. J Control Release 2018; 281:29-41. [PMID: 29753957 DOI: 10.1016/j.jconrel.2018.05.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/04/2018] [Accepted: 05/06/2018] [Indexed: 12/29/2022]
Abstract
Magnetic Resonance Image-guided Focused Ultrasound (MRgFUS) has been used to achieve transient blood brain barrier (BBB) opening without tissue injury. Delivery of a targeted ultrasonic wave causes an interaction between administered microbubbles and the capillary bed resulting in enhanced vessel permeability. The use of MRgFUS in the brainstem has not previously been shown but could provide value in the treatment of tumours such as Diffuse Intrinsic Pontine Glioma (DIPG) where the intact BBB has contributed to the limited success of chemotherapy. Our primary objective was to determine whether the use of MRgFUS in this eloquent brain region could be performed without histological injury and functional deficits. Our secondary objective was to select an effective chemotherapeutic against patient derived DIPG cell lines and demonstrate enhanced brainstem delivery when combined with MRgFUS in vivo. Female Sprague Dawley rats were randomised to one of four groups: 1) Microbubble administration but no MRgFUS treatment; 2) MRgFUS only; 3) MRgFUS + microbubbles; and 4) MRgFUS + microbubbles + cisplatin. Physiological assessment was performed by monitoring of heart and respiratory rates. Motor function and co-ordination were evaluated by Rotarod and grip strength testing. Histological analysis for haemorrhage (H&E), neuronal nuclei (NeuN) and apoptosis (cleaved Caspase-3) was also performed. A drug screen of eight chemotherapy agents was conducted in three patient-derived DIPG cell lines (SU-DIPG IV, SU-DIPG XIII and SU-DIPG XVII). Doxorubicin was identified as an effective agent. NOD/SCID/GAMMA (NSG) mice were subsequently administered with 5 mg/kg of intravenous doxorubicin at the time of one of the following: 1) Microbubbles but no MRgFUS; 2) MRgFUS only; 3) MRgFUS + microbubbles and 4) no intervention. Brain specimens were extracted at 2 h and doxorubicin quantification was conducted using liquid chromatography mass spectrometry (LC/MS). BBB opening was confirmed by contrast enhancement on T1-weighted MR imaging and positive Evans blue staining of the brainstem. Normal cardiorespiratory parameters were preserved. Grip strength and Rotarod testing demonstrating no decline in performance across all groups. Histological analysis showed no evidence of haemorrhage, neuronal loss or increased apoptosis. Doxorubicin demonstrated cytotoxicity against all three cell lines and is known to have poor BBB permeability. Quantities measured in the brainstem of NSG mice were highest in the group receiving MRgFUS and microbubbles (431.5 ng/g). This was significantly higher than in mice who received no intervention (7.6 ng/g). Our data demonstrates both the preservation of histological and functional integrity of the brainstem following MRgFUS for BBB opening and the ability to significantly enhance drug delivery to the region, giving promise to the treatment of brainstem-specific conditions.
Collapse
Affiliation(s)
- Saira Alli
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada; The Leeds Institute of Cancer and Pathology, University of Toronto, Canada
| | - Carlyn A Figueiredo
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada; The Division of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Canada
| | - Brian Golbourn
- The Division of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Canada
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, Chile
| | - Megan Yijun Wu
- The Division of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Canada
| | - Andrew Bondoc
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada
| | - Amanda Luck
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada
| | - Daniel Coluccia
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada
| | - Colin Maslink
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada
| | - Christian Smith
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada
| | - Heiko Wurdak
- The Leeds Institute of Cancer and Pathology, University of Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Meaghan O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Canada
| | - James T Rutka
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada; The Division of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Canada; Department of Surgery, University of Toronto, Canada.
| |
Collapse
|
31
|
|
32
|
Volpini M, Giacobbe P, Cosgrove GR, Levitt A, Lozano AM, Lipsman N. The History and Future of Ablative Neurosurgery for Major Depressive Disorder. Stereotact Funct Neurosurg 2017; 95:216-228. [PMID: 28723697 DOI: 10.1159/000478025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND There is an urgent need to develop safe and effective treatments for patients with treatment-resistant depression (TRD). Several neurosurgical procedures have been developed to treat the dysfunctional brain circuits implicated in major depression. OBJECTIVES This review describes the most common ablative procedures used to treat major depressive disorder: anterior cingulotomy, subcaudate tractotomy, limbic leucotomy, and anterior capsulotomy. The efficacy and safety of each are discussed and compared with other current and emerging modalities, including deep brain stimulation (DBS) and MR-guided focused ultrasound (MRgFUS). METHODS The PubMed and MEDLINE electronic databases were used in this study, through July 2016. Keywords, including "treatment resistant depression," and "ablative neurosurgery," etc. were used to generate reference hits. RESULTS Approximately a third to half of patients who underwent ablative procedures achieved a treatment response and/or remission. The efficacy and safety profiles corresponding to both ablative procedures and DBS were very similar. CONCLUSIONS The longitudinal experience with ablative procedures shows that there remains an important role for accurate, discrete lesions in disrupting affective circuitry in the treatment of TRD. New modalities, such as MRgFUS, have the potential to further improve the accuracy of ablative procedures, while enhancing safety by obviating the need for open brain surgery.
Collapse
Affiliation(s)
- Matthew Volpini
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Targeting blood-brain-barrier transcytosis – perspectives for drug delivery. Neuropharmacology 2017; 120:4-7. [DOI: 10.1016/j.neuropharm.2016.08.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/18/2016] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
|
34
|
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544801 DOI: 10.1002/wnan.1479] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Malignant brain tumor, including the most common type glioblastoma, are histologically heterogeneous and invasive tumors known as the most devastating neoplasms with high morbidity and mortality. Despite multimodal treatment including surgery, radiotherapy, chemotherapy, and immunotherapy, the disease inevitably recurs and is fatal. This lack of curative options has motivated researchers to explore new treatment strategies and to develop new drug delivery systems (DDSs); however, the unique anatomical, physiological, and pathological features of brain tumors greatly limit the effectiveness of conventional chemotherapy. In this context, we review the recent progress in the development of nanoparticle-based DDSs aiming to address the key challenges in transporting sufficient amount of therapeutic agents into the brain tumor areas while minimizing the potential side effects. We first provide an overview of the standard treatments currently used in the clinic for the management of brain cancers, discussing the effectiveness and limitations of each therapy. We then provide an in-depth review of nanotherapeutic systems that are intended to bypass the blood-brain barrier, overcome multidrug resistance, infiltrate larger tumorous tissue areas, and/or release therapeutic agents in a controlled manner. WIREs Nanomed Nanobiotechnol 2018, 10:e1479. doi: 10.1002/wnan.1479 This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rami Walid Chakroun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
35
|
A computerized tablet system for evaluating treatment of essential tremor by magnetic resonance guided focused ultrasound. BMC Neurol 2017; 17:74. [PMID: 28412948 PMCID: PMC5392935 DOI: 10.1186/s12883-017-0856-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/02/2017] [Indexed: 11/22/2022] Open
Abstract
Background Transcranial magnetic resonance guided focused ultrasound is an emerging technology under evaluation for treatment of essential tremor, a prevalent movement disorder. A qualitative evaluation is performed by a clinician periodically during the procedure to maximize treatment effects and minimize adverse effects. The present work demonstrates a magnetic resonance-compatible method to enable more precise, quantitative measurement of tremor severity. Methods Tremor severity was measured in 12 patients pre-, post-, and intra-operatively, using a magnetic resonance-compatible tablet and a computerized adaptation of drawing tasks from the widely-used Fahn-Tolosa-Marin Tremor Rating Scale. Tremor metrics based on spectral analysis were calculated for each drawing and compared using Wilcoxon signed rank tests. Results Tremor metrics in the dominant (treated) hand were significantly and consistently lower post-operatively compared to pre-operatively, but there was no significant difference in the non-dominant (untreated) hand, as expected. Intra-operative metrics were intermediate between pre- and post-operative metrics. Conclusions Use of the tablet for quantitative tremor measurement was demonstrated pre-, post-, and intra-operatively during treatment of essential tremor, complementing standard qualitative assessment. With additional work, the system has potential to add objectivity to clinical trials and to aid treatment decision-making by providing a metric for optimization during the procedure, which may eventually lead to more optimal treatment. Enhancements and further studies are suggested, and extensions to fMRI studies of essential tremor and Parkinson’s disease are also likely.
Collapse
|
36
|
Fu H, McCarty DM. Crossing the blood–brain-barrier with viral vectors. Curr Opin Virol 2016; 21:87-92. [DOI: 10.1016/j.coviro.2016.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 02/05/2023]
|
37
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
38
|
Piper RJ, Hughes MA, Moran CM, Kandasamy J. Focused ultrasound as a non-invasive intervention for neurological disease: a review. Br J Neurosurg 2016; 30:286-93. [DOI: 10.3109/02688697.2016.1173189] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Jones RM, O'Reilly MA, Hynynen K. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections. Med Phys 2016; 42:4385-400. [PMID: 26133635 DOI: 10.1118/1.4922677] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981-5005 (2013)]. METHODS A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11-0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. RESULTS For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors' previous experimental measurements using source-based skull corrections O'Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285-1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood-brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. CONCLUSIONS Taken together, these results demonstrate the feasibility of using the method to guide bubble-mediated ultrasound therapies in the brain. The technique may also have application in ultrasound-based cerebral angiography.
Collapse
Affiliation(s)
- Ryan M Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada; and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
40
|
Bazzocchi A, Napoli A, Sacconi B, Battista G, Guglielmi G, Catalano C, Albisinni U. MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics. Br J Radiol 2015; 89:20150358. [PMID: 26607640 DOI: 10.1259/bjr.20150358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a "new" interventional technique and on its applications for MSK and allied sciences.
Collapse
Affiliation(s)
- Alberto Bazzocchi
- 1 Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Bologna, Italy
| | - Alessandro Napoli
- 2 Department of Radiology, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Beatrice Sacconi
- 2 Department of Radiology, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Giuseppe Battista
- 3 Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Giuseppe Guglielmi
- 4 Department of Radiology, University of Foggia, Foggia, Italy.,5 Department of Radiology, Scientific Institute "Casa Sollievo della Sofferenza" Hospital, Foggia, Italy
| | - Carlo Catalano
- 2 Department of Radiology, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Ugo Albisinni
- 1 Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
41
|
Chang WS, Jung HH, Zadicario E, Rachmilevitch I, Tlusty T, Vitek S, Chang JW. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull. J Neurosurg 2015; 124:411-6. [PMID: 26361280 DOI: 10.3171/2015.3.jns142592] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Magnetic resonance-guided focused ultrasound surgery (MRgFUS) was recently introduced as treatment for movement disorders such as essential tremor and advanced Parkinson's disease (PD). Although deep brain target lesions are successfully generated in most patients, the target area temperature fails to increase in some cases. The skull is one of the greatest barriers to ultrasonic energy transmission. The authors analyzed the skull-related factors that may have prevented an increase in target area temperatures in patients who underwent MRgFUS. METHODS The authors retrospectively reviewed data from clinical trials that involved MRgFUS for essential tremor, idiopathic PD, and obsessive-compulsive disorder. Data from 25 patients were included. The relationships between the maximal temperature during treatment and other factors, including sex, age, skull area of the sonication field, number of elements used, skull volume of the sonication field, and skull density ratio (SDR), were determined. RESULTS Among the various factors, skull volume and SDR exhibited relationships with the maximum temperature. Skull volume was negatively correlated with maximal temperature (p = 0.023, r(2) = 0.206, y = 64.156 - 0.028x, whereas SDR was positively correlated with maximal temperature (p = 0.009, r(2) = 0.263, y = 49.643 + 11.832x). The other factors correlate with the maximal temperature, although some factors showed a tendency to correlate. CONCLUSIONS Some skull-related factors correlated with the maximal target area temperature. Although the number of patients in the present study was relatively small, the results offer information that could guide the selection of MRgFUS candidates.
Collapse
Affiliation(s)
- Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea; and
| | - Hyun Ho Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea; and
| | | | | | | | | | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea; and
| |
Collapse
|
42
|
Endo S, Kudo N, Yamaguchi S, Sumiyoshi K, Motegi H, Kobayashi H, Terasaka S, Houkin K. Porphyrin derivatives-mediated sonodynamic therapy for malignant gliomas in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2458-2465. [PMID: 26071619 DOI: 10.1016/j.ultrasmedbio.2015.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/01/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Because it is highly infiltrative, malignant glioma is a cancer with a poor prognosis despite multidisciplinary treatment strategies, such as aggressive surgery and chemoradiotherapy, necessitating new therapeutic approaches to control migration of tumor cells. In our study, we investigated the efficacy of sonodynamic therapy of glioma cells in vitro using porphyrin derivatives, including 5-aminolevulinic acid, protoporphyrin IX and talaporfin sodium, as sonosensitizers. These substances have been known to accumulate in glioma cells and are expected to have cytotoxic effects on sonication. Our study found that the cytotoxicity of sonication of glioma cells is enhanced by each sonosensitizer and that the efficacy of sonodynamic therapy may depend on the degree of intracellular accumulation of sonosensitizer. Also, the study suggests that induction of apoptosis is a major mechanism underlying cell death. Though further investigations are necessary, our preliminary result indicates a potential for sonodynamic therapy with sonosensitizers in glioma treatment.
Collapse
Affiliation(s)
- Shogo Endo
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuki Kudo
- Laboratory of Biological Engineering, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koki Sumiyoshi
- Laboratory of Biological Engineering, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hiroaki Motegi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kobayashi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Shunsuke Terasaka
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
43
|
The TWEAK receptor Fn14 is a potential cell surface portal for targeted delivery of glioblastoma therapeutics. Oncogene 2015; 35:2145-55. [PMID: 26300004 DOI: 10.1038/onc.2015.310] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is the cell surface receptor for the tumor necrosis factor (TNF) family member TNF-like weak inducer of apoptosis (TWEAK). The Fn14 gene is normally expressed at low levels in healthy tissues but expression is significantly increased after tissue injury and in many solid tumor types, including glioblastoma (GB; formerly referred to as 'GB multiforme'). GB is the most common and aggressive primary malignant brain tumor and the current standard-of-care therapeutic regimen has a relatively small impact on patient survival, primarily because glioma cells have an inherent propensity to invade into normal brain parenchyma, which invariably leads to tumor recurrence and patient death. Despite major, concerted efforts to find new treatments, a new GB therapeutic that improves survival has not been introduced since 2005. In this review article, we summarize studies indicating that (i) Fn14 gene expression is low in normal brain tissue but is upregulated in advanced brain cancers and, in particular, in GB tumors exhibiting the mesenchymal molecular subtype; (ii) Fn14 expression can be detected in glioma cells residing in both the tumor core and invasive rim regions, with the maximal levels found in the invading glioma cells located within normal brain tissue; and (iii) TWEAK Fn14 engagement as well as Fn14 overexpression can stimulate glioma cell migration, invasion and resistance to chemotherapeutic agents in vitro. We also discuss two new therapeutic platforms that are currently in development that leverage Fn14 overexpression in GB tumors as a way to deliver cytotoxic agents to the glioma cells remaining after surgical resection while sparing normal healthy brain cells.
Collapse
|
44
|
|
45
|
George PM, Steinberg GK. Novel Stroke Therapeutics: Unraveling Stroke Pathophysiology and Its Impact on Clinical Treatments. Neuron 2015; 87:297-309. [PMID: 26182415 PMCID: PMC4911814 DOI: 10.1016/j.neuron.2015.05.041] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stroke remains a leading cause of death and disability in the world. Over the past few decades our understanding of the pathophysiology of stroke has increased, but greater insight is required to advance the field of stroke recovery. Clinical treatments have improved in the acute time window, but long-term therapeutics remain limited. Complex neural circuits damaged by ischemia make restoration of function after stroke difficult. New therapeutic approaches, including cell transplantation or stimulation, focus on reestablishing these circuits through multiple mechanisms to improve circuit plasticity and remodeling. Other research targets intact networks to compensate for damaged regions. This review highlights several important mechanisms of stroke injury and describes emerging therapies aimed at improving clinical outcomes.
Collapse
Affiliation(s)
- Paul M George
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Lozano AM, Kopell BH. Nonpharmacological therapies for neurologic devices. Neurotherapeutics 2014; 11:463-4. [PMID: 25012391 PMCID: PMC4121457 DOI: 10.1007/s13311-014-0290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Andres M Lozano
- Division of Neurosurgery, University of Toronto, 399 Bathurst St., WW 4-431, Toronto, Ontario, Canada, M5T 2S8,
| | | |
Collapse
|