1
|
Feria-Romero IA, Nettel-Rueda B, Rodríguez-Florido MA, Castellanos-Pallares G, Cienfuegos-Meza J, Orozco-Suárez S, Guinto-Balanzar G, Escamilla-Nuñez C, Grijalva-Otero I. Forkhead Box M1 isoform 3 overexpression is associated with malignancy grade in adult-type diffuse gliomas. Gene 2025; 958:149502. [PMID: 40233863 DOI: 10.1016/j.gene.2025.149502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Forkhead Box M1 is a transcription factor that is overexpressed in both its mRNA and its protein in various types of cancer. The active Forkhead Box M1 isoform 3 (FOXM1*3) is, moreover, associated with cancer progression. However, little is known about the role of this isoform concerning the degree of malignancy in brain gliomas. This study evaluated the association between overexpression of the FOXM1*3 and the degree of malignancy in adult-type diffuse gliomas (ATDGs). METHODS We conducted a prospective study involving 81 samples from patients with ATDGs and ten samples from healthy control cortices. Quantification of the FOXM1*3 transcript and the housekeeping gene, importin 8 (IPO8), was performed using qPCR with Taqman probes. Tumor samples were classified based on their degree of malignancy and cell lineage. Progression-free survival (PFS) was observed through long-term follow-up. The data were then analyzed using the Kruskal-Wallis, Mann-Whitney U and log-rank (Mantel-Cox) tests. RESULTS The most frequent type of cell differentiation was astrocytic, with astrocytomas and glioblastomas accounting for 80.2 % of cases. The primary histopathological-molecular diagnosis group was glioblastoma, at 35.8 %. There was a significant difference in FOXM1*3 expression between the control and glioma groups (p < 0.001). Transcript expression showed significant differences among grade-2, -3, and -4 gliomas (p < 0.005-0.0001). Significant differences were also detected between grade-2 and -3 astrocytomas (p < 0.005) and glioblastomas (p < 0.0001), but not between astrocytomas and oligodendrogliomas of the same grade. CONCLUSION We observed that overexpression of FOXM1*3 can rectify intra-observer discordance in determining the malignancy grade of gliomas, particularly in grade 3. It can be considered a supplementary tool.
Collapse
Affiliation(s)
- Iris Angélica Feria-Romero
- Medical Research Unit for Neurological Diseases, UMAE Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Bárbara Nettel-Rueda
- Department of Neurosurgery, UMAE Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marco Antonio Rodríguez-Florido
- Deparment of Anatomic Pathology, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Guillermo Castellanos-Pallares
- Deparment of Anatomic Pathology, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jesús Cienfuegos-Meza
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), South Campus, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Medical Research Unit for Neurological Diseases, UMAE Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Gerardo Guinto-Balanzar
- Department of Neurosurgery, UMAE Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Israel Grijalva-Otero
- Medical Research Unit for Neurological Diseases, UMAE Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
2
|
Shen H, Zhou Z, Zhang X, Xu M, Jiang X, Qin W, Chen S. Comparative analysis of pyrosequencing and next-generation sequencing for assessing MGMT methylation in glioma patients. J Neurooncol 2025; 173:551-558. [PMID: 40138094 DOI: 10.1007/s11060-025-05015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is pivotal in clinical decision-making for glioma patients. Pyrosequencing (PSQ) has been regarded as the gold standard for determining the MGMT promoter status. Nevertheless, PSQ is limited by its low throughput, high costs, and intricate protocols. In this study, we present a comparative analysis of the performance of PSQ and next-generation sequencing (NGS) in evaluating MGMT methylation in glioma patients. METHODS Initially, we developed an amplicon-based NGS method for quantifying MGMT methylation. Subsequently, a comparative assessment was carried out to evaluate the MGMT promoter methylation levels in 50 formalin-fixed paraffin-embedded (FFPE) glioma samples using both PSQ and NGS. Finally, a consistency analysis was performed to compare the results obtained from PSQ and NGS. RESULTS The results revealed a significant correlation between PSQ and NGS (R2 = 0.88). Moreover, the consistency rate of the test results among the 50 samples was 94% (47/50), with one negative sample and two positive samples showing inconsistency. These three samples were verified using MethyLight technology, and the results were consistent with those obtained from NGS. CONCLUSIONS This study indicates that, although PSQ is the gold standard, the quantitative detection of MGMT methylation by NGS is more accurate than that by PSQ. NGS is characterized by high throughput and cost-effectiveness, while also yielding accurate and stable results. Therefore, NGS provides a viable alternative to the PSQ method for detecting MGMT methylation.
Collapse
Affiliation(s)
- Huanming Shen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- HaploX Biotechnology, Shenzhen, China
| | | | | | | | | | - Wenjian Qin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Shifu Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- HaploX Biotechnology, Shenzhen, China.
| |
Collapse
|
3
|
Li J, Zong H, Zhao X, Liu Y, Zhao S, Li N, Li Z. KLF11/TMEM87B promoted the occurrence of glioma and decreased TMZ sensitivity. Cell Signal 2025; 130:111651. [PMID: 39929351 DOI: 10.1016/j.cellsig.2025.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
Whether KLF11 functions as a tumor promoter or inhibitor depends on the type of tumor. Our previous reports revealed the oncogenic role of KLF11 in glioma. In this study, TMEM87B was identified as a downstream gene of KLF11 through ChIP-seq assay, and the binding of KLF11 to the promoter area of TMEM87B was demonstrated using luciferase assay. KLF11 positively regulated the expression of TMEM87B mRNA and protein in glioma cell lines. Furthermore. TMEM87B was highly expressed in glioma samples, which indicated a poor prognosis in glioma patients. The elimination of TMEM87B reduced the proliferation and migration cell viability, along with the formation of tumor spheroids, while increasing TMZ sensitivity, whereas the overexpression of TMEM87B had the opposite effect. Furthermore, both the knockdown of TMEM87B and TMZ treatment could retard tumor growth in xenograft mice, and their combination significantly reduced tumor size and weight. Our findings identified the effects of the KLF11/ TMEM87B axis on glioma progression and TMZ sensitivity, which could provide new targets for glioma therapy.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China.
| | - Hua Zong
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| | - Xiaoli Zhao
- Clinical Laboratory, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| | - Yanping Liu
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| | - Shaoyun Zhao
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| | - Ning Li
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| | - Zhuolun Li
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| |
Collapse
|
4
|
Chen Z, Wang J, He T, Rao D, Wang Z, Zhu J. Vincristine exerts antiglioma effects by inhibiting the PI3K/AKT signaling pathway: A mechanistic study based on network pharmacology, bioinformatics analysis, and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:7107-7120. [PMID: 39718608 DOI: 10.1007/s00210-024-03693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024]
Abstract
In clinical settings, glioma patients often develop secondary resistance to first-line chemotherapy drugs. Vincristine has been reported for its application in cancer chemotherapy, but its molecular mechanism of action remains unclear. This study aimed to identify potential targets of vincristine in glioma using network pharmacology and to experimentally validate the possible molecular mechanisms against glioma. First, the potential targets of vincristine were predicted using CTD, SwissTargetPrediction, and TargetNet databases. Differential expression analysis and WGCNA algorithm were employed on glioma data from the GEO database to obtain important glioma-related target genes, which were then used to identify the anti-glioma targets of vincristine. The intersecting targets were input into the String database to construct a PPI network, and core targets were identified using the cytohubba plugin in Cytoscape. GO and KEGG analyses were conducted to investigate the functional and pathway enrichment of the intersecting targets. The expression and prognostic significance of the core targets were validated using data from the TCGA and HPA databases. Finally, the anti-glioma proliferation effect of vincristine was validated through CCK-8 assay, flow cytometry for cell cycle analysis, RT-qPCR, and Western blotting. A total of 175 vincristine targets and 1673 glioma targets were identified, with 11 shared targets between vincristine and glioma tissues. Network pharmacology studies suggested that CDC25B, CDK4, CDK6, TOP2A, and the PI3K/AKT signaling pathway might be important core targets and pathways through which vincristine exerts its anti-glioma effects. In vitro experiments confirmed that vincristine successfully inhibited U87 cell proliferation and induced G1 phase arrest via the PI3K/AKT signaling pathway, thereby reducing cell growth. The study results indicate that the PI3K/AKT signaling pathway may be involved in the mechanism by which vincristine inhibits the proliferation of glioma cells.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Jiahong Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Ting He
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Donggen Rao
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Ziyang Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Jianming Zhu
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China.
| |
Collapse
|
5
|
Manica FM, Campesato LFI, Scholl JN, Braganhol E, Bergamin LS, Edelweiss MIA, Lenz G, Sevigny J, Figueiró F, Battastini AMO. Assessing Ecto-5'-Nucleotidase/CD73 Expression and Malignancy Parameters in Early- and Late- Passage C6 Glioma Cells. Neurochem Res 2025; 50:164. [PMID: 40366422 DOI: 10.1007/s11064-025-04409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Glioblastoma (GB) is a highly aggressive tumor characterized by its proliferative and invasive behavior. Ecto-5'-nucleotidase (e5NT/CD73), an enzyme that hydrolyzes extracellular AMP to adenosine, plays a pivotal role in cellular processes and has been involved in tumor progression, with its upregulation observed in several cancers. C6 glioma cells, widely used in GB research, exhibit changes in morphology and biochemical properties, depending on their passage number. This study investigates malignancy-related parameters in early-passage (EPC6) and late-passage (LPC6) C6 cells, highlighting the e5NT/CD73 expression and activity. The results presented here demonstrate that the LPC6 cells showed reduced CD73 expression and lower e5NT/CD73 AMPase activity compared to the EPC6 cells. Despite a higher proliferation rate in the LPC6 cells after two days of growth, Ki67 expression analysis revealed comparable proliferation between the two cell types at 5 and 10 days. Notably, the EPC6 cells showed enhanced proliferation in response to exogenous AMP, whereas the LPC6 cells did not. Furthermore, the EPC6 cells exhibited decreased adhesion but greater colony formation than the LPC6 cells. The LPC6 cells showed a significant reduction in migration, likely due to the loss of e5NT/CD73 migratory function. In the in vivo results, all the rats injected with EPC6 cells developed tumors displaying all the histopathological features of GB, whereas the LPC6 cells formed smaller tumors. Confirming the role performed by e5NT/CD73 in glioma progression, protein silencing significantly reduced tumor growth in vivo. These findings underscore the critical role of purinergic signalling in GB progression and emphasize the need for careful monitoring of passage number and e5NT/CD73 in in vitro experiments.
Collapse
Affiliation(s)
- Fabiana M Manica
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Luis Felipe I Campesato
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Leticia S Bergamin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | | | - Guido Lenz
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jean Sevigny
- Département de Microbiologie-Infectiologie Et d'immunologie, Faculté de Médecine, Université Laval, Québec City, G1 V 0 A6, Canada
- Axe Maladies Infectieuses Et Immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, G1 V 4G2, Canada
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Ana Maria O Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
| |
Collapse
|
6
|
Mei X, Qin D, Zou M, Teng H, Zhai Y. Aberrant expression of CNTRL was associated with poor prognosis, immune response and progression in glioma. Discov Oncol 2025; 16:706. [PMID: 40343556 PMCID: PMC12064530 DOI: 10.1007/s12672-025-02531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
This study investigated the biological functions and prognostic significance of centromere protein L (CNTRL) in glioma. mRNA expression data and clinical information were obtained from TCGA, CGGA, and an independent cohort of 207 glioma patients. CNTRL expression levels were quantified using qRT-PCR. Functional analyses, including Gene Ontology and KEGG pathway enrichment, were conducted to elucidate the biological roles of CNTRL. Kaplan-Meier survival curves and Cox regression analyses were applied to evaluate its association with overall survival, and a nomogram was constructed to predict individual survival. Additionally, the tumor microenvironment and immune cell infiltration were analyzed. Glioma cell lines were transfected with CNTRL-targeting shRNA to explore its functional role in cell proliferation, migration, and invasion, utilizing CCK-8, colony formation, scratchy and Transwell assays. The results revealed that CNTRL is ubiquitously expressed in brain tissues and is significantly upregulated in glioma. Higher CNTRL expression was positively correlated with increased tumor grade and were associated with poor prognosis in glioma patients. Furthermore, univariate and multivariate Cox regression analyses identified CNTRL as an independent prognostic factor for glioma survival. The nomogram model integrating CNTRL expression and clinical parameters demonstrated robust predictive performance for patient survival. Functional enrichment analyses suggested that CNTRL is involved in key cellular processes such as cell cycle, DNA repair, and chromatin remodeling. CNTRL expression was positively associated with enhanced immune cell infiltration and activation within the tumor microenvironment, as well as with the expression of immune checkpoint molecules, implicating its potential role in immune evasion mechanisms. In vitro, CNTRL knockdown significantly inhibited glioma cell proliferation, migration, and invasion. Notably, suppression of CNTRL led to reduced expression of the cell cycle regulator WEE1 in glioma cells. This study provides comprehensive evidence that CNTRL contributes to glioma progression by regulating the cell cycle and immune-related processes. Targeting CNTRL could represent a promising therapeutic strategy for glioma. These findings underscore the potential of CNTRL as a prognostic biomarker and a therapeutic target in glioma management.
Collapse
Affiliation(s)
- Xiaoping Mei
- Medical Administration Division, Guangxi International Zhuang Medicine Hospital, Nanning, 530200, Guangxi Province, China
| | - Deyuan Qin
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, Guangxi Province, China
| | - Min Zou
- Department of Pediatrics, Guangxi International Zhuang Medicine Hospital, Nanning, 530200, Guangxi Province, China
| | - Hongli Teng
- Pain Management, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiangxin District, Nanning, 530200, Guangxi Province, China.
| | - Yang Zhai
- Medical Administration Division, Nanning Seventh People's Hospital, Xingning District, No. 209 Gonghe Road, Nanning, 530000, Guangxi Province, China.
| |
Collapse
|
7
|
Hedayati N, Safari MH, Milasi YE, Kahkesh S, Farahani N, Khoshnazar SM, Dorostgou Z, Alaei E, Alimohammadi M, Rahimzadeh P, Taheriazam A, Hashemi M. Modulation of the PI3K/Akt signaling pathway by resveratrol in cancer: molecular mechanisms and therapeutic opportunity. Discov Oncol 2025; 16:669. [PMID: 40323335 PMCID: PMC12052642 DOI: 10.1007/s12672-025-02471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a critical intracellular signaling pathway that is pivotal in various cellular functions. It is in senescence, survival, and growth under normal physiological and pathological conditions, including neoplasms. Additionally, this pathway has been recognized as essential for the regulation of the cell cycle. Several previous studies have indicated that the PI3K/Akt signaling pathway can be influenced by various natural products, with resveratrol (3,4',5-trihydroxy-trans-stilbene) being a particularly important phytoalexin polyphenol in this context. This review explores the impact of the PI3K/Akt signaling pathway on the initiation and advancement of various cancerous conditions and the potential of resveratrol to target this signaling mechanism. The review begins by summarizing the anti-tumor capabilities of resveratrol and then emphasizes the significant role of the PI3K/Akt signaling pathway in the progression of multiple malignancies. Finally, we discuss the therapeutic effects of resveratrol on human neoplasms, from brain cancers to gastrointestinal malignancies, through regulation of this signaling cascade.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergent Sciences Research Center, TeMs. C., Islamic Azad University, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergent Sciences Research Center, TeMs. C., Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergent Sciences Research Center, TeMs. C., Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Afrashteh F, Seyedpour S, Rezaei N. The therapeutic effect of mRNA vaccines in glioma: a comprehensive review. Expert Rev Clin Immunol 2025; 21:603-615. [PMID: 40249391 DOI: 10.1080/1744666x.2025.2494656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor, with glioblastoma being the most lethal type due to its heterogeneous and invasive nature of the cancer. Current therapies have low curative success and are limited to surgery, radiotherapy, and chemotherapy. More than 50% of patients become resistant to chemotherapy, and tumor recurrence occurs in most patients following an initial course of therapy. Therefore, developing novel, effective strategies for glioma treatment is essential. Cancer vaccines are novel therapies that demonstrate advantages over conventional methods and, therefore, may be promising options for treating glioma. AREAS COVERED This article provided a critical review of pre-clinical and clinical studies that explored appropriate tumor antigen candidates for developing mRNA vaccines and discussed their clinical application in glioma patients. Medline database, PubMed, and ClinicalTrials.gov were searched for glioma vaccine studies published before 2025 using related keywords. EXPERT OPINION mRNA vaccines are promising strategies for treating glioma because they are efficient, cost-beneficial, and have lower side effects than other types such as peptide or DNA-based vaccines.
Collapse
Affiliation(s)
- Fatemeh Afrashteh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Simin Seyedpour
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El-Sibai M, Abi-Habib R. Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 2025; 29:243. [PMID: 40182607 PMCID: PMC11966088 DOI: 10.3892/ol.2025.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis. Recent advancements in bioinformatics have contributed to uncovering the genetic alterations that underlie the development and progression of GBM. Analysis of extensive genomic data led to the identification of significant pathways involved in GBM, such as the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways, alongside key genes such as EGFR, TP53 and TERT. These findings have enhanced our understanding of GBM biology and led to the identification of new therapeutic targets. Bioinformatics has become an indispensable tool in pinpointing the genetic modifications that drive GBM, paving the way for innovative treatment strategies. This approach not only aids in comprehending the complexities of GBM but also holds promise for improving outcomes in patients suffering from this devastating disease. The ongoing integration of bioinformatics in GBM research continues to be vital for advancing therapeutic options.
Collapse
Affiliation(s)
- Marcelino Al Ghafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nour El Jaafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mariam Mouallem
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tala Maassarani
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi-Habib
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
10
|
Feng B, Gao T, Chen L, Xing Y. ARMC10 Drives Glioblastoma Progression Through Activating Notch Pathway. Mol Carcinog 2025; 64:883-896. [PMID: 39987562 DOI: 10.1002/mc.23895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
This study aimed to check the biological functions and uncover the mechanism of armadillo repeat protein C10 (ARMC10) in glioblastoma (GBM). The expression and potential mechanisms of ARMC10 in GBM were analyzed by bioinformatics analysis. In GBM cells, function-loss experiments were used to evaluate the influences of ARMC10 on cell proliferation, cell invasion, lipid levels, and cell migration by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, cell counting kit-8 assay, transwell assay, BODIPY staining, and wound healing assay. Mouse xenograft models were constructed to validate the influences of ARMC10 in vivo. ARMC10 levels in GBM were upregulated, and patients with low ARMC10 levels displayed a better prognosis. ARMC10 knockdown resulted in a decrease of GBM cell invasion, migration, and proliferation. GSEA showed that ARMC10 was positively associated with the Notch pathway and fatty acid metabolism. ARMC10 knockdown reduced the levels of triglyceride, cholesterol, and lipid, and inhibited the expression of proteins related to fatty acid metabolism and Notch pathway. Moreover, notch receptor 1 (Notch1) overexpression reversed the inhibition of cell proliferation, fatty acid metabolism, and invasion induced by ARMC10 knockdown. In vivo, ARMC10 knockdown suppressed tumor growth. RMC10 knockdown suppressed GBM malignant progression, which had a bearing on Notch pathway.
Collapse
Affiliation(s)
- Bin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Taihong Gao
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Chen
- Department of Neurosurgery, HeJiang County Traditional Chinese Medicine Hospital, Luzhou, China
| | - Yi Xing
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Guan Y, Luan Y, Zhao S, Li M, Girolamo F, Palmer JD, Guan Q. Single-cell RNA sequencing for characterizing the immune communication and iron metabolism roles in CD31 + glioma cells. Transl Cancer Res 2025; 14:2421-2439. [PMID: 40386270 PMCID: PMC12079608 DOI: 10.21037/tcr-2025-377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/08/2025] [Indexed: 05/20/2025]
Abstract
Background Gliomas are aggressive brain tumors marked by complex cellular interactions and significant immune cell infiltration. This study investigated the role of CD31+ immune cells, specifically macrophages and T cells, in the glioma microenvironment through single-cell RNA sequencing (scRNA-seq). Methods We employed the CellChat framework to map cell-cell communication pathways and used Monocle3 for pseudotime trajectory analysis to characterize the signaling and developmental progressions within CD31+ cells. Pathways such as osteopontin (SPP1) and major histocompatibility complex class II (MHC-II) were analyzed in terms of their role in immune regulation, and we examined the expression of ferritin, an iron-binding protein, to assess its potential function in modulating CD31+ cell activity. Results Our findings highlight the expression of key pathways, including SPP1 and MHC-II, influencing immune regulation. Ferritin was found to be highly expressed in CD31+ cells, suggesting a dual role in iron metabolism and immune modulation within the glioma microenvironment. Conclusions This study clarified the distinct roles of CD31+ immune cells in glioma progression and identified ferritin as a potential therapeutic target for modulating immune responses in gliomas. These findings may offer new directions in glioma research and the development of immunotherapy, which can aid in improving treatment outcomes.
Collapse
Affiliation(s)
- Yiming Guan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yu Luan
- Clinical Laboratory Center, The First People’s Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Shanshan Zhao
- Clinical Laboratory Center, The First People’s Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Meiyan Li
- Tuberculosis Laboratory, Shenyang Tenth People’s Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Francesco Girolamo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Qi Guan
- Clinical Laboratory Center, The First People’s Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| |
Collapse
|
12
|
Lim HY, Cheong HS, Namgoong S, Chang JH, Kim LH, Shin HD. A novel variant of telomerase reverse transcriptase (TERT) associated with risk of glioma in a Korean population. Sci Rep 2025; 15:14346. [PMID: 40274858 PMCID: PMC12022312 DOI: 10.1038/s41598-025-96929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Among central nervous system (CNS) tumors, gliomas are the most prevalent type of tumor. Single nucleotide polymorphisms (SNPs) in telomerase reverse transcriptase (TERT) gene have been identified as risk loci for gliomas by previous genome-wide association studies (GWAS). We examined association between TERT variants and glioma risk in a Korean population. For a case-control study, a total of 32 TERT SNPs from 317 patients with glioma and 480 population-based controls were genotyped. Logistic regression was used for statistical analysis of the link between TERT SNPs and risk of glioma. In this study, eight TERT variants, including four glioma-associated variants reported in previous studies, showed significant association with the risk of glioma. Conditional and stepwise analyses were conducted to validate independent associations in the group of the eight variants. Both analyses identified an intronic variant (rs56345976) as the causal variant among the eight variants. Glioma subgroup analyses indicate that rs56345976 variant is associated with the risk of WHO grade 4, glioblastoma, isocitrate dehydrogenase (IDH) wild-type, and 1p/19q non-codeletion glioma. This study presents a profound comprehension of the relationship between TERT variants and the risk of glioma. Further studies of this variant are required to investigate its effect on glioma susceptibility.
Collapse
Affiliation(s)
- Ho Yeon Lim
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | | | - Seok Namgoong
- Research Institute for Life Science, GW Vitek, Inc., Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lyoung Hyo Kim
- Research Institute for Life Science, GW Vitek, Inc., Seoul, Republic of Korea.
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea.
- Research Institute for Basic Science, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Lu Z, Chen J, Luo C. The m6A modification of LncRNA LINC00200 regulated by WTAP accelerates glioma tumorigenesis by regulating Wnt/β-catenin pathway. Cell Div 2025; 20:10. [PMID: 40269865 PMCID: PMC12020130 DOI: 10.1186/s13008-025-00155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Several studies have delineated that dysregulated N6-methyladenosine (m6A) regulators participate in glioma progression. The objective of this study is to investigate the mechanism of Wilms' tumor 1-associating protein (WTAP)-mediated m6A modification of long noncoding RNA (lncRNA) LINC00200 in glioma. METHODS The LINC00200 expression in glioma was analyzed by qRT-PCR. The expressions of WTAP and Wnt/β-catenin pathway associated proteins were determined via qRT-PCR or western blotting. The levels of WTAP-mediated m6A modification of LINC00200 was ascertained by MeRIP-qPCR. Functionally, the effects of LINC00200 knockdown and the interaction of WTAP with LINC00200 on the glioma cell characteristics were examined by CCK8, colony formation, and transwell migration/invasion assays. In vivo experiments were performed to verify the effect of LINC00200 on tumor growth. RESULTS LINC00200 was overexpressed in glioma, and high LINC00200 level was related to higher-grade tumor. Moreover, its knockdown inhibited the malignant properties and expression of molecules related to Wnt/β-catenin pathway in glioma cell lines. In vivo, LINC00200 knockdown attenuated tumor growth. WTAP was also overexpressed in glioma tissues and demonstrated a positive association with LINC00200 expression. Furthermore, the relative enrichment of LINC00200 m6A was enhanced/reduced in a WTAP-dependent manner. Meanwhile, silencing LINC00200 partially reversed the malignant effects of WTAP overexpression in glioma. CONCLUSION These results demonstrate that WTAP-mediated m6A modification of LINC00200 promotes glioma progression by modulating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zhiying Lu
- Department of Pediatrics, Wuhan Fourth Hospital, No.76, Jiefang Avenue, Qiaokou District, Wuhan, 430034, Hubei, China
| | - Jing Chen
- Department of Pediatrics, Wuhan Fourth Hospital, No.76, Jiefang Avenue, Qiaokou District, Wuhan, 430034, Hubei, China
| | - Chao Luo
- Department of Pediatrics, Wuhan Fourth Hospital, No.76, Jiefang Avenue, Qiaokou District, Wuhan, 430034, Hubei, China.
| |
Collapse
|
14
|
Xin L, Zheng W, Lin K, Lin S, Huang Z. Deciphering Metabolic Alterations Associated with Glioma Grading Using Hyperspectral Stimulated Raman Scattering Imaging. Anal Chem 2025; 97:7897-7905. [PMID: 40183640 DOI: 10.1021/acs.analchem.4c07042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Metabolic dysregulation is a critical feature of various cancers, including brain tumors. Studying metabolic changes in tumor cells and tissues significantly improves our understanding of tumor development, progression, and treatment response. In this study, we utilize hyperspectral stimulated Raman scattering (SRS) imaging combined with biochemical spectral modeling to identify unique histological and molecular signatures linked to metabolic diversity across different glioma grades, without the need for labeling. By employing rapid label-free SRS histopathology and multivariate curve resolution analysis, we uncover changes in lipid profiles and varying levels of neuron demyelination from low-grade (LG) to high-grade (HG) gliomas. Quantitative analysis of key metabolites using non-negative least-squares regression spectral modeling reveals a significant increase in cellular proteins, DNA, and cholesterol levels, alongside a reduced redox ratio (flavin adenine dinucleotide (FAD)/NADH) in the glioblastoma (GBM, grade IV) tissue compared to pilocytic astrocytoma (PA, grade I) and healthy brain tissues, indicating a shift toward a pro-malignant metabolic state. A neural network diagnostic classifier, trained on 4547 SRS spectra (healthy: 1263; LG: 815; HG: 2469) from 45 patients with PA and GBM, achieves 99.6% accuracy in detecting and grading brain tumors. This study highlights the potential of hyperspectral SRS imaging for rapid, label-free, and spatially resolved analysis of metabolic heterogeneity in human gliomas, paving the way for metabolome-targeted therapeutic strategies in precision brain tumor treatment.
Collapse
Affiliation(s)
- Le Xin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Kan Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Shulang Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
- NUS Graduate School for Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
15
|
Zhou S, Zhang M, Wang J, Chen X, Xu Z, Yan Y, Li Y. Nanofibers in Glioma Therapy: Advances, Applications, and Overcoming Challenges. Int J Nanomedicine 2025; 20:4677-4703. [PMID: 40255668 PMCID: PMC12008729 DOI: 10.2147/ijn.s510363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
Despite relentless effort to study glioma treatment, the prognosis for glioma patients remains poor. The main obstacles include the high rate of recurrence and the difficulty of passing the blood-brain barrier (BBB) for therapeutic drugs. Nanomaterials owing to their special physicochemical properties have been used in a wide range of fields thus far. The nanodrug delivery system (NDDS) with the ability of crossing the BBB, targeting glioma site, maintaining drug stability and controlling drug release, has significantly enhanced the anti-tumor therapeutic effect, improving the prognosis of glioma patients. Aligned nanofibers (NFs) are ideal materials to establish in vitro models of glioma microenvironment (GME), enabling the exploration of the mechanism of glioma cell migration and invasion to discover novel therapeutic targets. Moreover, NFs are now widely used in glioma applications such as radiotherapy, phototherapy, thermotherapy and immunotherapy. Despite the absolute dominance of NFs in anti-glioma applications, there are still some problems such as the further optimization of NDDS, and the impact of interactions between nanofibers and the protein corona (PC) on glioma therapy. This paper will shed light on the latest glioma applications of NFs in drug delivery systems and mimicking the tumor microenvironment (TME), and discuss how to further optimize the NDDS and eliminate or utilize the nanomedicine-PC interactions.
Collapse
Affiliation(s)
- Shangjun Zhou
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Mingcheng Zhang
- Center of Endoscopy, The Second Affiliated Hospital of Shandong First Medical University Tai’an, Shandong, People’s Republic of China
| | - Jiayu Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
16
|
Chang X, Huang Y, Qu Y, Guo Y, Fan W, Zhen H. Integrative analysis of mitochondrial-related gene profiling identifies prognostic clusters and drug resistance mechanisms in low-grade glioma. Discov Oncol 2025; 16:465. [PMID: 40186003 PMCID: PMC11971116 DOI: 10.1007/s12672-025-02201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Mitochondrial dysfunction has emerged as a critical factor in the progression and prognosis of low-grade glioma (LGG). In this study, we explored the role of mitochondrial-related genes through consensus clustering analysis using multi-omics data from the TCGA, CGGA, and other independent datasets. Patients were categorized into three clusters (Cluster A, B, and C), with Cluster B consistently associated with poorer prognosis. Mutation landscape analysis revealed distinct genetic alterations and copy number variations among clusters, particularly in Cluster B, which exhibited unique genetic signatures. Immune infiltration analysis showed that Cluster B had higher expression levels of immune checkpoint genes, stronger immune evasion activity, and greater immune cell infiltration, suggesting an immunosuppressive tumor microenvironment. Furthermore, we identified mitochondrial-related prognostic markers and developed a MITscore based on gene expression patterns, which stratified patients into high- and low-risk groups. High MITscore groups displayed stronger stemness characteristics, poorer survival outcomes, and differential responses to chemotherapy and immunotherapy. Cross-validation with drug sensitivity and immunotherapy cohorts indicated that high MITscore patients were more sensitive to certain chemotherapeutic agents and responded better to immunotherapy. Finally, using the SRGA method, we identified novel biomarkers (KDR, LRRK2, SQSTM1) closely associated with mitochondrial function, which may serve as potential targets for therapeutic intervention. These findings highlight the critical role of mitochondrial dysfunction in LGG prognosis, tumor microenvironment regulation, and treatment response, providing new avenues for precision oncology.
Collapse
Affiliation(s)
- Xiaozan Chang
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China
| | - Yingxuan Huang
- Pediatric Intensive Care Unit, The Affiliated Hospital of Youjiang Medical University for Nationalities; Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Baise, China
| | - Ying Qu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Guo
- Nanfang Hospital (ZengCheng Branch), Southern Medical University, No. 28, Innovation Avenue, Ningxi Street, Guangzhou, China.
| | - Wenwen Fan
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Nanli, Panjiayuan, Beijing, 100021, China.
| | - Haining Zhen
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
17
|
Yan X, Gao X, Dong J, Wang F, Jiang X, Hu X, Zhang J, Wang N, Xu L, Liu Z, Hu S, Zhao H. Integration of Single-Cell and Bulk RNA-seq Data to Identify the Cancer-Associated Fibroblast Subtypes and Risk Model in Glioma. Biochem Genet 2025; 63:1275-1297. [PMID: 38536568 DOI: 10.1007/s10528-024-10751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the stroma. Studies showed that CAFs were pivotally in glioma progression which have long been considered a promising therapeutic target. Therefore, the identification of prognostic CAF markers might facilitate the development of novel diagnostic and therapeutic approaches. A total of 1333 glioma samples were obtained from the TCGA and CGGA datasets. The EPIC, MCP-counter, and xCell algorithms were used to evaluate the relative proportion of CAFs in glioma. CAF markers were identified by the single-cell RNA-seq datasets (GSE141383) from the Tumor Immune Single-Cell Hub database. Unsupervised consensus clustering was used to divide the glioma patients into different distinct subgroups. The least absolute shrinkage and selection operator regression model was utilized to establish a CAF-related signature (CRS). Finally, the prognostic CAF markers were further validated in clinical specimens by RT‒qPCR. Combined single-cell RNA-seq analysis and differential expression analysis of samples with high and low proportions of CAFs revealed 23 prognostic CAF markers. By using unsupervised consensus clustering, glioma patients were divided into two distinct subtypes. Subsequently, based on 18 differentially expressed prognostic CAF markers between the two CAF subtypes, we developed and validated a new CRS model (including PCOLCE, TIMP1, and CLIC1). The nomogram and calibration curves indicated that the CRS was an accurate prognostic marker for glioma. In addition, patients in the high-CRS score group had higher immune infiltration and tumor mutation burden levels. Moreover, the CRS score had the potential to predict the response to immune checkpoint blockade (ICB) therapy and chemotherapy. Finally, the expression profiles of three CAF markers were verified by RT‒qPCR. In general, our study classified glioma patients into distinct subgroups based on CAF markers, which will facilitate the development of individualized therapy. We also provided insights into the role of the CRS in predicting the response to ICB and chemotherapy in glioma patients.
Collapse
Affiliation(s)
- Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Dong
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueyan Hu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Xu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Zhihui Liu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China.
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Wang R, Li Y, Li Z, Wang J, Li L, Xiang J, Jia C, Peng X, Wang Y, Ma W, Wang L, Jia W, Chen X, Li D, Zhu Z, Zhang J. Gastrin-Releasing Peptide Receptor Targeting PET/CT With 68 Ga-NOTA-RM26 in the Assessment of Glioma and Combined Multiregional Biopsies. Clin Nucl Med 2025; 50:316-323. [PMID: 39806560 DOI: 10.1097/rlu.0000000000005651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
PURPOSE The aim of this study was to investigate the value of 68 Ga-NOTA-RM26 ( 68 Ga-RM26), a gastrin-releasing peptide receptor-targeting antagonist labeled with the radionuclide 68 Ga, in the diagnosis of high-grade gliomas and in combination with multiregional biopsies using PET/CT. PATIENTS AND METHODS After institutional review board approval and informed consent, a total of 35 patients with suspected glioma lesions were enrolled in this study. All patients underwent 68 Ga-RM26 PET/CT scans within 2 weeks before surgery. RESULTS There were 8 grade II gliomas, 6 grade III gliomas, and 18 grade IV gliomas in a total of 32 glioma lesions. 68 Ga-RM26 PET/CT diagnosed 74.4% of lesions (27/32) of all glioma tumor types, and almost all high-grade gliomas were successfully diagnosed (23/24, 95.8%). Among the 9 negative glioma lesions, there were 8 low-grade gliomas (grade II). There was a significantly higher SUV max , SUV mean , and the lesion-to-background ratio (T/B ratio) in high-grade gliomas compared with low-grade gliomas ( P < 0.001). In addition, there was a high correlation between the immunohistochemical staining score of gliomas and parameters (SUV max , SUV mean , and T/B ratio) on 68 Ga-RM26 PET/CT ( P < 0.001), and verified by immunohistochemical staining on multiple-point samples of glioma lesions guided by 68 Ga-RM26 PET/CT. CONCLUSIONS 68 Ga-RM26 could noninvasively diagnose high-grade gliomas and be a promising PET tracer for predicting glioma grading before surgery. This pilot study indicated that the uptake of 68 Ga-RM26 correlates with WHO grade in glioma, and preoperative 68 Ga-RM26 PET/CT may be helpful to guide multiple-point biopsy of gliomas.
Collapse
Affiliation(s)
| | | | - Ziyang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
| | - Jiarou Wang
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linlin Li
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jialin Xiang
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chenhao Jia
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingtong Peng
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li'ao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
| | | | | | | | - Zhaohui Zhu
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | |
Collapse
|
19
|
Li D, Hu W, Ma L, Yang W, Liu Y, Zou J, Ge X, Han Y, Gan T, Cheng D, Ai K, Liu G, Zhang J. Deep learning radiomics nomograms predict Isocitrate dehydrogenase (IDH) genotypes in brain glioma: A multicenter study. Magn Reson Imaging 2025; 117:110314. [PMID: 39708927 DOI: 10.1016/j.mri.2024.110314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE To explore the feasibility of Deep learning radiomics nomograms (DLRN) in predicting IDH genotype. METHODS A total of 402 glioma patients from two independent centers were retrospectively included, and the data from center I was randomly divided into a training cohort (n = 239) and an internal validation cohort (n = 103) on a 7:3 basis. Center II served as an independent external validation cohort (n = 60). We developed a DLRN for IDH classification of gliomas based on T2 images. This hybrid model integrates deep learning features, radiomics features, and clinical features most relevant to IDH genotypes and finally classifies them using multivariate logistic regression analysis. We used the area under the curve (AUC) of the receiver operating characteristic (ROC) to evaluate the performance of the model and applied the DLRN score to the survival analysis of some of the follow-up glioma patients. RESULTS The proposed model had an area under the curve (AUC) of 0.98 in an externally validated cohort, and DLRN scores were significantly associated with the overall survival of glioma patients. CONCLUSIONS Deep learning radiomics nomograms performed well in non-invasively predicting IDH mutation status in gliomas, assisting stratified management and targeted therapy for glioma patients.
Collapse
Affiliation(s)
- Darui Li
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Wanjun Hu
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Laiyang Ma
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Wenxia Yang
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yang Liu
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Jie Zou
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Xin Ge
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yuping Han
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Tiejun Gan
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Dan Cheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Ai
- Philips Healthcare, Xi'an, China
| | - Guangyao Liu
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Jing Zhang
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China.
| |
Collapse
|
20
|
Tian J, Zhao J, Xu Z, Liu B, Pu J, Li H, Lei Q, Zhao Y, Zhou W, Li X, Huang X. Bioinformatics analysis to identify key invasion related genes and construct a prognostic model for glioblastoma. Sci Rep 2025; 15:10773. [PMID: 40155506 PMCID: PMC11953321 DOI: 10.1038/s41598-025-95067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor with limited therapeutic strategies and incomplete studies on its progression and mechanisms. This study aims to reveal potential prognostic marker genes associated with GBM cell invasion, and establish an effective prognostic model for GBM patients. Differentially expressed genes (DEGs) were screened from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), differentially invasive-related genes was obtained, qRT-PCR was used to verify gene expression. The risk scores of individual patients, univariate and multivariate Cox regression were analyzed to investigate the correlation between risk values and glioblastoma, Finally, the risk scores with the prognostic clinical characteristics of the patients, such as PFS, OS were used to build a comprehensive GBM prognostic model. Five DEGs (GZMB, COL22A1, MSTN, CRYGN and OSMR) were significantly associated with GBM prognosis. Pseudotemporal analysis, risk scores (PFS, OS) based on tumor cells revealed that prognostic genes were associated with tumor proliferation and progression. The final prognostic model was developed and validated with good performance with higher accuracy(C-index: 0.675), and it was found that the risk value can serve as an independent prognostic factor for patients with glioblastoma (p < 0.05). We constructed a comprehensive prognostic model related to invasion in GBM patients using genetic profiles, survival curves, immune infiltration, and radiotherapy face susceptibility. The model has good predictive ability.
Collapse
Affiliation(s)
- Jintao Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Jinxi Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Zhixing Xu
- Department of Neurosurgery, The Pu'er People's Hospital, Puer, 665000, China
| | - Bohu Liu
- Department of Neurosurgery, The Kunming First People's Hospital, Kunming, 650011, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Hongwen Li
- Department of Neurosurgery, The Dali People's Hospital, Dali, 671000, China
| | - Qingchun Lei
- Department of Neurosurgery, The Pu'er People's Hospital, Puer, 665000, China
| | - Yu Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Weilin Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Xuhui Li
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
21
|
Xie J, Yu W, Gui S, Peng L, Xiao J, Luo H, Cheng Z. TMEM71 is crucial for cell proliferation in lower-grade glioma and is linked to unfavorable prognosis. Cancer Cell Int 2025; 25:109. [PMID: 40119335 PMCID: PMC11927289 DOI: 10.1186/s12935-025-03747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
OBJECTIVE Transmembrane protein 71 (TMEM71) is implicated in multiple cellular physiological functions and has been demonstrated to be crucial in the advancement of different cancerous growths. However, its specific function in low-grade glioma (LGG) remains unclear. METHODS We examined the expression patterns and prognostic importance of TMEM71 in various types of cancer by using pan-cancer analysis. The analyses of the correlations between TMEM71 expression and clinicopathological characteristics, prognosis, biological functions, immune characteristics, and genomic variations in LGG were conducted based on its expression patterns. Finally, the expression level and biological function of TMEM71 in LGG were verified by executing in vitro studies. RESULTS Abnormal elevation of TMEM71 expression level was associated with poor prognosis of many tumors including LGG. Both multivariate and univariate Cox regression analyses indicated that the expression of TMEM71 served as a standalone prognostic biomarker for LGG. The levels of TMEM71 expression were associated with immune-related characteristics, infiltration of immune cells, immune checkpoint genes (ICPGs) expression, and tumor mutation burden (TMB) in patients with LGG. In laboratory studies, elevated levels of TMEM71 were found to be involved in activating the JAK2/STAT3 pathway, promoting CCAAT/Enhancer Binding Protein D (CEBPD) expression, and ultimately affecting the growth and motility of LGG cells. CONCLUSION TMEM71 is an independent prognostic indicator for LGG and is strongly associated with the growth of LGG cells, positioning it as a potential novel target for treatment.
Collapse
Affiliation(s)
- Jiabao Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, PR China
- Institute of Neuroscience, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wanli Yu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, PR China
- Institute of Neuroscience, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shikai Gui
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, PR China
- Institute of Neuroscience, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Lunshan Peng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, PR China
- Institute of Neuroscience, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Juexian Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, PR China
| | - Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, PR China.
| | - Zujue Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, PR China.
- Institute of Neuroscience, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
22
|
Luo H, Fan S, Liang L, He Y, Chen J, Xu C, Zhu J, Zhang L. Adverse event profile of lomustine and temozolomide: a descriptive analysis from WHO-VigiAccess. Front Pharmacol 2025; 16:1534802. [PMID: 40115261 PMCID: PMC11922871 DOI: 10.3389/fphar.2025.1534802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025] Open
Abstract
Introduction In gliomas, various oncogenic factors can lead to an imbalance between cell proliferation and apoptosis. Lomustine inhibits tumor cell growth by disrupting DNA replication and repair mechanisms. In contrast, temozolomide, an imidazole tetrazine compound, promotes cell apoptosis through DNA alkylation. The present study aimed to systematically analyze and compare the adverse drug reactions (ADRs) associated with lomustine and temozolomide, as reported in the World Health Organization (WHO) VigiAcess database. Methods Utilizing a retrospective descriptive analysis design, this study focused on two commercially available anti-glioma drugs. ADR reports pertaining to these medications were collected from the WHO-VigiAccess database. The data collection process involved gathering detailed information on various parameters, including age groups, gender, and geographical distribution of patients involved in the ADR reports. Additionally, the study examined the disease systems and symptoms reported alongside the adverse reactions, as recorded in the annual ADR summaries generated by the WHO. By calculating the proportion of adverse events reported for each drug, this investigation provided a comparative analysis of both the similarities and differences in the adverse reactions observed across the two anti-glioma drugs. Results At the time of the search, a total of 22,854 adverse events (AEs) associated with the two anti-glioma drugs were documented in the VigiAccess database. Lomustine exhibits a higher reporting rate concerning blood and lymphatic system disorders, gastrointestinal disorders, and hepatobiliary disorders. In contrast, Temozolomide has a higher reporting rate for general disorders and administration site conditions, nervous system disorders, and skin and subcutaneous tissue disorders. The top five types of AEs for anti-glioma drugs are as follows: general disorders and administration site conditions (8,825 cases, 38.61%), blood and lymphatic system disorders (7,369 cases, 32.24%), gastrointestinal disorders (5,614 cases, 24.56%), nervous system disorders (5,047 cases, 22.08%), and investigations (4,855 cases, 21.24%). Conclusion The present comparative observational study indicates that these inhibitors are associated with both common and specific adverse reactions, as documented in ADR reports. Clinicians should formulate individualized treatment plans that consider the adverse reactions linked to various drugs and the specific conditions of each patient, thereby promoting the rational use of these costly medications.
Collapse
Affiliation(s)
- Hua Luo
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Shaohua Fan
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Lu Liang
- Department of Operating Room, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Youfu He
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jiangjie Chen
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Chenghao Xu
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Jing Zhu
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liwei Zhang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
- Institute of Bone Metabolism, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| |
Collapse
|
23
|
Alshammari QA, Alshammari SO, Alshammari A, Alfarhan M, Baali FH. Unraveling the mechanisms of glioblastoma's resistance: investigating the influence of tumor suppressor p53 and non-coding RNAs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2569-2585. [PMID: 39476245 DOI: 10.1007/s00210-024-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma (GB) is one of the most fatal CNS malignancies, and its high resistance to therapy and poor outcomes have made it one of the primary challenges in oncology. Resistance to standard therapy, i.e., radio-chemotherapy with temozolomide, is one of the principal causes of the poor prognostic outcomes of GB. Finding the molecular basis of GB resistance to therapy is key to creating effective solution approaches. The general problem of GB resistance is supervised by cancer suppressive protein, p53, and has become a very special interest in molecular research in recent decades. The principal aim of this manuscript is to perform a comprehensive survey on the complex network of interactions developed by p53 with non-coding RNAs (ncRNA) in the context of GB resistance. The present article details the functional aspects of p53 as a cellular stress response protein, including its roles in apoptosis, cell cycle regulation, and DNA repair in glioblastoma (GB), along with the disruption of p53 and its involvement in chemoresistance (CR). It also highlights several classes of ncRNAs, namely microRNAs, long ncRNAs, and circular RNAs, that manipulate p53 signaling in GB-CR. The article likewise explains how disruption in the expression of these ncRNAs can promote GB-CR and how it interacts with essential cellular functions, such as proliferation, apoptosis, and DNA repair. The manuscript also describes the potential of targeting p53 and ncRNAs with their diagnostic and prognostic potential as novel promising therapeutics for GB. Nevertheless, ncRNA-based biomarkers still present challenges for their suitability in GB resistance. However, modern research continues to discover novel prediction targets, potentially enhancing patient outcomes and therapeutic options. Therefore, the neutralization of this intricate regulatory network of GB resistance might have a primary clinical effect in fighting GB resistance therapy and thus might lead to a substantial increase in patient survival and quality of life.
Collapse
Affiliation(s)
- Qamar A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, College of Pharmacy, Northern Border University, 76321, Rafha, Saudi Arabia
| | - Abdulkarim Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Moaddey Alfarhan
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Jizan, Saudi Arabia
| | - Fahad Hassan Baali
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
24
|
Zhan L, Zeng F, Zheng J, Chen S, Zhang Z, Ju D. Exploring the regulatory role of CNPY3 as a prognostic biomarker on human glioma cell migration, invasion and immune infiltration. Cancer Biomark 2025; 42:18758592251328162. [PMID: 40171811 DOI: 10.1177/18758592251328162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
BackgroundCanopy FGF signalling regulator 3 (CNPY3) is involved in immune regulation, tumorigenesis and development, nevertheless, its role in glioma remains largely unexplored. Our study aimed to explore the regulatory role of CNPY3 as a prognostic biomarker in human glioma cell migration, invasion and immune infiltration.MethodsBioinformatics analysis of CNPY3 and clinical relevance of glioma in public databases was performed. COX regression analysis was performed to assess the relationship between CNPY3 and glioma prognosis. GO and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to predict the signaling pathways of CNPY3 in gliomas. Tumor immune infiltration was explored using TIMER, CIBERSORT, and Pearson correlation analysis. GSVA analysis and single-cell sequencing data were employed for further validation. The effects of CNPY3 on the migration and invasion of glioma cells were investigated through cell scratch assay and transwell assay.ResultsCNPY3 was positively correlated with IDH mutation status, 1p/19q status, histopathologic grade, and MGMT promoter methylation status, but negatively with the overall survival of glioma patients (P < 0.05). CNPY3 was significantly associated with tumor immune response, inflammatory response, and lipopolysaccharide-mediated signaling pathway. CNPY3 influenced different types of immune cells which affected the immune microenvironment of glioma. CNPY3 promoted the increase of M2 macrophage and was negatively correlated with the positive regulation of macrophages apoptotic process. In vitro data suggested the promotion of CNPY3 in U87MG cells was associated with an increased capacity for cell migration and invasion (P < 0.05). Tumor drug sensitivity analysis showed more sensitivity towards temozolomide, irinotecan, and cisplatin among high CNPY3 expression patients (P < 0.05).ConclusionIncreased CNPY3 expression impacts the immune microenvironment of glioma and enhances the migration and invasion of glioma. CNPY3 is recommended as a prognostic biomarker for glioma patients.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fanyue Zeng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Zheng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sijing Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhiyun Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Donghui Ju
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
Rouatbi N, Walters AA, Zam A, Lim YM, Marrocu A, Liam‐Or R, Anstee JE, Arnold JN, Wang JT, Pollard SM, Al‐Jamal KT. CD47 Knock-Out Using CRISPR-Cas9 RNA Lipid Nanocarriers Results in Reduced Mesenchymal Glioblastoma Growth In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407262. [PMID: 39888280 PMCID: PMC11948039 DOI: 10.1002/advs.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Immune checkpoint (ICP) blockade has shown limited effectiveness in glioblastoma (GBM), particularly in the mesenchymal subtype, where interactions between immune cells and glioblastoma cancer stem cells (GSCs) drive immunosuppression and therapy resistance. Tailoring ICPs specific to GSCs can enhance the antitumor immune response. This study proposes the use of lipid nanoparticles (LNPs) encapsulating CRISPR RNAs as an in vivo screening tool for ICPs in a syngeneic model of mesenchymal GSCs. Using PD-L1 and CD47 to validate the proof of concept, intratumoral administration of LNPs in orthotopic tumors achieved efficient editing of ICPs, leading to enhanced immune cell infiltration within the tumor microenvironment. Targeting CD47 reduced tumor growth, suggesting improved cancer cell sensitization to the immune system post-ICP editing. The study positions LNPs as a robust tool for in vivo validation of ICPs as therapeutic targets in clinically relevant GBM models. LNPs could serve as a screening tool in patient-derived xenografts to identify and optimize ICP combinations, potentially expediting ICP translation and enhancing personalized GBM immunotherapies.
Collapse
Affiliation(s)
- Nadia Rouatbi
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Adam A. Walters
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Alaa Zam
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Yau Mun Lim
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
- Department of Neurodegenerative DiseaseQueen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| | - Alessia Marrocu
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - Revadee Liam‐Or
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionChina
| | - Joanne E. Anstee
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - James N. Arnold
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - Julie Tzu‐Wen Wang
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Steven M. Pollard
- Centre for Regenerative MedicineInstitute for Regeneration and Repair & Cancer Research UK Scotland CentreUniversity of Edinburgh5 Little France DriveEdinburghEH16 4UUUK
| | - Khuloud T. Al‐Jamal
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionChina
| |
Collapse
|
26
|
Khafaga DSR, Muteeb G, Aswa DW, Aatif M, Farhan M, Allam S. Green chemistry: Modern therapies using nanocarriers for treating rare brain cancer metastasis from colon cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100213. [PMID: 39826871 DOI: 10.1016/j.slasd.2025.100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Brain metastasis (BM) from colon cancer is associated with a poor prognosis and restricted treatment alternatives, largely due to issues related to blood-brain barrier (BBB) permeability and the negative effects of standard chemotherapy. Nanotechnology improves treatment efficacy by enabling targeted and controlled drug delivery. This review article evaluates the potential of nanotechnology-based therapies for treating colon cancer BM, emphasizing their capacity to cross the BBB, diminish metastatic growth, and enhance overall survival rates. A review of multiple studies evaluated nanoparticles (NPs) as carriers for chemotherapy, focusing on parameters including particle size, surface charge, and drug-loading capacity. The study also reviewed studies that examined BBB penetration, in vitro tumor accumulation, and in vivo tumor growth inhibition. In vitro findings indicated that NPs accumulate more efficiently in BM tissue than in healthy brain tissue and show significant BBB penetration. In vivo, nanotherapy markedly inhibited tumor growth and prolonged survival relative to conventional chemotherapy or control treatments while also exhibiting reduced side effects. Recent studies demonstrated that plant extracts can effectively and safely synthesize nanomaterials, positioning them as a viable and environmentally friendly precursor for nanomaterial production. Nanotechnology-based therapies demonstrate significant potential in the treatment of colon cancer BM by minimizing systemic toxicity, enhancing therapeutic efficacy, and facilitating more targeted drug delivery. Further research is required to confirm these findings and implement them in clinical practice.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City 43511, Suez, Egypt.
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Darin W Aswa
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| |
Collapse
|
27
|
Jain AK, Vazquez S, Zeller S, Spirollari E, Hanft SJ. Low-grade gliomas presenting with hemorrhage: Are intratumoral blood products associated with malignant transformation? J Clin Neurosci 2025; 133:111041. [PMID: 39826291 DOI: 10.1016/j.jocn.2025.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Gliomas are the most common primary tumor in the central nervous system (CNS), with low-grade gliomas (LGG) comprising more than 5 percent of all adult primary CNS tumors. While glioblastoma, the most malignant glioma subtype, is known to present with hemorrhage, LGGs rarely present with hemorrhage. This systematic review investigates LGGs that present as hemorrhage and provides an illustrative case presentation in order to evaluate trends and outcomes for this pathology. METHODS A systematic review of the literature was performed to evaluate presentation, treatment, and outcomes for patients with LGG that present as intracranial hemorrhage. Articles included were case series describing surgical approach; literature reviews were excluded. Variables evaluated included presenting symptoms, imaging results, and postoperative outcomes. RESULTS The initial screen yielded 1373 articles. Fourteen articles, published between 1977 and 2023, met inclusion criteria. Sixteen (16) patients were identified with LGG that presented initially as hemorrhage. The most common tumors were pilocytic astrocytoma (6/16), subependymoma (4/16), and ependymoma (2/16). The most common presenting symptoms were headaches (9/11) and impaired consciousness (9/11). Eleven patients underwent gross total resection of the tumor, while four patients received partial resection. Outcomes included two mortalities and one recurrence after six months; the thirteen remaining patients had no recurrence at final reported follow-up. CONCLUSION LGGs presenting with hemorrhage are associated with more severe initial symptoms. Though very uncommon, it is imperative to recognize the possibility of an underlying low-grade neoplasm in the setting of hemorrhage. Such early identification can lead to expeditious surgical intervention which can alleviate symptoms, lead to diagnosis, and ultimately trigger adjuvant treatment that has the potential to prolong survival. Continued research on the underlying pathophysiology of these hemorrhagic low-grade tumors is needed to further stratify risk in these populations.
Collapse
Affiliation(s)
- Aarti Kishore Jain
- School of Medicine, New York Medical College, Valhalla, NY, United States.
| | - Sima Vazquez
- School of Medicine, New York Medical College, Valhalla, NY, United States; Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabrina Zeller
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| | - Eris Spirollari
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Simon J Hanft
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| |
Collapse
|
28
|
Zhong Z, Yu HF, Tong Y, Li J. Development and Validation of a Non-Invasive Prediction Model for Glioma-Associated Epilepsy: A Comparative Analysis of Nomogram and Decision Tree. Int J Gen Med 2025; 18:1111-1125. [PMID: 40026809 PMCID: PMC11872099 DOI: 10.2147/ijgm.s512814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
Objective Glioma-associated epilepsy (GAE) is a common neurological symptom in glioma patients, which can worsen the condition and increase the risk of death on the basis of primary injury. Given this, accurate prediction of GAE is crucial, and this study aims to develop and validate a GAE warning recognition prediction model. Methods We retrospectively collected MRI scan imaging data and urine samples from 566 glioma patients at the Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science from August 2016 to December 2023. Least Absolute Shrinkage and Selection Operator (LASSO) regression and multivariate logistic regression analysis are used to determine independent risk factors for GAE. The nomogram and decision tree GAE visualization prediction model were constructed based on independent risk factors. The discrimination, calibration, and clinical usefulness of GAE prediction models were evaluated through receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA), respectively. Results In the training and validation datasets, the incidence of GAE was 34.50% and 33.00%, respectively. Nomogram and decision tree were composed of five independent radiomic predictors and three differential protein molecules derived from urine. The discrimination rate of area under the curve (AUC) was 0.897 (95% CI: 0.840-0.954), slightly decreased in the validation data set, reaching 0.874 (95% CI: 8.817-0.931). The calibration curve showed a high degree of consistency between the predicted GAE probability and the actual probability. In addition, DCA analysis showed that in machine learning prediction models, decision trees have higher overall net returns within the threshold probability range. Conclusion We have introduced a machine learning prediction model for GAE detection in glioma patients based on multiomics data. This model can improve the prognosis of GAE by providing early warnings and actionable feedback and prevent or reduce pathological damage and neurobiochemical changes by implementing early interventions.
Collapse
Affiliation(s)
- Zian Zhong
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
| | - Hong-Fei Yu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
| | - Yanfei Tong
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
| | - Jie Li
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
| |
Collapse
|
29
|
Shi X, He W, Gupta A, To K, Clark L, Mirle N, Wynn T, Wang D, Ganesh A, Zeng HM, Wang H. Extracellular vesicles as drug and gene delivery vehicles in central nervous system diseases. Biomater Sci 2025; 13:1161-1178. [PMID: 39871579 PMCID: PMC11773327 DOI: 10.1039/d4bm01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
Extracellular vesicles (EVs) are secreted by almost all cell types and contain DNA, RNA, proteins, lipids and other metabolites. EVs were initially believed to be cellular waste but now recognized for their role in cell-to-cell communication. Later, EVs from immune cells were discovered to function similarly to their parent cells, paving the way for their use as gene and drug carriers. EVs from different cell types or biological fluids carry distinct cargo depending on their origin, and they perform diverse functions. For instance, EVs derived from stem cells possess pluripotent properties, reflecting the cargo from their parent cells. Over the past two decades, substantial preclinical and clinical research has explored EVs-mediated drug and gene delivery to various organs, including the brain. Natural or intrinsic EVs may be effective for certain applications, but as drug or gene carriers, they demonstrate broader and more efficient potential across various diseases. Here, we review research on using EVs to treat central nervous system (CNS) diseases, such as Alzheimer's Disease, Parkinson diseases, depression, anxiety, dementia, and acute ischemic strokes. We first reviewed the naïve EVs, especially mesenchymal stem cell (MSC) derived EVs in CNS diseases and summarized the clinical trials of EVs in treating CNS diseases and highlighted the reports of two complete trials. Then, we overviewed the preclinical research of EVs as drug and gene delivery vehicles in CNS disease models, including the most recent two years' progress and discussed the mechanisms and new methods of engineered EVs for targeting CNS. Finally, we discussed challenges and future directions and of EVs as personalized medicine for CNS diseases.
Collapse
Affiliation(s)
- Xi Shi
- Department of Molecular Bioscience, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Weilong He
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ashwin Gupta
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyran To
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Leonardo Clark
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nitya Mirle
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas Wynn
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Akash Ganesh
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Helena M Zeng
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Huiliang Wang
- Department of Molecular Bioscience, The University of Texas at Austin, Austin, Texas 78712, USA.
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
30
|
Maragno E, Ricchizzi S, Winter NR, Hellwig SJ, Stummer W, Hahn T, Holling M. Predictive modeling with linear machine learning can estimate glioblastoma survival in months based solely on MGMT-methylation status, age and sex. Acta Neurochir (Wien) 2025; 167:52. [PMID: 39992425 PMCID: PMC11850473 DOI: 10.1007/s00701-025-06441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of algorithms and the quality of the input data. In this study, we aimed to develop a novel predictive model to estimate individual survival for patients diagnosed with glioblastoma (GBM), focusing on key variables such as O6-Methylguanine-DNA Methyltransferase (MGMT) methylation status, age, and sex. METHODS To identify the optimal approach, we utilized retrospective data from 218 patients treated at our brain tumor center. The performance of the ML models was evaluated within repeated tenfold regression. The pipeline comprised five regression estimators, including both linear and non-linear algorithms. Permutation feature importance highlighted the feature with the most significant impact on the model. Statistical significance was assessed using a permutation test procedure. RESULTS The best machine learning algorithm achieved a mean absolute error (MAE) of 12.65 (SD = ± 2.18) and an explained variance (EV) of 7% (SD = ± 1.8%) with p < 0.001. Linear algorithms led to more accurate predictions than non-linear estimators. Feature importance testing indicated that age and positive MGMT-methylation influenced the predictions the most. CONCLUSION In summary, here we provide a novel approach allowing to predict GBM patient's survival in months solely based on key parameters such as age, sex and MGMT-methylation status and underscores MGMT-methylation status as key prognostic factor for GBM patients survival.
Collapse
Affiliation(s)
- Emanuele Maragno
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Sarah Ricchizzi
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Ralf Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Sönke Josua Hellwig
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany.
| |
Collapse
|
31
|
Mishra A, Patel TN. Locking the gates of immortality: targeting alternative lengthening of telomeres (ALT) pathways. Med Oncol 2025; 42:78. [PMID: 39964637 DOI: 10.1007/s12032-025-02627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/11/2025] [Indexed: 05/10/2025]
Abstract
Telomere maintenance is essential for the unlimited proliferation of cancer cells. While most cancers reactivate telomerase to preserve telomeres, approximately 10-15% utilize the alternative lengthening of telomeres (ALT), a telomerase-independent mechanism driven by homologous recombination. ALT is primarily observed in sarcomas and neuroepithelial tumors and it is characterized by hallmarks such as heterogeneous telomere lengths, the presence of ALT-associated PML bodies (APBs), extrachromosomal telomeric repeats (ECTRs), and elevated replication stress. This review has a threefold aim: (1) to examine the mechanisms of ALT activation, (2) to highlight existing therapeutic interventions targeting ALT components and telosomic complexes, and, (3) to pinpoint potential molecular targets for novel anticancer treatments. Therapeutic strategies focus on disrupting APBs, stabilizing G-quadruplex structures, and inhibiting replication stress proteins such as FANCM and SMARCAL1. Emerging evidence highlights the role of shelterin proteins like TRF1 and TRF2, chromatin remodeling factors such as ATRX and DAXX, and the dysregulated cGAS-STING pathway in facilitating ALT activity. Moreover, the inhibitory role of RAP1-SUN1 protein interactions in telomere recombination provides a novel therapeutic avenue. Recent advances have elucidated the intricate balance of replication stress, DNA damage response, and recombination in ALT regulation. These insights can help overcome challenges posed by ALT + cancers, including their ability to transition from telomerase-dependent states. Targeting ALT-specific vulnerabilities offers a promising direction for developing innovative therapies that exploit the unique biology of ALT-driven tumors.
Collapse
Affiliation(s)
- Apurwa Mishra
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Trupti N Patel
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
32
|
Liu H, Tan S, Zhao Z, Tang X, Li Z, Qi J. METTL3/YTDHF1 Stabilizes MTCH2 mRNA to Regulate Ferroptosis in Glioma Cells. FRONT BIOSCI-LANDMRK 2025; 30:25718. [PMID: 40018930 DOI: 10.31083/fbl25718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Gliomas are aggressive brain tumors known for their poor prognosis and resistance to standard treatment options. Ferroptosis is an iron-dependent form of regulated cell death that has emerged as a promising target for cancer treatment. This study examined how the methyltransferase-like 3/YTH domain family protein 1 (METTL3/YTHDF1) axis influences ferroptosis and glioma progression by stabilizing mitochondrial carrier homolog 2 (MTCH2) messenger RNA (mRNA). METHODS MTCH2 expression in glioma tissues and cell lines was evaluated through quantitative real-time polymerase chain reaction (PCR) and western blot analyses. To assess the effects of MTCH2 knockdown and overexpression on glioma cell functions, we performed a series of functional assays, including cell viability, colony formation, and measurements of lipid reactive oxygen species (lipid ROS) and malondialdehyde (MDA) levels. Additionally, we conducted RNA immunoprecipitation (RIP) and RNA stability assays to explore the underlying mechanisms governing the interaction between METTL3, YTHDF1, and the stability of MTCH2 mRNA. RESULTS MTCH2 was significantly upregulated in glioma tissues and cell lines. Silencing of MTCH2 resulted in decreased glioma cell proliferation and induced ferroptosis, as evidenced by increased lipid peroxidation and ROS accumulation. Conversely, overexpression of MTCH2 enhanced glioma cell survival and reduced ferroptosis. METTL3-mediated N6-methyladenosine (m6A) modification enhanced MTCH2 mRNA stability by enabling YTHDF1 to bind and protect the modified mRNA from degradation. CONCLUSION The METTL3/YTHDF1/MTCH2 axis plays a critical role in glioma progression by inhibiting ferroptosis and promoting tumor cell survival. Targeting this pathway may provide a new and effective treatment strategy for glioma patients.
Collapse
Affiliation(s)
- Hongjun Liu
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Shasha Tan
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Zhenyu Zhao
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Xiaoping Tang
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Zhou Li
- Department of Neurosurgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Jian Qi
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| |
Collapse
|
33
|
Jiang LW, Li ZX, Ji X, Jiang T, Wang XK, Weng CB. Investigating the relevance of nucleotide metabolism in the prognosis of glioblastoma through bioinformatics models. Sci Rep 2025; 15:5363. [PMID: 39948153 PMCID: PMC11825681 DOI: 10.1038/s41598-025-88970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Nucleotide metabolism (NM) is a fundamental process that enables the rapid growth of tumors. Glioblastoma (GBM) primarily relies on NM for its invasion, leading to severe clinical outcomes. This study focuses on NM to identify potential biomarkers associated with GBM. Publicly available databases were used as the primary data source for this study, excluding biological tissue samples. We identified and evaluated key genes involved in NM, followed by developing and validating a prognostic model. Patients were classified into high- and low-risk groups based on this model, and the two groups were compared with respect to cellular immunity and mutation profiles. The biomarkers were confirmed using real-time reverse-transcriptase polymerase chain reaction. Our study identified UPP1, CDA, NUDT1, and ADSL as significant biomarkers associated with prognosis, all of which were upregulated in patients with GBM. The risk score and clinical factors such as age, sex, GBM stage, MGMT promoter status, and IDH mutation status were found to be independent prognostic factors. Patients with glioblastoma showed a higher overall mutation burden. Using bioinformatics, this study identifies key factors associated with NM in GBM that may influence patient prognosis. This study enhances our understanding of GBM, provides valuable insights for further research, and serves as a reference for evaluating patient outcomes.
Collapse
Affiliation(s)
- Lu-Wei Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
- Department of Neurosurgery, Anhui Public Health Clinical Center, Hefei, 230012, China
| | - Zi-Xuan Li
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiao Ji
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
- Department of Neurosurgery, Anhui Public Health Clinical Center, Hefei, 230012, China
| | - Tao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China.
- Department of Neurosurgery, Anhui Public Health Clinical Center, Hefei, 230012, China.
| | - Xu-Kou Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
- Department of Neurosurgery, Anhui Public Health Clinical Center, Hefei, 230012, China
| | - Chuan-Bo Weng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
- Department of Neurosurgery, Anhui Public Health Clinical Center, Hefei, 230012, China
| |
Collapse
|
34
|
Rodríguez-Campuzano AG, Castelán F, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Yin Yang 1: Function, Mechanisms, and Glia. Neurochem Res 2025; 50:96. [PMID: 39904836 PMCID: PMC11794380 DOI: 10.1007/s11064-025-04345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Yin Yang 1 is a ubiquitously expressed transcription factor that has been extensively studied given its particular dual transcriptional regulation. Yin Yang 1 is involved in various cellular processes like cell cycle progression, cell differentiation, DNA repair, cell survival and apoptosis among others. Its malfunction or alteration leads to disease and even to malignant transformation. This transcription factor is essential for the proper central nervous system development and function. The activity of Yin Yang 1 depends on its interacting partners, promoter environment and chromatin structure, however, its mechanistic activity is not completely understood. In this review, we briefly discuss the Yin Yang 1 structure, post-translational modifications, interactions, mechanistic functions and its participation in neurodevelopment. We also discuss its expression and critical involvement in the physiology and physiopathology of glial cells, summarizing the contribution of Yin Yang 1 on different aspects of cellular function.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|
35
|
Li J, Zhao Y, Wu X, Zou Y, Liu Y, Ma H. Choline kinase alpha regulates autophagy-associated exosome release to promote glioma cell progression. Biochem Biophys Res Commun 2025; 746:151269. [PMID: 39778250 DOI: 10.1016/j.bbrc.2024.151269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Glioma is the most common primary intracranial malignant tumor in adults, with a poor prognosis. Exosomes released by tumor cells play a crucial role in tumor development, metastasis, angiogenesis, and other biological processes. Despite this significance, the precise molecular mechanisms governing exosome secretion and their impact on tumor progression remain incompletely understood. While Choline Kinase Alpha (CHKA) has been implicated in promoting various types of tumors, its specific role in glioma pathogenesis remains unclear. Our study initially demonstrates that CHKA enhances the proliferation, migration, and invasion abilities of glioma cells. Interestingly, CHKA also stimulates the release of exosomes from glioma cells. Mechanistically, reduced CHKA expression hampers exosome secretion by elevating autophagy levels in gliomas, whereas counteracting the autophagy elevation resulting from CHKA downregulation restores the release of exosomes. Notably, exosomes derived from glioma cells with normal CHKA expression exhibit a greater capacity to promote glioma progression compared to those derived from cells with low CHKA expression. Overall, our findings suggest that CHKA modulates exosome secretion via an autophagy-dependent pathway, thereby facilitating the proliferation, migration, and invasion of glioma cells.
Collapse
Affiliation(s)
- Jialin Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yang Zhao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiao Wu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yourui Zou
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yang Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui Ma
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
36
|
Yang S, Sun Y, Wang N, Yang Z, Xing H, Jia J. RNF144A-AS1 stabilizes TAF15 and promotes malignant biological behaviors of skin cutaneous melanoma. Mol Cell Biochem 2025; 480:1155-1167. [PMID: 38878223 DOI: 10.1007/s11010-024-05045-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 02/19/2025]
Abstract
LncRNAs have been demonstrated to regulate biological processes in malignant tumors. In our previous study, we identified the immune-related LncRNA RNF144A-AS1 as a potential regulator in SKCM. However, its precise function and regulatory mechanism remain unclear. In this study, we observed upregulation of RNF144A-AS1 in SKCM and found that knockdown of RNF144A-AS1 suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition abilities of melanoma cells. Mechanistically, as a high-risk prognostic factor, RNF144A-AS1 regulated biological processes of SKCM by interacting with TAF15 through an RNA-binding protein-dependent (RBP-dependent) manner. Furthermore, we confirmed that TAF15 activated downstream transcriptional regulation of YAP1 to modulate malignant behaviors in melanoma cells. In vivo experiments revealed that knockdown of RNF144A-AS1 inhibited tumorigenic capacity of melanoma cells and exhibited promising therapeutic effects. Collectively, these findings highlight the significance of the RNF144A-AS1/TAF15/YAP1 axis in promoting malignant behaviors in SKCM and provide novel insights into potential prognostic biomarkers and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, 110001, Shenyang, Liaoning Province, People's Republic of China.
| | - Yudi Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, 110001, Shenyang, Liaoning Province, People's Republic of China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, 110001, Shenyang, Liaoning Province, People's Republic of China
| | - Ziming Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, 110001, Shenyang, Liaoning Province, People's Republic of China
| | - Hao Xing
- Department of Plastic Surgery, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, 110001, Shenyang, Liaoning Province, People's Republic of China
| | - Jialin Jia
- Department of Plastic Surgery, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, 110001, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
37
|
Dong F, Yin H, Zheng Z. Hypoxia-Inducible Factor-1α Regulates BNIP3-Dependent Mitophagy and Mediates Metabolic Reprogramming Through Histone Lysine Lactylation Modification to Affect Glioma Proliferation and Invasion. J Biochem Mol Toxicol 2025; 39:e70069. [PMID: 39829390 DOI: 10.1002/jbt.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Gliomas are the predominant form of malignant brain tumors. We investigated the mechanism of hypoxia-inducible factor-1α (HIF-1α) affecting glioma metabolic reprogramming, proliferation and invasion. METHODS Human glioma cell U87 was cultured under hypoxia and treated with small interfering (si)HIF-1α, si-B cell lymphoma-2/adenovirus E1B 19-kDa interacting protein 3 (siBNIP3), si-YT521-B homology domain 2 (siYTHDF2), 3-methyladenine and 2-deoxyglucose, with exogenous sodium lactate-treated normally-cultured cells as a lactate-positive control. Cellular hexokinase 2, lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 enzyme activities, glucose uptake, and levels of lactic acid and adenosine triphosphate (ATP), and HIF-1α, glycolysis-related proteins, mitophagy-related proteins, histone H3 lysine 18 lactylation (H3K18la) and YTHDF2 were determined by ELISA, 2-NBDG, kits, and Western blot. Extracellular acidification rate (ECAR), and cell proliferation, invasion, apoptosis and mitophagy were evaluated by extracellular flux analysis, CCK-8, Transwell, flow cytometry, and immunofluorescence staining. H3K18la-YTHDF2 relationship and YTHDF2-BNIP3 interaction were assessed by ChIP and Co-IP assays. RESULTS Hypoxia-induced highly-expressed HIF-1α in glioma cells increased glycolysis-related protein levels, glycolytic enzyme activities, glucose uptake, lactic acid production, ATP level and ECAR, thereby promoting metabolic reprogramming, invasion and proliferation. HIF-1α mediated metabolic reprogramming, proliferation and invasion through BNIP3-dependent mitophagy, which were partly negated by mitophagy inhibition. HIF-1α induced histone Kla modification to upregulate YTHDF2. YTHDF2 downregulation impeded YTHDF2-BNIP3 interaction and inhibited HIF-1α-induced BNIP3-dependent mitophagy, curbing glioma cell metabolic reprogramming, proliferation and invasion. CONCLUSIONS Hypoxia-induced high HIF-1α expression upregulated YTHDF2 through hH3K18la modification, enhanced YTHDF2-BNIP3 interaction, and regulated BNIP3-dependent mitophagy-mediated metabolic reprogramming to affect glioma proliferation and invasion.
Collapse
Affiliation(s)
- Feng Dong
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haichang Yin
- Laboratory of Animal Immunology, Qiqihar University, Qiqihar, China
| | - Zhixing Zheng
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Wang Y, Qiu L, Ye T, Tan F, Lyu J, Li F, Sun Z, Yang Y, Zhang J, Liu N, Liao J. 177Lu Radiolabeled Polydopamine Decorated with Fibroblast Activation Protein Inhibitor for Locoregional Treatment of Glioma. Chembiochem 2025; 26:e202400579. [PMID: 39688802 DOI: 10.1002/cbic.202400579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Radionuclide therapy is expected to be a powerful tool for glioma treatment. Here, we introduced a novel nuclear nanomedicine based on polydopamine (PDA), incorporating fibroblast activation protein inhibitor (FAPI) and macrocyclic chelator (DOTA) for specific cancer targeting and 177Lu labeling. The synthesized nanoradiopharmaceutical, 177Lu-DOTA-PEG-PDA-FAPI, exhibits good stability in serum, saline and PBS over 5 days. 177Lu-DOTA-PEG-PDA-FAPI shows efficient specific uptake and internalization when incubated with U87MG cells. In vivo distribution visualized prominent accumulation and long retention ability of 177Lu-DOTA-PEG-PDA-FAPI at tumor sites after local administration. Moreover, 177Lu-DOTA-PEG-PDA-FAPI has satisfactory antitumor ability without apparent toxic and side effects observed from therapy assay and H&E staining. This study highlights the feasibility of using PDA as a nanocarrier for glioma endoradiotherapy by targeting fibroblast activation protein.
Collapse
Affiliation(s)
- Yadong Wang
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Long Qiu
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Tianzhen Ye
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Fuyuan Tan
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Jie Lyu
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Feize Li
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Zhizhong Sun
- Sichuan Engineering Research Center for Radioactive Isotope, National Engineering Research Center for Isotopes and Pharmaceuticals, Nuclear Power Institute of China, Chengdu, 610000, China
| | - Yuanyou Yang
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Jinsong Zhang
- Sichuan Engineering Research Center for Radioactive Isotope, National Engineering Research Center for Isotopes and Pharmaceuticals, Nuclear Power Institute of China, Chengdu, 610000, China
| | - Ning Liu
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| | - Jiali Liao
- Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610000, China
| |
Collapse
|
39
|
Horta M, Soares P, Leite Pereira C, Lima RT. Emerging Approaches in Glioblastoma Treatment: Modulating the Extracellular Matrix Through Nanotechnology. Pharmaceutics 2025; 17:142. [PMID: 40006509 PMCID: PMC11859630 DOI: 10.3390/pharmaceutics17020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Glioblastoma's (GB) complex tumor microenvironment (TME) promotes its progression and resistance to therapy. A critical component of TME is the extracellular matrix (ECM), which plays a pivotal role in promoting the tumor's invasive behavior and aggressiveness. Nanotechnology holds significant promise for GB treatment, with the potential to address challenges posed by both the blood-brain barrier and the GB ECM. By enabling targeted delivery of therapeutic and diagnostic agents, nanotechnology offers the prospect of improving treatment efficacy and diagnostic accuracy at the tumor site. This review provides a comprehensive exploration of GB, including its epidemiology, classification, and current treatment strategies, alongside the intricacies of its TME. It highlights nanotechnology-based strategies, focusing on nanoparticle formulations such as liposomes, polymeric nanoparticles, and gold nanoparticles, which have shown promise in GB therapy. Furthermore, it explores how different emerging nanotechnology strategies modulate the ECM to overcome the challenges posed by its high density, which restricts drug distribution within GB tumors. By emphasizing the intersection of nanotechnology and GB ECM, this review underscores an innovative approach to advancing GB treatment. It addresses the limitations of current therapies, identifies new research avenues, and emphasizes the potential of nanotechnology to improve patient outcomes.
Collapse
Affiliation(s)
- Miguel Horta
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Catarina Leite Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Raquel T. Lima
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
40
|
ZHU TIANYUN, ZHAO CUNYAN, GONG RUI, QIAN AO, WANG XIAOSHU, LU FANGHUI, HUO GANG, QIAO LIANGJUN, CHEN SONG. Comprehensive analysis reveals PLK3 as a promising immune target and prognostic indicator in glioma. Oncol Res 2025; 33:431-442. [PMID: 39866232 PMCID: PMC11753997 DOI: 10.32604/or.2024.050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 01/30/2025] Open
Abstract
Background PLK3, which played an important role in cell cycle progression and stress response, was identified as highly expressed in various carcinomas. However, the functions, molecular characteristics, and prognostic value of PLK3 in glioma remained unexplored. Methods We analyzed PLK3 expression in glioma samples from multiple databases. Both overexpression and knockdown of Plk3 were performed to investigate tumor cell growth in glioma, and the transplanted glioma mouse model demonstrated the role of Plk3 on tumor progression. Immunohistochemistry was conducted to detect PLK3 expression and immune cell infiltration. The trans-well assay for PLK3 on the immune cells recruitment was also determined. Additionally, we further evaluated the correlation between PLK3 and PD-1/PD-L1 as well as other immune checkpoints. Results We found that an increased level of PLK3 was associated with malignancy and poor prognosis of glioma, and further validated that PLK3 promoted glioma progression. PLK3 also played a crucial role in immune response and was involved in Tcell immune suppression. Specifically, we revealed that CD8+ and CD4+ Tcell infiltration was decreased in Plk3 overexpressed xenografts. Furthermore, it was predicted that PLK3 was synergistic with other checkpoint members in glioma. In general, high expression of PLK3 was associated with a malignant process and poor prognosis in glioma patients. Conclusion Our findings indicated that PLK3 expression level was highly correlated to the malignancy of gliomas, and we validated that PLK3 could promote the GBM progress in vitro and in vivo. Furthermore, PLK3 played important roles in Tcell and neutrophil immune response in glioma. Besides, the conspicuous association between PLK3 and other immune checkpoints was also observed. Crucially, high-level PLK3 expression was revealed to be related to poor clinical prognosis. These results demonstrated that PLK3 may serve as a prognostic biomarker and a potential target for glioma.
Collapse
Affiliation(s)
- TIANYUN ZHU
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - CUNYAN ZHAO
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - RUI GONG
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - AO QIAN
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - XIAOSHU WANG
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - FANGHUI LU
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - GANG HUO
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - LIANGJUN QIAO
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - SONG CHEN
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
41
|
Shen Z, Li T, Yang B. Identification of Key Biomarkers Associated with Glioma Hemorrhage: Evidence from Bioinformatic Analysis and Clinical Validation. J Mol Neurosci 2025; 75:6. [PMID: 39808230 DOI: 10.1007/s12031-024-02294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Hemorrhagic stroke is a known complication of glioma, yet the underlying mechanisms remain poorly understood. This study aims to investigate key biomarkers of glioma-related hemorrhage to provide insights into glioma molecular therapies. Data were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to analyze differentially expressed genes (DEGs) in glioma by contrasting glioblastoma (GBM) with low-grade gliomas (LGGs). We conducted enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) databases through the Database for Annotation, Visualization, and Integrated Discovery (DAVID). A STRING-based protein-protein interaction (PPI) network was developed to identify hub genes, which were subsequently analyzed for their functions in the GeneCards database. To identify angiogenesis-associated genes, we utilized the Human Protein Atlas (HPA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases. A clinical pathological study was conducted using immunohistochemistry (IHC) staining to confirm the findings. In the GEO database, the GEO Series Experiments GSE26576 and GSE184941 included 4523 and 1471 differentially expressed genes (DEGs), respectively. We identified 2715 DEGs using the cBioPortal within the TCGA database. A Venn diagram identified 39 common DEGs. The KEGG pathways and Gene Ontology (GO) analysis highlighted functions related to angiogenesis. PPI network analyses pinpointed 13 hub genes. Through cross-referencing a gene set related to tumor angiogenesis in the GeneCards database, we identified MMP-2 and EGFR as key genes. In the HPA database, we observed EGFR and MMP-2 expression in the normal cerebral cortex, confirmed by IHC. In GEPIA database, high MMP-2 levels were associated with decreased survival time, while EGFR expression showed no significant differences in survival. A clinical study of 21 patients, 11 in the control group and 10 in the stroke group with glioma hemorrhage, revealed no significant differences in their characteristics or comorbidities. IDH1 positivity was higher in the control group (4/11) vs the stroke group (0/10). Tumor cells exhibited increased MMP-2 and EGFR expression, with stronger staining in the stroke group. Our study concluded that IDH1, MMP-2, and EGFR are implicated in the molecular mechanism of glioma hemorrhage as key biomarkers. MMP-2 and IDH1 are potential targets for molecular therapy.
Collapse
Affiliation(s)
- Zhe Shen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Tao Li
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
42
|
Yuan H, Cheng J, Xia J, Yang Z, Xu L. Identification of critical biomarkers and immune landscape patterns in glioma based on multi-database. Discov Oncol 2025; 16:35. [PMID: 39800804 PMCID: PMC11725551 DOI: 10.1007/s12672-024-01653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE Glioma is the most prevalent tumor of the central nervous system. The poor clinical outcomes and limited therapeutic efficacy underscore the urgent need for early diagnosis and an optimized prognostic approach for glioma. Therefore, the aim of this study was to identify sensitive biomarkers for glioma. PATIENTS AND METHODS Differentially expressed genes (DEGs) of glioma were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The potential biomarkers were identified using weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression. The prognostic ability of the potential biomarkers was evaluated by Cox regression and survival curve. CellMiner was used to access the correlation between the expression of potential biomarkers and anticancer drug sensitivity. We then explored the association of potential biomarkers and tumor immune infiltration by single-sample GSEA (ssGSEA) and CIBERSORT. Immune staining in glioma patient samples and cell experiments of potential biomarkers further verified their expression and function. RESULTS Ultimately, we identified three potential biomarkers: SLC8A2, ATP2B3, and SRCIN1. These 3 genes were found significantly correlated with clinicopathological features (age, WHO grade, IDH mutation status, 1p19q codeletion status). Furthermore, the overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS) were found to be positively correlated with high expression of these 3 potential biomarkers. Besides, there was a substantial relationship between the sensitivity of anticancer drugs and these biomarkers expression. More importantly, the negative association between the 3 genes with most tumor immune cells was also established. Moreover, the decreased expression of the biomarkers was also verified in glioma patient samples. Finally, we confirmed that these 3 genes might promotes glioma proliferation and migration in vitro. CONCLUSION SLC8A2, ATP2B3, and SRCIN1 were identified as underlying biomarkers for glioma associated with prognosis assessments and personal immunotherapy.
Collapse
Affiliation(s)
- Hanzhang Yuan
- Department of Neurosurgery, Yueyang Central Hospital, Yueyang, 414020, Hunan, China
| | - Jingsheng Cheng
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, 415003, Hunan, China
| | - Jun Xia
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, 415003, Hunan, China
| | - Zeng Yang
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, 415003, Hunan, China
| | - Lixin Xu
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, 415003, Hunan, China.
| |
Collapse
|
43
|
Wu B, Zeng L, Liu L, Tang X, Zhong Y. Analyzing the clinical characteristics of the SCAMP5 gene in gliomas and establishing a predictive model. Medicine (Baltimore) 2025; 104:e41147. [PMID: 40184123 PMCID: PMC11709206 DOI: 10.1097/md.0000000000041147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 04/05/2025] Open
Abstract
Gliomas are frequently occurring tumors in the nervous system. The secretory carrier membrane protein 5 (SCAMP5) plays a distinct role in the cytosolic function of mammalian cells and is associated with different neurological disorders. However, how SCAMP5 is expressed and its prognostic value in gliomas is unclear. The datasets were downloaded from the Chinese Glioma Genome Atlas website (http://www.cgga.org.cn/). We conducted a Cox survival analysis to establish a correlation between SCAMP5 gene expression and the general survival rate of patients with glioma. We performed Gene Ontology analysis to determine the biological functions of the SCAMP5 gene. Finally, we constructed a prediction model using primary relapse state type, age, grade, isocitrate dehydrogenase mutation status, 1p/19q co-deletion status, and the SCAMP5 gene expression value. Using this model, we can forecast the survival rates of patients for 1, 2, 3, 5, and 10 years. SCAMP5 was enriched in low-grade gliomas and isocitrate dehydrogenase mutant gliomas, 1p19q-deficient gliomas. SCAPM5 is an independent prognostic factor for the overall survival of glioma patients. Predictive models developed by SCAMP5 were able to predict well the long-term survival of patients. The evidence suggests that the SCAMP5 gene plays a significant function in glioma patients. There is a clear correlation between the expression of the SCAMP5 gene and the overall survival of glioma patients.
Collapse
Affiliation(s)
- Bin Wu
- Department of Neurology, Hunan University of Medicine General Hospital, Huai Hua, China
- Department of Neurology, The Fourth Clinical College Affiliated to Jishou University, Huai Hua, China
| | - Ling Zeng
- Department of Neurology, Hunan University of Medicine General Hospital, Huai Hua, China
- Department of Neurology, The Fourth Clinical College Affiliated to Jishou University, Huai Hua, China
| | - Li Liu
- Department of Neurology, Hunan University of Medicine General Hospital, Huai Hua, China
- Department of Neurology, The Fourth Clinical College Affiliated to Jishou University, Huai Hua, China
| | - Xianbi Tang
- Department of Neurology, Hunan University of Medicine General Hospital, Huai Hua, China
- Department of Neurology, The Fourth Clinical College Affiliated to Jishou University, Huai Hua, China
| | - Yushi Zhong
- Department of Neurology, Hunan University of Medicine General Hospital, Huai Hua, China
- Department of Neurology, The Fourth Clinical College Affiliated to Jishou University, Huai Hua, China
| |
Collapse
|
44
|
Chen CH, Hsu SY, Yu WJ, Chiang CS, Yu CF. Distinct roles of small extracellular vesicles from resident and infiltrating macrophages on glioma growth and mobility. J Cancer 2025; 16:969-981. [PMID: 39781357 PMCID: PMC11705045 DOI: 10.7150/jca.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025] Open
Abstract
Previous studies revealed that tumor-associated macrophages/microglia (TAMs) promoted glioma invasiveness during tumor progression and after radiotherapy. However, the communication of TAMs with tumor cells remains unclear. This study aimed to examine the role of small extracellular vesicles (sEVs) derived from TAMs in TAMs-mediated brain tumor invasion. This study utilized BV2 and RAW264.7 cell lines representing resident and infiltrating macrophages, respectively, to unveil their effect on tumor cells. Purified sEVs from BV2 and RAW264.7 were validated by nanoparticle track analysis (NTA), transmission electron microscopy (TEM), and western blotting for sEV markers. The effect of sEVs on the murine astrocytoma tumor cell line ALTS1C1 was examined on cell proliferation, migration, and gene expression. The results showed that ALTS1C1 cells effectively engulfed sEVs purified from BV2 and RAW264.7. Only BV2-derived sEVs promoted cell proliferation and were dose-dependent. Further, morphological changes in ALTS1C1 cells were observed after incubation with BV2-derived sEVs, which was associated with enhancing cell migration. BV2-mediated glioma proliferation and mobility were related to the upregulation of vascular endothelial growth factor (VEGF) and downregulation of death effector domain-containing protein (DEDD) gene expression. This study demonstrates the distinct function of sEVs of resident macrophages on glioma cell invasion and reveals the mechanism underlying microglia-mediated tumor progression. These findings suggested resident microglia is the potential therapeutic target for TAMs-induced brain tumor invasiveness.
Collapse
Affiliation(s)
- Chu-Hsuan Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsin-Chu, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsin-Chu, Taiwan
| | - Sheng-Yun Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Wen-Jui Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsin-Chu, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- The BNCT Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ching-Fang Yu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan 33382, Taiwan
| |
Collapse
|
45
|
Wang C, Duan L, Zhao Y, Wang Y, Li Y. Efficacy and Safety of Bevacizumab Combined with Temozolomide in the Treatment of Glioma: A Systematic Review and Meta-Analysis of Clinical Trials. World Neurosurg 2025; 193:447-460. [PMID: 39461419 DOI: 10.1016/j.wneu.2024.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVE Glioma is the most common malignant brain tumor in neurosurgery. Bevacizumab (BEV) is a monoclonal antibody that inhibits tumors by inhibiting vascular endothelial growth factor and reducing tumor angiogenesis. To evaluate the efficacy and safety of BEV combined with temozolomide (TMZ) in glioma, we performed a meta-analysis. METHODS PubMed, Embase, The Cochrane Library, and Web of Science databases were searched for randomized controlled trials comparing survival outcomes between TMZ combined with BEV and TMZ alone as well as cohort studies were included in our study. The primary outcome measures analyzed were overall survival (OS) and progression-free survival (PFS). RESULTS A total of 6 randomized controlled trials and 4 cohort studies with a total of 2515 patients were included in our meta-analysis. The results of meta-analysis suggested that there were no significant improvements in overall survival, but the combination of TMZ and BEV prolonged progression-free survival, improved overall response rate, and increased the incidence of some adverse reactions, compared with TMZ alone. Subgroup analysis suggested sex, recursive partitioning analysis grade, O-6-methylguanine-DNA methyltransferase gene status and radiotherapy combination did not affect the improvement of OS with the combination of the 2 drugs, and recursive partitioning analysis grade did not affect the improvement of PFS with the combination of the 2 drugs. CONCLUSIONS The combination of TMZ and BEV can improve PFS as well as overall response rate in patients and has no benefit on OS. At the same time, the adverse reactions during the combination of the 2 drugs were acceptable.
Collapse
Affiliation(s)
- Chuheng Wang
- Neurosurgical Oncology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Linan Duan
- Neurosurgical Oncology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yao Zhao
- Neurosurgical Oncology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yubo Wang
- Neurosurgical Oncology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Neurosurgical Oncology, The First Bethune Hospital of Jilin University, Changchun, China.
| |
Collapse
|
46
|
Muletier R, Bourgne C, Guy L, Dougé A. DNA Methylation in Prostate Cancer: Clinical Implications and Potential Applications. Cancer Med 2025; 14:e70528. [PMID: 39783747 PMCID: PMC11714017 DOI: 10.1002/cam4.70528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Prostate cancer is a common cancer with a variable prognosis. Its management is currently guided by histological and biological markers such as the Gleason score and PSA. Developments in molecular biology are now making it possible to identify new targets for better classification of prostate cancer. Among emerging biomarker, DNA methylation, an epigenetic process, is increasingly being studied in carcinogenesis. Techniques for analyzing DNA methylation are constantly improving, and digital PCR now allows absolute methylation quantification with high sensitivity. These techniques can be performed on circulating tumor DNA. MATERIALS & METHODS We conducted a literature review of scientific articles addressing the topic of DNA methylation in prostate cancer. RESULTS & DISCUSSION This review summarizes the different genes whose methylation is involved in carcinogenesis and their clinical implications, both diagnostic and prognostic. Methylation monitoring could also be useful for the prediction of treatment response. However, most studies are retrospective, and prospective studies are needed to validate these data.
Collapse
Affiliation(s)
- Romane Muletier
- Service d'Oncologie médicaleCHU Gabriel MontpiedClermont‐FerrandFrance
| | - Céline Bourgne
- Hématologie BiologiqueCHU EstaingClermont‐FerrandFrance
- Équipe d'Accueil 7453 CHELTERUniversité Clermont Auvergne, CHU Clermont‐Ferrand, Hôpital EstaingClermont‐FerrandFrance
| | - Laurent Guy
- Service d'UrologieCHU Gabriel MontpiedClermont‐FerrandFrance
| | - Aurore Dougé
- Service d'Oncologie médicaleCHU Gabriel MontpiedClermont‐FerrandFrance
- Équipe d'Accueil 7453 CHELTERUniversité Clermont Auvergne, CHU Clermont‐Ferrand, Hôpital EstaingClermont‐FerrandFrance
| |
Collapse
|
47
|
Gao L, Jing X, Hua Q, Li Z, Lei P, Song P, Zhou L, Tian Y, Liu J, Cai Q. Complement C1S is a potential prognostic biomarker and associated with M2 macrophage infiltration in gliomas: From bioinformatics to comprehensive experimental validation. Int Immunopharmacol 2024; 143:113573. [PMID: 39515040 DOI: 10.1016/j.intimp.2024.113573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Glioma is the most common malignant tumor of the central nervous system, and the ability of traditional clinical treatment to prolong the survival of glioma patients is limited. A substantial body of evidence underscores the pivotal role of the immune system in eradicating malignant cells and impeding tumor metastasis. Consequently, tumor immunotherapy has become a promising avenue to address the clinical conundrum faced by glioma patients. The complement system is a natural immune system that is an important line of defense in the immune response. C1S plays a key role in activating the classical complement system. Nevertheless, few studies have focused on the role of C1S in glioma tumorigenesis and progression. In this study, we demonstrated that C1S was upregulated in GBM (Grade IV) and low-grade gliomas (LGG, Grade II-III) by combining glioma cohorts from multiple public databases with our internal independent cohorts and that increased C1S expression levels predict a poor prognosis for gliomas. Cox regression analysis identified C1S as an important prognostic indicator for glioma patients. In addition, gene functional enrichment analysis demonstrated that C1S was involved in cellular immunity, T-cell activation, macrophage differentiation, and cell proliferation. Further experiments demonstrated that C1S facilitates tumor cell proliferation, cell migration and intracranial tumor growth in nude mice. More importantly, we evaluated the role of C1S in immune infiltration. These results suggested that C1S was closely related to a variety of immune cell types in glioma, especially M2 macrophages. Our findings were further validated via glioma tissue microarray immunohistochemical analysis and an M2 macrophage infiltration assay. Together, these findings revealed the underlying critical role of C1S in glioma tumorigenesis, progression, and the tumor immune microenvironment, contributing to further understanding of glioma pathogenesis and guiding immunotherapy.
Collapse
Affiliation(s)
- Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Xiongfei Jing
- Department of Neurosurgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City 433000, PR China
| | - Qiuwei Hua
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Zhiyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Pan Lei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Ping Song
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Long Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Yihao Tian
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, PR China.
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
48
|
Li X, Zhou F, Niu K, Wang Y, Shi Y, Li Y, Gao X, Zhao W, Chen T, Zhang Y. Emerging discoveries on the role of TRIM14: from diseases to immune regulation. Cell Death Discov 2024; 10:513. [PMID: 39719450 DOI: 10.1038/s41420-024-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
TRIM14 is an important member of the TRIM family and is widely expressed in a variety of tissues. Like other members of the TRIM family, TRIM14 is also involved in ubiquitination modifications. TRIM14 was initially reported as an interferon-stimulated gene (ISG). In recent years, many studies have focused on the regulatory role of TRIM14 in signaling pathways such as the PI3K/Akt, NF-κB, and cGAS/STING pathways and revealed its mechanism of action in a variety of pathophysiological processes, and the regulation of TRIM14 has attracted the interest of many researchers as a new direction for the treatment of various diseases. However, there are no reviews on the role of TRIM14 in diseases. In this paper, we will describe the structure of TRIM14, review its role in cancer, cardiovascular disease, cervical spondylosis, inflammation and antiviral immunity, and provide an outlook on future research directions.
Collapse
Affiliation(s)
- Xinhao Li
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Feilong Zhou
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kaiyi Niu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yizhu Wang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yunxin Li
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Gao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weijie Zhao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tianyi Chen
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
49
|
Vaghf A, Sadegh M, Khansarinejad B, Mondanizadeh M. MicroRNA-124-3p targets Sp1 transcription factor to regulate glioma progression in rats. Gene 2024; 930:148858. [PMID: 39153708 DOI: 10.1016/j.gene.2024.148858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Gliomas are the most prevalent malignancies of the central nervous system (CNS). Downregulation of microRNA‑124 (miR‑124) has been identified in glioma; however, its biological functions in glioma are not yet fully understood. Specificity protein 1 (SP1) is a type of transcription factor that is involved in cancer progression. In this study, we examined the targeting of Sp1 mRNA by miR-124-3p in a rat glioma model. After confirming and selecting the binding of Sp1 to miR-124 with the help of bioinformatics methods, adult male Wistar rats were used to induce glioma by microinjection of 1 × 106 C6 cells into the striatum area of brain. The rats were divided into 3 groups; intact, sham and glioma groups. The presence of glioma was confirmed 21 days after implantation through histological analysis. The expression levels of miR-124 and SP1 genes in the experimental groups were examined using quantitative real-time polymerase chain reaction (qRT-PCR). Our data showed that the expression of miR-124 was significantly downregulated in glioma group compared to the sham and intact group, while the expression of SP1 was significantly upregulated. We found that the expression levels of miR-124 and Sp1 were decreased and increased in C6 cell line compared to the normal brain tissue cell line, respectively. The results indicated that Sp1 was identified as a direct target of miR‑124 through luciferase reporter assays. In summary, this study demonstrated for the first time that miR-124 expression is downregulated and Sp1 expression is upregulated in an animal model of glioma, which, in turn, may be involved in the development of glioma brain cancer.
Collapse
Affiliation(s)
- Atena Vaghf
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Sadegh
- Departments of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
50
|
Wei S, Zhou J, Dong B. A novel risk model consisting of nine platelet-related gene signatures for predicting prognosis, immune features and drug sensitivity in glioma. Hereditas 2024; 161:52. [PMID: 39707577 DOI: 10.1186/s41065-024-00355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Glioma is a malignancy with challenging clinical treatment and poor prognosis. Platelets are closely associated with tumor growth, propagation, invasion, and angiogenesis. However, the role of platelet-related genes in glioma treatment and prognosis remains unclear. RESULTS A prognostic risk model was established using nine platelet-related prognostic signature genes (CAPG, CLIC1, GLB1, GNG12, KIF20A, PDIA4, SULF2, TAGLN2, and WEE1), and the risk score of samples were calculated. Subsequently, the glioma samples were divided into high- and low-risk groups based on the median values of risk scores. scRNA-seq analysis revealed that the prognostic genes were primarily located in astrocytes and natural killer cells. The immune infiltration proportions of most immune cells differed significantly between high- and low-risk groups. Moreover, we found AZD7762 as a potential candidate for glioma treatment. CONCLUSION Nine platelet-related prognostic genes identified as prognostic signatures for glioma were closely associated with the TME and may aid in directing the clinical treatment and prognosis of gliomas.
Collapse
Affiliation(s)
- Sanlin Wei
- Dalian Medical University, Dalian, Liaoning Province, 116000, China
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Junke Zhou
- Department of Nephrology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Bin Dong
- Dalian Medical University, Dalian, Liaoning Province, 116000, China.
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China.
| |
Collapse
|